Skip to main content
Log in

Event-related Potential Study of Novelty Processing Abnormalities in Autism

  • Published:
Applied Psychophysiology and Biofeedback Aims and scope Submit manuscript

Abstract

To better understand visual processing abnormalities in autism we studied the attention orienting related frontal event potentials (ERP) and the sustained attention related centro-parietal ERPs in a three stimulus oddball experiment. The three stimulus oddball paradigm was aimed to test the hypothesis that individuals with autism abnormally orient their attention to novel distracters as compared to controls. A dense-array 128 channel EGI electroencephalographic (EEG) system was used on 11 high-functioning children and young adults with autism spectrum disorder (ASD) and 11 age-matched, typically developing control subjects. Patients with ASD showed slower reaction times but did not differ in response accuracy. At the anterior (frontal) topography the ASD group showed significantly higher amplitudes and longer latencies of early ERP components (e.g., P100, N100) to novel distracter stimuli in both hemispheres. The ASD group also showed prolonged latencies of late ERP components (e.g., P2a, N200, P3a) to novel distracter stimuli in both hemispheres. However, differences were more profound in the right hemisphere for both early and late ERP components. Our results indicate augmented and prolonged early frontal potentials and a delayed P3a component to novel stimuli, which suggest low selectivity in pre-processing and later-stage under-activation of integrative regions in the prefrontal cortices. Also, at the posterior (centro-parietal) topography the ASD group showed significantly prolonged N100 latencies and reduced amplitudes of the N2b component to target stimuli. In addition, the latency of the P3b component was prolonged to novel distracters in the ASD group. In general, the autistic group showed prolonged latencies to novel stimuli especially in the right hemisphere. These results suggest that individuals with autism over-process information needed for the successful differentiation of target and novel stimuli. We propose the potential application of ERP evaluations in a novelty task as outcome measurements in the biobehavioral treatment (e.g., EEG biofeedback, TMS) of autism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aman, M. G., & Singh, N. N. (1994). Aberrant behavior checklist—community. Supplementary manual. East Aurora, NY: Slosson Educational Publications.

    Google Scholar 

  • American Psychiatric Association. (2000). Diagnostic and statistical manual of mental disorders (DSM-IV-TR) text revised (4th ed.). Washington, DC: American Psychiatric Association.

  • Baron-Cohen, S. (2004). The cognitive neuroscience of autism. Journal of Neurology, Neurosurgery, and Psychiatry, 75, 945–948. doi:10.1136/jnnp.2003.018713.

    Article  PubMed  Google Scholar 

  • Bekker, E. M., Kenemans, J. L., & Verbaten, M. N. (2004). Electrophysiological correlates of attention, inhibition, sensitivity and bias in a continuous performance task. Clinical Neurophysiology, 115, 2001–2013. doi:10.1016/j.clinph.2004.04.008.

    Article  PubMed  Google Scholar 

  • Belmonte, M. K. (2000). Abnormal attention in autism shown by steady-state visual evoked potentials. Autism, 4, 269–285. doi:10.1177/1362361300004003004.

    Article  Google Scholar 

  • Belmonte, M. K., Allen, G., Beckel-Mitchener, A., Boulanger, L., Carper, R., & Webb, S. J. (2004a). Autism and abnormal development of brain connectivity. The Journal of Neuroscience, 24, 9228–9231. doi:10.1523/JNEUROSCI.3340-04.2004.

    Article  PubMed  Google Scholar 

  • Belmonte, M. K., Cook, E. H., Anderson, G. M., Rubenstein, J. L. R., Greenhough, W. T., Beckel-Mitchener, A., et al. (2004b). Autism as a disorder of neural information processing: Directions for research and targets for therapy. Molecular Psychiatry, 9, 646–663.

    PubMed  Google Scholar 

  • Belmonte, M. K., & Yurgelun-Todd, D. A. (2003a). Functional anatomy of impaired selective attention and compensatory processing in autism. Cognitive Brain Research, 17, 651–664. doi:10.1016/S0926-6410(03)00189-7.

    Article  PubMed  Google Scholar 

  • Belmonte, M. K., & Yurgelun-Todd, D. A. (2003b). Anatomic dissociation of selective and suppressive processes in visual attention. NeuroImage, 19, 180–189.

