Skip to main content
Erschienen in: Angiogenesis 1/2017

16.11.2016 | Original Paper

Enhanced peripheral dopamine impairs post-ischemic healing by suppressing angiotensin receptor type 1 expression in endothelial cells and inhibiting angiogenesis

verfasst von: Chandrani Sarkar, Ramesh K. Ganju, Vincent J. Pompili, Debanjan Chakroborty

Erschienen in: Angiogenesis | Ausgabe 1/2017

Einloggen, um Zugang zu erhalten

Abstract

Increased circulating catecholamines have been linked with cardiovascular anomalies as well as with peripheral vascular diseases. Although the roles of epinephrine and norepinephrine have received considerable attention, the role of the other catecholamine, dopamine, has been less studied. Since dopamine is a potent endogenous inhibitor of angiogenesis and as angiogenesis is essential for ischemic healing, we therefore studied the role played by dopamine during ischemic healing using dopamine D2 receptor knockout (KOD2) mice. Although concentration of dopamine and its rate-limiting enzyme, tyrosine hydroxylase, was considerably high in the muscle tissues of wild-type and KOD2 mice with unilateral hind limb ischemia (HLI), recovery was significantly faster in the KOD2 mice compared to the wild-type controls, thereby indicating that peripheral dopamine might have a role in this healing process. In addition, we observed significant differences in post-ischemic angiogenesis between these two groups. Our study further revealed that elevated dopamine independently suppressed activation of local tissue-based renin-angiotensin system (RAS), a critical growth factor system stimulating angiogenesis in ischemia. Angiotensin II (ATII) and its receptor, angiotensin receptor type 1 (AT1R), are the key players in RAS-mediated angiogenesis. Dopamine acting through its D2 receptors in endothelial cells inhibited ATII-mediated angiogenesis by suppressing the expression of AT1R in these cells. This study thus for the first time demonstrates the role played by dopamine in prolonging post-ischemic recovery. Therefore, pharmacological intervention inhibiting the action of dopamine holds promise as future therapeutic strategy for the treatment of HLI and other peripheral arterial diseases.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Hirsch AT, Duval S (2013) The global pandemic of peripheral artery disease. Lancet 9901:1312–1314CrossRef Hirsch AT, Duval S (2013) The global pandemic of peripheral artery disease. Lancet 9901:1312–1314CrossRef
2.
Zurück zum Zitat Baumgartner I (2015) Peripheral artery occlusive disease a major contributor to cardiovascular public health burden. Eur Heart J 15:894–896CrossRef Baumgartner I (2015) Peripheral artery occlusive disease a major contributor to cardiovascular public health burden. Eur Heart J 15:894–896CrossRef
3.
Zurück zum Zitat Freedman SB, Isner JM (2002) Therapeutic angiogenesis for coronary artery disease. Ann Intern Med 136:54–71CrossRefPubMed Freedman SB, Isner JM (2002) Therapeutic angiogenesis for coronary artery disease. Ann Intern Med 136:54–71CrossRefPubMed
4.
Zurück zum Zitat Simons M, Annex BH, Laham RJ, Kleiman N, Henry T, Dauerman H, Udelson JE, Gervino EV, Pike M, Whitehouse MJ, Moon T, Chronos NA (2002) Pharmacological treatment of coronary artery disease with recombinant fibroblast growth factor-2: double-blind, randomized, controlled clinical trial. Circulation 105:788–793CrossRefPubMed Simons M, Annex BH, Laham RJ, Kleiman N, Henry T, Dauerman H, Udelson JE, Gervino EV, Pike M, Whitehouse MJ, Moon T, Chronos NA (2002) Pharmacological treatment of coronary artery disease with recombinant fibroblast growth factor-2: double-blind, randomized, controlled clinical trial. Circulation 105:788–793CrossRefPubMed
5.
Zurück zum Zitat Lekas M, Lekas P, Latter DA, Kutryk MB, Stewart DJ (2006) Growth factor-induced therapeutic neovascularization for ischaemic vascular disease: Time for a re-evaluation? Curr Opin Cardiol 21:376–384CrossRefPubMed Lekas M, Lekas P, Latter DA, Kutryk MB, Stewart DJ (2006) Growth factor-induced therapeutic neovascularization for ischaemic vascular disease: Time for a re-evaluation? Curr Opin Cardiol 21:376–384CrossRefPubMed
6.
Zurück zum Zitat Tongers J, Roncalli JG, Losordo DW (2008) Therapeutic angiogenesis for critical limb ischemia: microvascular therapies coming of age. Circulation 118:9–16CrossRefPubMed Tongers J, Roncalli JG, Losordo DW (2008) Therapeutic angiogenesis for critical limb ischemia: microvascular therapies coming of age. Circulation 118:9–16CrossRefPubMed
7.
