Skip to main content
Log in

Effect of sulfide on growth physiology and gene expression of Desulfovibrio vulgaris Hildenborough

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Hydrogen sulfide, the metabolic end product of sulfate-reducing bacteria (SRB), is toxic to most life forms. This includes the SRB themselves. Although many of these are probably among the most sulfide resistant life forms, the presence of sulfide nevertheless presents a stress, which SRB must overcome. Although the response of SRB, especially the genus Desulfovibrio, to numerous stressors has been studied, their response to sulfide stress is unknown. We determined the effect of sulfide stress by comparing cells of Desulfovibrio vulgaris Hildenborough grown under conditions in which sulfide accumulated (high sulfide, 10 mM) with cells grown under conditions in which sulfide was removed by continuous gassing (low sulfide, 1 mM). High sulfide decreased the instantaneous growth rate constant and the final cell density of the culture by 52 and 33%, respectively, indicating a decreased bioenergetic fitness. Changes in gene expression caused by exposure to high sulfide were determined using full-genome D. vulgaris microarrays. The transcription of ribosomal protein-encoding genes was decreased, in agreement with the lower growth rate of D. vulgaris under high sulfide conditions. Interestingly, expression of the gene for DsrD, located downstream of the genes for dissimilatory sulfite reductase was also strongly down-regulated. In contrast, the expression of many genes involved in iron accumulation, stress response and proteolysis were increased. This indicates that high sulfide represents a significant stress condition, in which the bioavailability of metals like iron may be lowered. Overall this leads to a reduced growth rate and less efficient biomass production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

SRB:

Sulfate-reducing bacteria

WP:

Widdel–Pfenning medium

LS:

Lactate and sulfate

HPLC:

High pressure liquid chromatography

vol:

Volume

cDNA:

Complementary DNA

OD600 :

Optical density at 600 nm

gDNA:

Genomic DNA

References

  • Beauchamp RO Jr, Bus JS, Popp JA, Boreiko CJ, Andjelkovich DA (1984) A critical review of the literature on hydrogen sulfide toxicity. Crit Rev Toxicol 13:25–97

    Article  CAS  PubMed  Google Scholar 

  • Bender KS, Yen HC, Hemme CL, Yang Z, He Z, He Q, Zhou J, Huang KH, Alm EJ, Hazen TC et al (2007) Analysis of a ferric uptake regulator (Fur) mutant of Desulfovibrio vulgaris Hildenborough. Appl Environ Microbiol 73:5389–5400

    Article  CAS  PubMed  Google Scholar 

  • Birkeland N-K (2005) Sulfate-reducing bacteria and archaea. In: Ollivier B, Magot M (eds) Petroleum microbiology. ASM Press, Washington, DC, pp 35–54

    Google Scholar 

  • Caffrey SM, Park HS, Voordouw JK, He Z, Zhou J, Voordouw G (2007) Function of periplasmic hydrogenases in the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough. J Bacteriol 189:6159–6167

    Article  CAS  PubMed  Google Scholar 

  • Caffrey SM, Park HS, Been J, Gordon P, Sensen CW, Voordouw G (2008) Gene expression of the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough grown on an iron electrode under cathodic protection conditions. Appl Environ Microbiol 74:2404–2413

    Article  CAS  PubMed  Google Scholar 

  • Chhabra SR, He Q, Huang KH, Gaucher SP, Alm EJ, He Z, Hadi MZ, Hazen TC, Wall JD, Zhou J et al (2006) Global analysis of heat shock response in Desulfovibrio vulgaris Hildenborough. J Bacteriol 188:1817–1828

    Article  CAS  PubMed  Google Scholar 

  • Edgar RM, Domrachev M, Lash AE (2002) Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 30:207–210

    Article  CAS  PubMed  Google Scholar 

  • Haveman SA, Greene EA, Stilwell CP, Voordouw JK, Voordouw G (2004) Physiological and gene expression analysis of inhibition of Desulfovibrio vulgaris Hildenborough by nitrite. J Bacteriol 186:7944–7950

    Article  CAS  PubMed  Google Scholar 

  • He Q, Huang KH, He Z, Alm EJ, Fields MW, Hazen TC, Arkin AP, Wall JD, Zhou J (2006) Energetic consequences of nitrite stress in Desulfovibrio vulgaris Hildenborough, inferred from global transcriptional analysis. Appl Environ Microbiol 72:4370–4381

    Article  CAS  PubMed  Google Scholar 

  • Hubert C, Voordouw G (2007) Oil field souring control by nitrate-reducing Sulfurospirillum spp. that outcompete sulfate-reducing bacteria for organic electron donors. Appl Environ Microbiol 73:2644–2652

    Article  CAS  PubMed  Google Scholar 

  • Li X, Krumholz LR (2009) Thioredoxin is involved in U(VI) and Cr(VI) reduction in Desulfovibrio desulfuricans G20. J Bacteriol 191:4924–4933

    Article  CAS  PubMed  Google Scholar 

  • Luptakova A, Maria K (2005) Bioremediation of acid mine drainage contaminated by SRB. Hydrometallurgy 77:97–102

    Article  CAS  Google Scholar 

  • Mizuno N, Voordouw G, Miki K, Sarai A, Higuchi Y (2003) Crystal structure of dissimilatory sulfite reductase D (DsrD) protein–possible interaction with B- and Z-DNA by its winged-helix motif. Structure 11:1133–1140