    PubMed  Google Scholar 

  • Bertone, A., Mottron, L., Jelenic, P., & Faubert, J. (2005). Enhanced and diminished visuo-spatial information processing in autism depend on stimulus complexity. Brain, 128, 2430–2441. doi:10.1093/brain/awh561.

    Article  PubMed  Google Scholar 

  • Bishop, D. V. M. (1993). Annotation: Autism, executive functions and theory of mind: A neuropsychological perspective. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 34, 279–293. doi:10.1111/j.1469-7610.1993.tb00992.x.

    Article  PubMed  Google Scholar 

  • Bodfish, J. W., Symons, F. S., Parker, D. E., & Lewis, M. H. (2000). Varieties of repetitive behavior in autism: Comparisons to mental retardation. Journal of Autism and Developmental Disorders, 30, 237–243. doi:10.1023/A:1005596502855.

    Article  PubMed  Google Scholar 

  • Bomba, M. D., & Pang, E. W. (2004). Cortical auditory evoked potentials in autism: A review. International Journal of Psychophysiology, 53, 161–169. doi:10.1016/j.ijpsycho.2004.04.001.

    Article  PubMed  Google Scholar 

  • Brock, J., Brown, C. C., Boucher, J., & Rippon, G. (2002). The temporal binding deficit hypothesis of autism. Development and Psychopathology, 14, 209–224. doi:10.1017/S0954579402002018.

    Article  PubMed  Google Scholar 

  • Brown, C. (2005). EEG in autism: Is there just too much going on in there? In M. F. Casanova (Ed.), Recent developments in autism research (pp. 109–126). New York: Nova Science Publishers.

    Google Scholar 

  • Brown, C., Gruber, T., Boucher, J., Rippon, G., & Brock, J. (2005). Gamma abnormalities during perception of illusory figures in autism. Cortex, 41, 364–376. doi:10.1016/S0010-9452(08)70273-9.

    Article  PubMed  Google Scholar 

  • Bruneau, N., Roux, S., Adrien, J. L., & Bathelemy, C. (1999). Auditory associative cortex dysfunction in children with autism: Evidence from late auditory evoked potentials (N 1 wave-T Complex). Clinical Neurophysiology, 110, 1927–1934. doi:10.1016/S1388-2457(99)00149-2.

    Article  PubMed  Google Scholar 

  • Burack, J. A. (1994). Selective attention deficits in persons with autism: Preliminary evidence for inefficient attentional lens. Journal of Abnormal Psychology, 103, 515–543. doi:10.1037/0021-843X.103.3.535.

    Article  Google Scholar 

  • Buxhoeveden, D. P., & Casanova, M. F. (2002). The minicolumn and evolution of the brain. Brain, Behavior and Evolution, 60(3), 125–151. doi:10.1159/000065935.

    Article  PubMed  Google Scholar 

  • Casanova, M. F. (2005). Minicolumnar pathology in autism. In M. F. Casanova (Ed.), Recent developments in autism research (pp. 133–144). New York: Nova Biomedical Books.

    Google Scholar 

  • Casanova, M. F. (2006). Neuropathological and genetic findings in autism: The significance of a putative minicolumnopathy. The Neuroscientist, 12(5), 435–441. doi:10.1177/1073858406290375.

    Article  PubMed  Google Scholar 

  • Casanova, M. F., Buxhoeveden, D. P., & Brown, C. (2002a). Clinical and macroscopic correlates of minicolumnar pathology in autism. Journal of Child Neurology, 17, 692–695. doi:10.1177/088307380201700908.

    Article  PubMed  Google Scholar 

  • Casanova, M. F., Buxhoeveden, D., & Gomez, J. (2003). Disruption in the inhibitory architecture of the cell minicolumn: Implications for autism. The Neuroscientist, 9, 496–507. doi:10.1177/1073858403253552.

    Article  PubMed  Google Scholar 

  • Casanova, M. F., Buxhoeveden, D. P., Switala, A. E., & Roy, E. (2002b). Minicolumnar pathology in autism. Neurology, 58, 428–432.

    PubMed  Google Scholar 

  • Casanova, M. F., Buxhoeveden, D. P., Switala, A. E., & Roy, E. (2002c). Neuronal density and architecture (gray level index) in the brains of autistic patients. Journal of Child Neurology, 17, 515–521. doi:10.1177/088307380201700708.