Zurück zum Zitat Chung AS, Ferrara N (2011) Developmental and pathological angiogenesis. Annu Rev Cell Dev Biol 27:563–584CrossRefPubMed Chung AS, Ferrara N (2011) Developmental and pathological angiogenesis. Annu Rev Cell Dev Biol 27:563–584CrossRefPubMed
8.
Zurück zum Zitat Collinson DJ, Donnelly R (2004) Therapeutic angiogenesis in peripheral arterial disease: Can biotechnology produce an effective collateral circulation? Eur J Vasc Endovasc Surg 1:9–23CrossRef Collinson DJ, Donnelly R (2004) Therapeutic angiogenesis in peripheral arterial disease: Can biotechnology produce an effective collateral circulation? Eur J Vasc Endovasc Surg 1:9–23CrossRef
9.
Zurück zum Zitat Uchida C, Haas TL (2009) Evolving strategies in manipulating VEGF/VEGFR signaling for the promotion of angiogenesis in ischemic muscle. Curr Pharm Des 15:411–421CrossRefPubMed Uchida C, Haas TL (2009) Evolving strategies in manipulating VEGF/VEGFR signaling for the promotion of angiogenesis in ischemic muscle. Curr Pharm Des 15:411–421CrossRefPubMed
10.
Zurück zum Zitat Hazarika S, Dokun AO, Li Y, Popel AS, Kontos CD, Annex BH (2007) Impaired angiogenesis after hindlimb ischemia in type 2 diabetes mellitus: differential regulation of vascular endothelial growth factor receptor 1 and soluble vascular endothelial growth factor receptor 1. Circ Res 101:948–956CrossRefPubMed Hazarika S, Dokun AO, Li Y, Popel AS, Kontos CD, Annex BH (2007) Impaired angiogenesis after hindlimb ischemia in type 2 diabetes mellitus: differential regulation of vascular endothelial growth factor receptor 1 and soluble vascular endothelial growth factor receptor 1. Circ Res 101:948–956CrossRefPubMed
11.
Zurück zum Zitat Basu S, Nagy JA, Pal S, Vasile E, Eckelhoefer IA, Bliss VS, Manseau EJ, Dasgupta PS, Dvorak HF, Mukhopadhyay D (2001) The neurotransmitter dopamine inhibits angiogenesis induced by vascular permeability factor/vascular endothelial growth factor. Nat Med 7:569–574CrossRefPubMed Basu S, Nagy JA, Pal S, Vasile E, Eckelhoefer IA, Bliss VS, Manseau EJ, Dasgupta PS, Dvorak HF, Mukhopadhyay D (2001) The neurotransmitter dopamine inhibits angiogenesis induced by vascular permeability factor/vascular endothelial growth factor. Nat Med 7:569–574CrossRefPubMed
12.
Zurück zum Zitat Chakroborty D, Sarkar C, Mitra RB, Banerjee S, Dasgupta PS, Basu S (2004) Depleted dopamine in gastric cancer tissues: dopamine treatment retards growth of gastric cancer by inhibiting angiogenesis. Clin Cancer Res 10:4349–4356CrossRefPubMed Chakroborty D, Sarkar C, Mitra RB, Banerjee S, Dasgupta PS, Basu S (2004) Depleted dopamine in gastric cancer tissues: dopamine treatment retards growth of gastric cancer by inhibiting angiogenesis. Clin Cancer Res 10:4349–4356CrossRefPubMed
13.
Zurück zum Zitat Sarkar C, Chakroborty D, Mitra RB, Banerjee S, Dasgupta PS, Basu S (2004) Dopamine in vivo inhibits VEGF-induced phosphorylation of VEGFR-2, MAPK, and focal adhesion kinase in endothelial cells. Am J Physiol Heart Circ Physiol 287:H1554–H1560CrossRefPubMed Sarkar C, Chakroborty D, Mitra RB, Banerjee S, Dasgupta PS, Basu S (2004) Dopamine in vivo inhibits VEGF-induced phosphorylation of VEGFR-2, MAPK, and focal adhesion kinase in endothelial cells. Am J Physiol Heart Circ Physiol 287:H1554–H1560CrossRefPubMed
14.