    Article  CAS  PubMed  Google Scholar 

  • Mukhopadhyay A, He Z, Alm EJ, Arkin AP, Baidoo EE, Borglin SC, Chen W, Hazen TC, He Q, Holman HY et al (2006) Salt stress in Desulfovibrio vulgaris Hildenborough: an integrated genomics approach. J Bacteriol 188:4068–4078

    Article  CAS  PubMed  Google Scholar 

  • Mukhopadhyay A, Redding AM, Joachimiak MP, Arkin AP, Borglin SE, Dehal PS, Chakraborty R, Geller JT, Hazen TC, He Q et al (2007) Cell-wide responses to low-oxygen exposure in Desulfovibrio vulgaris Hildenborough. J Bacteriol 189:5996–6010

    Article  CAS  PubMed  Google Scholar 

  • Odom JM, Singleton R Jr (eds) (1993) The sulfate-reducing bacteria: contemporary perspectives. Springer, New York

    Google Scholar 

  • Pereira IA, Haveman SA, Voordouw G (2007) Biochemical and genetic characterization of anaerobic electron transport pathways in sulphate-reducing bacteria of the genus Desulfovibrio. In: Barton LL, Hamilton WA (eds) Sulphate-reducing bacteria: environmental and engineered systems. Cambridge University Press, Cambridge, pp 215–240

    Google Scholar 

  • Postgate JR (1984) The sulphate-reducting bacteria, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Redding AM, Mukhopadhyay A, Joyner DC, Hazen TC, Keasling JD (2006) Study of nitrate stress in Desulfovibrio vulgaris Hildenborough using iTRAQ proteomics. Brief Funct Genomic Proteomic 5:133–143

    Article  CAS  PubMed  Google Scholar 

  • Rodionov DA, Dubchak I, Arkin A, Alm E, Gelfand MS (2004) Reconstruction of regulatory and metabolic pathways in metal-reducing delta-proteobacteria. Genome Biol 5:R90

    Article  PubMed  Google Scholar 

  • Saeed AI, Sharov V, White J, Li J, Liang W, Bhagabati N, Braisted J, Klapa M, Currier T, Thiagarajan M et al (2003) TM4: a free, open-source system for microarray data management and analysis. BioTechniques 34:374–378

    CAS  PubMed  Google Scholar 

  • Scharf C, Riethdorf S, Ernst H, Engelmann S, Volker U, Hecker M (1998) Thioredoxin is an essential protein induced by multiple stresses in Bacillus subtilis. J Biol Chem 180:1869–1877

    CAS  Google Scholar 

  • Talaat AM, Howard ST, Hale WT, Lyons R, Garner H, Johnston SA (2002) Genomic DNA standards for gene expression profiling in Mycobacterium tuberculosis. NAR 30:e104

    Article  PubMed  Google Scholar 

  • Tatusov RL, Koonin EV, Lipman DJ (1997) A genomic perspective on protein families. Science 278:631–637

    Article  CAS  PubMed  Google Scholar 

  • Uziel O, Borovok I, Schreiber R, Cohen G, Aharonowitz Y (2004) Transcriptional regulation of the Staphylococcus aureus thioredoxin and thioredoxin reductase genes in response to oxygen and disulfide stress. J Bacteriol 186:326–334

    Article  CAS  PubMed  Google Scholar 

  • Valente FM, Almeida CC, Pacheco I, Carita J, Saraiva LM, Pereira IA (2006) Selenium is involved in regulation of periplasmic hydrogenase gene expression in Desulfovibrio vulgaris Hildenborough. J Bacteriol 188:3228–3235

    Article  CAS  PubMed  Google Scholar 

  • Voordouw G (2002) Carbon monoxide cycling by Desulfovibrio vulgaris Hildenborough. J Bacteriol 184:5903–5911

    Article  CAS  PubMed  Google Scholar 

  • Voordouw G (2008) Emerging oil field biotechnologies: prevention of oil field souring by nitrate injection. In: Wall J (ed) Bioenergy. ASM Press, Washington, DC, pp 370–388

    Google Scholar 

  • Voordouw G, Niviere V, Ferris FG, Fedorak PM, Westlake DW (1990) Distribution of hydrogenase genes in Desulfovibrio spp. and their use in identification of species from the oil field environment. Appl Environ Microbiol 56:3748–3754

    CAS  PubMed  Google Scholar 

  • Wall JD, Krumholz LR (2006) Uranium reduction. Annu Rev Microbiol 60:149–166

    Article  CAS  PubMed  Google Scholar 

  • Widdel F, Bak F (1992) Gram-negative mesophilic sulfate-reducing bacteria. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes, 2nd edn. Springer, New York, pp 3353–3378

    Google Scholar 

  • Zhang W, Culley DE, Hogan M, Vitiritti L, Brockman FJ (2006) Oxidative stress and heat-shock responses in Desulfovibrio vulgaris by genome-wide transcriptomic analysis. Antonie van Leeuwenhoek 90:41–55

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a Discovery Grant from the Natural Science and Engineering Research Council (NSERC) of Canada to GV.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerrit Voordouw.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(XLS 862 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caffrey, S.M., Voordouw, G. Effect of sulfide on growth physiology and gene expression of Desulfovibrio vulgaris Hildenborough. Antonie van Leeuwenhoek 97, 11–20 (2010). https://doi.org/10.1007/s10482-009-9383-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-009-9383-y

Keywords

Navigation