Zurück zum Zitat Chakroborty D, Chowdhury UR, Sarkar C, Baral R, Dasgupta PS, Basu S (2008) Dopamine regulates endothelial progenitor cell mobilization from mouse bone marrow in tumor vascularization. J Clin Invest 118:1380–1389CrossRefPubMedPubMedCentral Chakroborty D, Chowdhury UR, Sarkar C, Baral R, Dasgupta PS, Basu S (2008) Dopamine regulates endothelial progenitor cell mobilization from mouse bone marrow in tumor vascularization. J Clin Invest 118:1380–1389CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Shome S, Rana T, Ganguly S, Basu B, Chaki Choudhury S, Sarkar C, Chakroborty D, Dasgupta PS, Basu S (2011) Dopamine regulates angiogenesis in normal dermal wound tissues. PLoS ONE 6:e25215CrossRefPubMedPubMedCentral Shome S, Rana T, Ganguly S, Basu B, Chaki Choudhury S, Sarkar C, Chakroborty D, Dasgupta PS, Basu S (2011) Dopamine regulates angiogenesis in normal dermal wound tissues. PLoS ONE 6:e25215CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Chalothorn D, Zhang H, Clayton JA, Thomas SA, Faber JE (2005) Catecholamines augment collateral vessel growth and angiogenesis in hindlimb ischemia. Am J Physiol Heart Circ Physiol 289:H947–H959CrossRefPubMed Chalothorn D, Zhang H, Clayton JA, Thomas SA, Faber JE (2005) Catecholamines augment collateral vessel growth and angiogenesis in hindlimb ischemia. Am J Physiol Heart Circ Physiol 289:H947–H959CrossRefPubMed
17.
Zurück zum Zitat Bruno RM, Ghiadoni L, Seravalle G, Dell’oro R, Taddei S, Grassi G (2012) Sympathetic regulation of vascular function in health and disease. Front Physiol 3:284CrossRefPubMedPubMedCentral Bruno RM, Ghiadoni L, Seravalle G, Dell’oro R, Taddei S, Grassi G (2012) Sympathetic regulation of vascular function in health and disease. Front Physiol 3:284CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Chakroborty D, Sarkar C, Basu B, Dasgupta PS, Basu S (2009) Catecholamines regulate tumor angiogenesis. Cancer Res 69:3727–3730CrossRefPubMed Chakroborty D, Sarkar C, Basu B, Dasgupta PS, Basu S (2009) Catecholamines regulate tumor angiogenesis. Cancer Res 69:3727–3730CrossRefPubMed
19.
Zurück zum Zitat Tilan J, Kitlinska J (2010) Sympathetic neurotransmitters and tumor angiogenesis—link between stress and cancer progression. J Oncol 2010:539706CrossRefPubMedPubMedCentral Tilan J, Kitlinska J (2010) Sympathetic neurotransmitters and tumor angiogenesis—link between stress and cancer progression. J Oncol 2010:539706CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Barton DA, Dawood T, Lambert EA, Esler MD, Haikerwal D, Brenchley C, Socratous F, Kaye DM, Schlaich MP, Hickie I, Lambert GW (2007) Sympathetic activity in major depressive disorder: Identifying those at increased cardiac risk? J Hypertens 25:2117–2124CrossRefPubMed Barton DA, Dawood T, Lambert EA, Esler MD, Haikerwal D, Brenchley C, Socratous F, Kaye DM, Schlaich MP, Hickie I, Lambert GW (2007) Sympathetic activity in major depressive disorder: Identifying those at increased cardiac risk? J Hypertens 25:2117–2124CrossRefPubMed
21.
Zurück zum Zitat Kaye DM, Lambert GW, Lefkovits J, Morris M, Jennings G, Esler MD (1994) Neurochemical evidence of cardiac sympathetic activation and increased central nervous system norepinephrine turnover in severe congestive heart failure. J Am Coll Cardiol 23:570–578CrossRefPubMed Kaye DM, Lambert GW, Lefkovits J, Morris M, Jennings G, Esler MD (1994) Neurochemical evidence of cardiac sympathetic activation and increased central nervous system norepinephrine turnover in severe congestive heart failure. J Am Coll Cardiol 23:570–578CrossRefPubMed
22.
Zurück zum Zitat Kaye DM, Lefkovits J, Jennings GL, Bergin P, Broughton A, Esler MD (1995) Adverse consequences of high sympathetic nervous activity in the failing human heart. J Am Coll Cardiol 26:1257–1263CrossRefPubMed Kaye DM, Lefkovits J, Jennings GL, Bergin P, Broughton A, Esler MD (1995) Adverse consequences of high sympathetic nervous activity in the failing human heart. J Am Coll Cardiol 26:1257–1263CrossRefPubMed
23.
Zurück zum Zitat Barretto AC, Santos AC, Munhoz R, Rondon MU, Franco FG, Trombetta IC, Roveda F, de Matos LN, Braga AM, Middlekauff HR, Negrão CE (2009) Increased muscle sympathetic nerve activity predicts mortality in heart failure patients. Int J Cardiol 135:302–307CrossRefPubMed Barretto AC, Santos AC, Munhoz R, Rondon MU, Franco FG, Trombetta IC, Roveda F, de Matos LN, Braga AM, Middlekauff HR, Negrão CE (2009) Increased muscle sympathetic nerve activity predicts mortality in heart failure patients. Int J Cardiol 135:302–307CrossRefPubMed
24.
Zurück zum Zitat Basu S, Sarkar C, Chakroborty D, Nagy J, Mitra RB, Dasgupta PS, Mukhopadhyay D (2004) Ablation of peripheral dopaminergic nerves stimulates malignant tumor growth by inducing vascular permeability factor/vascular endothelial growth factor-mediated angiogenesis. Cancer Res 64:5551–5555CrossRefPubMed Basu S, Sarkar C, Chakroborty D, Nagy J, Mitra RB, Dasgupta PS, Mukhopadhyay D (2004) Ablation of peripheral dopaminergic nerves stimulates malignant tumor growth by inducing vascular permeability factor/vascular endothelial growth factor-mediated angiogenesis. Cancer Res 64:5551–5555CrossRefPubMed
25.
Zurück zum Zitat Sasaki K, Murohara T, Ikeda H, Sugaya T, Shimada T, Shintani S, Imaizumi T (2002) Evidence for the importance of angiotensin II type 1 receptor in ischemia-induced angiogenesis. J Clin Invest 109:603–611CrossRefPubMedPubMedCentral Sasaki K, Murohara T, Ikeda H, Sugaya T, Shimada T, Shintani S, Imaizumi T (2002) Evidence for the importance of angiotensin II type 1 receptor in ischemia-induced angiogenesis. J Clin Invest 109:603–611CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Gul R, Ramdas M, Mandavia CH, Sowers JR, Pulakat L (2012) RAS-mediated adaptive mechanisms in cardiovascular tissues: confounding factors of RAS blockade therapy and alternative approaches. Cardiorenal Med 2:268–280CrossRefPubMedPubMedCentral Gul R, Ramdas M, Mandavia CH, Sowers JR, Pulakat L (2012) RAS-mediated adaptive mechanisms in cardiovascular tissues: confounding factors of RAS blockade therapy and alternative approaches. Cardiorenal Med 2:268–280CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat Tufan H, Zaki BM, Tecder-Unal M, Erdem SR, Take G (2007) Angiotensin II captopril cotreatment augments angiogenesis in abdominal skin flap in rats. Ann Plast Surg 58:441–448CrossRefPubMed Tufan H, Zaki BM, Tecder-Unal M, Erdem SR, Take G (2007) Angiotensin II captopril cotreatment augments angiogenesis in abdominal skin flap in rats. Ann Plast Surg 58:441–448CrossRefPubMed
28.
Zurück zum Zitat Everson-Rose SA, Roetker NS, Lutsey PL, Kershaw KN, Longstreth WT, Sacco RL, Diez Roux AV, Alonso A (2014) Chronic stress, depressive symptoms, anger, hostility, and risk of stroke and transient ischemic attack in the multi-ethnic study of atherosclerosis. Stroke 45:2318–2323CrossRefPubMedPubMedCentral Everson-Rose SA, Roetker NS, Lutsey PL, Kershaw KN, Longstreth WT, Sacco RL, Diez Roux AV, Alonso A (2014) Chronic stress, depressive symptoms, anger, hostility, and risk of stroke and transient ischemic attack in the multi-ethnic study of atherosclerosis. Stroke 45:2318–2323CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Pieterse C, Schutte R, Schutte AE (2016) Leptin relates to prolonged cardiovascular recovery after acute stress in Africans: the SABPA study. Nutr Metab Cardiovasc Dis 26:45–52CrossRefPubMed Pieterse C, Schutte R, Schutte AE (2016) Leptin relates to prolonged cardiovascular recovery after acute stress in Africans: the SABPA study. Nutr Metab Cardiovasc Dis 26:45–52CrossRefPubMed
30.
Zurück zum Zitat Wittstein IS, Thiemann DR, Lima JA, Baughman KL, Schulman SP, Gerstenblith G, Wu KC, Rade JJ, Bivalacqua TJ, Champion HC (2005) Neurohumoral features of myocardial stunning due to sudden emotional stress. N Engl J Med 352:539–548CrossRefPubMed Wittstein IS, Thiemann DR, Lima JA, Baughman KL, Schulman SP, Gerstenblith G, Wu KC, Rade JJ, Bivalacqua TJ, Champion HC (2005) Neurohumoral features of myocardial stunning due to sudden emotional stress. N Engl J Med 352:539–548CrossRefPubMed
31.
Zurück zum Zitat Cas LD, Metra M, Nodari S, Nardi M, Giubbini R, Visioli O (1993) Stress and ischemic heart disease. Cardiologia 38:415–425PubMed Cas LD, Metra M, Nodari S, Nardi M, Giubbini R, Visioli O (1993) Stress and ischemic heart disease. Cardiologia 38:415–425PubMed
32.
Zurück zum Zitat Stone PH, Krantz DS, McMahon RP, Goldberg AD, Becker LC, Chaitman BR, Taylor HA, Cohen JD, Freedland KE, Bertolet BD, Coughlan C, Pepine CJ, Kaufmann PG, Sheps DS (1999) Relationship among mental stress-induced ischemia and ischemia during daily life and during exercise: the psychophysiologic investigations of myocardial ischemia (PIMI) study. J Am Coll Cardiol 33:1476–1484CrossRefPubMed Stone PH, Krantz DS, McMahon RP, Goldberg AD, Becker LC, Chaitman BR, Taylor HA, Cohen JD, Freedland KE, Bertolet BD, Coughlan C, Pepine CJ, Kaufmann PG, Sheps DS (1999) Relationship among mental stress-induced ischemia and ischemia during daily life and during exercise: the psychophysiologic investigations of myocardial ischemia (PIMI) study. J Am Coll Cardiol 33:1476–1484CrossRefPubMed
33.
Zurück zum Zitat Adler CM, Elman I, Weisenfeld N, Kestler L, Pickar D, Breier A (2000) Effects of acute metabolic stress on striatal dopamine release in healthy volunteers. Neuropsychopharmacology 22:545–550CrossRefPubMed Adler CM, Elman I, Weisenfeld N, Kestler L, Pickar D, Breier A (2000) Effects of acute metabolic stress on striatal dopamine release in healthy volunteers. Neuropsychopharmacology 22:545–550CrossRefPubMed
34.
Zurück zum Zitat Abercrombie ED, Keefe KA, DiFrischia DS, Zigmond MJ (1989) Differential effect of stress on in vivo dopamine release in striatum, nucleus accumbens, and medial frontal cortex. J Neurochem 52:1655–1658CrossRefPubMed Abercrombie ED, Keefe KA, DiFrischia DS, Zigmond MJ (1989) Differential effect of stress on in vivo dopamine release in striatum, nucleus accumbens, and medial frontal cortex. J Neurochem 52:1655–1658CrossRefPubMed
35.
Zurück zum Zitat Puglisi-Allegra S, Imperato A, Angelucci L, Cabib S (1991) Acute stress induces time-dependent responses in dopamine mesolimbic system. Brain Res 554:217–222CrossRefPubMed Puglisi-Allegra S, Imperato A, Angelucci L, Cabib S (1991) Acute stress induces time-dependent responses in dopamine mesolimbic system. Brain Res 554:217–222CrossRefPubMed
36.
Zurück zum Zitat Tamarat R, Silvestre JS, Huijberts M, Benessiano J, Ebrahimian TG, Duriez M, Wautier MP, Wautier JL, Lévy BI (2003) Blockade of advanced glycation end-product formation restores ischemia-induced angiogenesis in diabetic mice. Proc Natl Acad Sci USA 100:8555–8560CrossRefPubMedPubMedCentral Tamarat R, Silvestre JS, Huijberts M, Benessiano J, Ebrahimian TG, Duriez M, Wautier MP, Wautier JL, Lévy BI (2003) Blockade of advanced glycation end-product formation restores ischemia-induced angiogenesis in diabetic mice. Proc Natl Acad Sci USA 100:8555–8560CrossRefPubMedPubMedCentral
37.
Zurück zum Zitat Hendgen-Cotta UB, Luedike P, Totzeck M, Kropp M, Schicho A, Stock P, Rammos C, Niessen M, Heiss C, Lundberg JO, Weitzberg E, Kelm M, Rassaf T (2012) Dietary nitrate supplementation improves revascularization in chronic ischemia. Circulation 126:1983–1992CrossRefPubMed Hendgen-Cotta UB, Luedike P, Totzeck M, Kropp M, Schicho A, Stock P, Rammos C, Niessen M, Heiss C, Lundberg JO, Weitzberg E, Kelm M, Rassaf T (2012) Dietary nitrate supplementation improves revascularization in chronic ischemia. Circulation 126:1983–1992CrossRefPubMed
38.
Zurück zum Zitat Ferrara N (2001) Role of vascular endothelial growth factor in regulation of physiological angiogenesis. Am J Physiol Cell Physiol 280:1358–1366 Ferrara N (2001) Role of vascular endothelial growth factor in regulation of physiological angiogenesis. Am J Physiol Cell Physiol 280:1358–1366
39.
Zurück zum Zitat Toko H, Zou Y, Minamino T, Masaya M, Harada M, Nagai T, Sugaya T, Terasaki F, Kitaura Y, Komuro I (2004) Angiotensin II type 1a receptor is involved in cell infiltration, cytokine production, and neovascularization in infarcted myocardium. Arterioscler Thromb Vasc Biol 24:664–670CrossRefPubMed Toko H, Zou Y, Minamino T, Masaya M, Harada M, Nagai T, Sugaya T, Terasaki F, Kitaura Y, Komuro I (2004) Angiotensin II type 1a receptor is involved in cell infiltration, cytokine production, and neovascularization in infarcted myocardium. Arterioscler Thromb Vasc Biol 24:664–670CrossRefPubMed
40.
Zurück zum Zitat Sheikh-Hamad D, Wang YP, Jo OD, Yanagawa N (1993) Dopamine antagonizes the actions of angiotensin II in renal brush-border membrane. Am J Physiol 264:F737–F743PubMed Sheikh-Hamad D, Wang YP, Jo OD, Yanagawa N (1993) Dopamine antagonizes the actions of angiotensin II in renal brush-border membrane. Am J Physiol 264:F737–F743PubMed
41.
Zurück zum Zitat Bek MJ, Wang X, Asico LD, Jones JE, Zheng S, Li X, Eisner GM, Grandy DK, Carey RM, Soares-da-Silva P, Jose PA (2006) Angiotensin-II type 1 receptor-mediated hypertension in D4 dopamine receptor–deficient mice. Hypertension 47:288–295CrossRefPubMed Bek MJ, Wang X, Asico LD, Jones JE, Zheng S, Li X, Eisner GM, Grandy DK, Carey RM, Soares-da-Silva P, Jose PA (2006) Angiotensin-II type 1 receptor-mediated hypertension in D4 dopamine receptor–deficient mice. Hypertension 47:288–295CrossRefPubMed
42.
Zurück zum Zitat Joglar B, Rodriguez-Pallares J, Rodriguez-Perez AI, Rey P, Guerra MJ, Labandeira-Garcia JL (2009) The inflammatory response in the MPTP model of Parkinson’s disease is mediated by brain angiotensin: relevance to progression of the disease. J Neurochem 109:656–669CrossRefPubMed Joglar B, Rodriguez-Pallares J, Rodriguez-Perez AI, Rey P, Guerra MJ, Labandeira-Garcia JL (2009) The inflammatory response in the MPTP model of Parkinson’s disease is mediated by brain angiotensin: relevance to progression of the disease. J Neurochem 109:656–669CrossRefPubMed
43.
Zurück zum Zitat Chakroborty D, Sarkar C, Yu H, Wang J, Liu Z, Dasgupta PS, Basu S (2011) Dopamine stabilizes tumor blood vessels by up-regulating angiopoietin 1 expression in pericytes and Kruppel-like factor-2 expression in tumor endothelial cells. Proc Natl Acad Sci USA 108:20730–20735CrossRefPubMedPubMedCentral Chakroborty D, Sarkar C, Yu H, Wang J, Liu Z, Dasgupta PS, Basu S (2011) Dopamine stabilizes tumor blood vessels by up-regulating angiopoietin 1 expression in pericytes and Kruppel-like factor-2 expression in tumor endothelial cells. Proc Natl Acad Sci USA 108:20730–20735CrossRefPubMedPubMedCentral
44.
Zurück zum Zitat Rossi NF (1998) Dopaminergic control of angiotensin II-induced vasopressin secretion in vitro. Am J Physiol 275:E687–E693PubMed Rossi NF (1998) Dopaminergic control of angiotensin II-induced vasopressin secretion in vitro. Am J Physiol 275:E687–E693PubMed
45.
Zurück zum Zitat Hu C, Dandapat A, Mehta JL (2007) Angiotensin II induces capillary formation from endothelial cells via the LOX-1 dependent redox-sensitive pathway. Hypertension 50:952–957CrossRefPubMed Hu C, Dandapat A, Mehta JL (2007) Angiotensin II induces capillary formation from endothelial cells via the LOX-1 dependent redox-sensitive pathway. Hypertension 50:952–957CrossRefPubMed
46.
Zurück zum Zitat Ma J, Liu W, Yan X, Wang Q, Zhao Q, Xue Y, Ren H, Wu L, Cheng Y, Li S, Miao L, Yao L, Zhang J (2012) Inhibition of endothelial cell proliferation and tumor angiogenesis by up-regulating NDRG2 expression in breast cancer cells. PLoS ONE 7:e32368CrossRefPubMedPubMedCentral Ma J, Liu W, Yan X, Wang Q, Zhao Q, Xue Y, Ren H, Wu L, Cheng Y, Li S, Miao L, Yao L, Zhang J (2012) Inhibition of endothelial cell proliferation and tumor angiogenesis by up-regulating NDRG2 expression in breast cancer cells. PLoS ONE 7:e32368CrossRefPubMedPubMedCentral
47.
Zurück zum Zitat Lu K, Chakroborty D, Sarkar C, Lu T, Xie Z, Liu Z, Basu S (2012) Triphala and its active constituent chebulinic acid are natural inhibitors of vascular endothelial growth factor-a mediated angiogenesis. PLoS ONE 7:e43934CrossRefPubMedPubMedCentral Lu K, Chakroborty D, Sarkar C, Lu T, Xie Z, Liu Z, Basu S (2012) Triphala and its active constituent chebulinic acid are natural inhibitors of vascular endothelial growth factor-a mediated angiogenesis. PLoS ONE 7:e43934CrossRefPubMedPubMedCentral
48.
Zurück zum Zitat Arnold SA, Rivera LB, Carbon JG, Toombs JE, Chang CL, Bradshaw AD, Brekken RA (2012) Losartan slows pancreatic tumor progression and extends survival of SPARC-null mice by abrogating aberrant TGFβ activation. PLoS ONE 7:e31384CrossRefPubMedPubMedCentral Arnold SA, Rivera LB, Carbon JG, Toombs JE, Chang CL, Bradshaw AD, Brekken RA (2012) Losartan slows pancreatic tumor progression and extends survival of SPARC-null mice by abrogating aberrant TGFβ activation. PLoS ONE 7:e31384CrossRefPubMedPubMedCentral
49.
Zurück zum Zitat Ramkhelawon B, Vilar J, Rivas D, Mees B, de Crom R, Tedgui A, Lehoux S (2009) Shear stress regulates angiotensin type 1 receptor expression in endothelial cells. Circ Res 105:869–875CrossRefPubMed Ramkhelawon B, Vilar J, Rivas D, Mees B, de Crom R, Tedgui A, Lehoux S (2009) Shear stress regulates angiotensin type 1 receptor expression in endothelial cells. Circ Res 105:869–875CrossRefPubMed
50.
Zurück zum Zitat Ichiki T, Usui M, Kato M, Funakoshi Y, Ito K, Egashira K, Takeshita A (1998) Downregulation of angiotensin II type 1 receptor gene transcription by nitric oxide. Hypertension 31:342–348CrossRefPubMed Ichiki T, Usui M, Kato M, Funakoshi Y, Ito K, Egashira K, Takeshita A (1998) Downregulation of angiotensin II type 1 receptor gene transcription by nitric oxide. Hypertension 31:342–348CrossRefPubMed
51.
Zurück zum Zitat Tousoulis D, Kampoli AM, Tentolouris C, Papageorgiou N, Stefanadis C (2012) The role of nitric oxide on endothelial function. Curr Vasc Pharmacol 10:4–18CrossRefPubMed Tousoulis D, Kampoli AM, Tentolouris C, Papageorgiou N, Stefanadis C (2012) The role of nitric oxide on endothelial function. Curr Vasc Pharmacol 10:4–18CrossRefPubMed
52.
Zurück zum Zitat Sakkoula E, Pipili-Synetos E, Maragoudakis ME (1997) Involvement of nitric oxide in the inhibition of angiogenesis by interleukin-2. Br J Pharmacol 122:793–795CrossRefPubMedPubMedCentral Sakkoula E, Pipili-Synetos E, Maragoudakis ME (1997) Involvement of nitric oxide in the inhibition of angiogenesis by interleukin-2. Br J Pharmacol 122:793–795CrossRefPubMedPubMedCentral
53.
Zurück zum Zitat Sarkar R, Webb RC, Stanley JC (1995) Nitric oxide inhibition of endothelial cell mitogenesis and proliferation. Surgery 118:274–279CrossRefPubMed Sarkar R, Webb RC, Stanley JC (1995) Nitric oxide inhibition of endothelial cell mitogenesis and proliferation. Surgery 118:274–279CrossRefPubMed
54.
Zurück zum Zitat Cartwright JE, Johnstone AP, Whitley GS (2000) Endogenously produced nitric oxide inhibits endothelial cell growth as demonstrated using novel antisense cell lines. Br J Pharmacol 131:131–137CrossRefPubMedPubMedCentral Cartwright JE, Johnstone AP, Whitley GS (2000) Endogenously produced nitric oxide inhibits endothelial cell growth as demonstrated using novel antisense cell lines. Br J Pharmacol 131:131–137CrossRefPubMedPubMedCentral
55.
Zurück zum Zitat Pyne-Geithman GJ, Caudell DN, Cooper M, Clark JF, Shutter LA (2009) Dopamine D2-receptor-mediated increase in vascular and endothelial NOS activity ameliorates cerebral vasospasm after subarachnoid hemorrhage in vitro. Neurocrit Care 10:225–231CrossRefPubMed Pyne-Geithman GJ, Caudell DN, Cooper M, Clark JF, Shutter LA (2009) Dopamine D2-receptor-mediated increase in vascular and endothelial NOS activity ameliorates cerebral vasospasm after subarachnoid hemorrhage in vitro. Neurocrit Care 10:225–231CrossRefPubMed
56.
Zurück zum Zitat Granado N, Ares-Santos S, Oliva I, O’Shea E, Martin ED, Colado MI, Moratalla R (2011) Dopamine D2-receptor knockout mice are protected against dopaminergic neurotoxicity induced by methamphetamine or MDMA. Neurobiol Dis 42:391–403CrossRefPubMed Granado N, Ares-Santos S, Oliva I, O’Shea E, Martin ED, Colado MI, Moratalla R (2011) Dopamine D2-receptor knockout mice are protected against dopaminergic neurotoxicity induced by methamphetamine or MDMA. Neurobiol Dis 42:391–403CrossRefPubMed
57.
Zurück zum Zitat Nouet S, Nahmias C (2000) Signal transduction from the angiotensin II AT2 receptor. Trends Endocrinol Metab 11:1–6CrossRefPubMed Nouet S, Nahmias C (2000) Signal transduction from the angiotensin II AT2 receptor. Trends Endocrinol Metab 11:1–6CrossRefPubMed
58.
Zurück zum Zitat Ager EI, Neo J, Christophi C (2008) The renin-angiotensin system and malignancy. Carcinogenesis 29:1675–1684CrossRefPubMed Ager EI, Neo J, Christophi C (2008) The renin-angiotensin system and malignancy. Carcinogenesis 29:1675–1684CrossRefPubMed
59.
60.
Zurück zum Zitat Babaei S, Stewart DJ (2002) Overexpression of endothelial NO synthase induces angiogenesis in a co-culture model. Cardiovasc Res 55:190–200CrossRefPubMed Babaei S, Stewart DJ (2002) Overexpression of endothelial NO synthase induces angiogenesis in a co-culture model. Cardiovasc Res 55:190–200CrossRefPubMed
61.
Zurück zum Zitat Kon K, Fujii S, Kosaka H, Fujiwara T (2003) Nitric oxide synthase inhibition by N(G)-nitro-l-arginine methyl ester retards vascular sprouting in angiogenesis. Microvasc Res 65:2–8CrossRefPubMed Kon K, Fujii S, Kosaka H, Fujiwara T (2003) Nitric oxide synthase inhibition by N(G)-nitro-l-arginine methyl ester retards vascular sprouting in angiogenesis. Microvasc Res 65:2–8CrossRefPubMed
62.
Zurück zum Zitat Silvestre JS, Mallat Z, Tedgui A, Lévy BI (2008) Post-ischaemic neovascularization and inflammation. Cardiovasc Res 78:242–249CrossRefPubMed Silvestre JS, Mallat Z, Tedgui A, Lévy BI (2008) Post-ischaemic neovascularization and inflammation. Cardiovasc Res 78:242–249CrossRefPubMed
63.
Zurück zum Zitat Jaipersad AS, Lip GY, Silverman S, Shantsila E (2014) The role of monocytes in angiogenesis and atherosclerosis. J Am Coll Cardiol 63:1–11CrossRefPubMed Jaipersad AS, Lip GY, Silverman S, Shantsila E (2014) The role of monocytes in angiogenesis and atherosclerosis. J Am Coll Cardiol 63:1–11CrossRefPubMed
64.
Zurück zum Zitat Pardanaud L, Pibouin-Fragner L, Dubrac A, Mathivet T, English I, Brunet I, Simons M, Eichmann A (2016) Sympathetic innervation promotes arterial fate by enhancing endothelial ERK activity. Circ Res 119(5):607–620CrossRefPubMed Pardanaud L, Pibouin-Fragner L, Dubrac A, Mathivet T, English I, Brunet I, Simons M, Eichmann A (2016) Sympathetic innervation promotes arterial fate by enhancing endothelial ERK activity. Circ Res 119(5):607–620CrossRefPubMed
65.
Zurück zum Zitat Erami C, Zhang H, Tanoue A, Tsujimoto G, Thomas SA, Faber JE (2005) Adrenergic catecholamine trophic activity contributes to flow-mediated arterial remodeling. Am J Physiol Heart Circ Physiol 289(2):H744–H753CrossRefPubMed Erami C, Zhang H, Tanoue A, Tsujimoto G, Thomas SA, Faber JE (2005) Adrenergic catecholamine trophic activity contributes to flow-mediated arterial remodeling. Am J Physiol Heart Circ Physiol 289(2):H744–H753CrossRefPubMed
66.
Zurück zum Zitat Beaulieu JM, Gainetdinov RR (2011) The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev 63:182–217CrossRefPubMed Beaulieu JM, Gainetdinov RR (2011) The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev 63:182–217CrossRefPubMed
Metadaten
Titel
Enhanced peripheral dopamine impairs post-ischemic healing by suppressing angiotensin receptor type 1 expression in endothelial cells and inhibiting angiogenesis
verfasst von
Chandrani Sarkar
Ramesh K. Ganju
Vincent J. Pompili
Debanjan Chakroborty
Publikationsdatum
16.11.2016
Verlag
Springer Netherlands
Erschienen in
Angiogenesis / Ausgabe 1/2017
Print ISSN: 0969-6970
Elektronische ISSN: 1573-7209
DOI
https://doi.org/10.1007/s10456-016-9531-8

Weitere Artikel der Ausgabe 1/2017

Angiogenesis 1/2017 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.