    Article  PubMed  Google Scholar 

  • Ciesielski, K. T., Courchesne, E., & Elmasian, R. (1990). Effects of focused attention tasks on event-related potentials in autistic and normal individuals. Clinical Neurophysiology, 75, 207–220. doi:10.1016/0013-4694(90)90174-I.

    Article  Google Scholar 

  • Ciesielski, K. T., Knoght, J. E., Prince, R. J., Harris, R. J., & Handmaker, S. D. (1995). Event-related potentials in cross-modal divided attention in autism. Neuropsychologia, 33, 225–246. doi:10.1016/0028-3932(94)00094-6.

    Article  PubMed  Google Scholar 

  • Clark, V. P., Fan, S., & Hillyard, S. A. (1995). Identification of early visual evoked potential generators by retinotopic and topographic analyses. Human Brain Mapping, 2, 170–187. doi:10.1002/hbm.460020306.

    Article  Google Scholar 

  • Coben, R. (2007). Autistic spectrum disorder: Outcome of EEG coherence training targeting social skills deficits. Presented at the 15th ISNR annual conference, San Diego, CA, September 6–9.

  • Coben, R. (2008). Efficacy of connectivity guided neurofeedback for autistic spectrum disorder: Analysis of 75 cases with a 1–2 year follow-up. Presented at the 16th ISNR annual conference, San Antonio, TX, August 26–31.

  • Coben, R., Clarke, A. R., Hudspeth, W., & Barry, R. (2008). EEG power and coherence in autistic spectrum disorder. Clinical Neurophysiology, 119(5), 1002–1009. doi:10.1016/j.clinph.2008.01.013.

    Article  PubMed  Google Scholar 

  • Coben, R., & Padolsky, I. (2007). Assessment-guided neurofeedback for autistic spectrum disorder. Journal of Neurotherapy, 11(1), 5–23. doi:10.1300/J184v11n01_02.

    Article  Google Scholar 

  • Coles, M. G. H., & Rugg, M. D. (1995). Event-related brain potentials: An introduction. In M. D. Rugg & M. G. H. Coles (Eds.), Electrophysiology of mind. Event-related brain potentials and cognition (pp. 40–85). Oxford: Oxford University Press.

    Google Scholar 

  • Constantino, J. N., & Gruber, C. P. (2005). The social responsiveness scale (SRS) manual. Los Angeles, CA: Western Psychological Services.

    Google Scholar 

  • Courchesne, E., Karns, C. M., Davis, H. R., Ziccardi, R., Carper, R. A., & Tigue, Z. D. (2001). Unusual brain growth patterns in early life in patients with autistic disorder an MRI study. Neurology, 57, 245–254.

    PubMed  Google Scholar 

  • Courchesne, E., Lincoln, A. J., Yeung-Courchesne, R., Elmasian, R., & Grillon, C. (1989). Pathophysiologic findings in nonretarded autism and receptive developmental disorder. Journal of Autism and Developmental Disorders, 19, 1–17. doi:10.1007/BF02212714.

    Article  PubMed  Google Scholar 

  • Courchesne, E., & Pierce, K. (2005). Brain overgrowth in autism during a critical time in development: Implications for frontal pyramidal neuron and interneuron development and connectivity. International Journal of Developmental Neuroscience, 23, 153–170. doi:10.1016/j.ijdevneu.2005.01.003.

    Article  PubMed  Google Scholar 

  • De Felipe, J. (1999). Chandelier cells and epilepsy. Brain, 122, 1807–1822. doi:10.1093/brain/122.10.1807.

    Article  Google Scholar 

  • De Felipe, J. (2004). Cortical microanatomy and human brain disorders: Epilepsy. Cortex, 40(1), 232–233. doi:10.1016/S0010-9452(08)70962-6.

    Article  Google Scholar 

  • Donchin, E., & Coles, M. G. H. (1988). Is the p300 component a manifestation of context updating. The Behavioral and Brain Sciences, 11, 357–427.

    Article  Google Scholar 

  • Donkers, F. C. L., & van Boxtel, G. J. M. (2004). The N2 in go/no-go tasks reflects conflict monitoring not response inhibition. Brain and Cognition, 56, 165–176.

    PubMed  Google Scholar 

  • Engel, A. K., Konig, P., Kreiter, A. K., & Singer, W. (1991). Interhemispheric synchronization of oscillatory neuronal responses in cat visual cortex. Science, 252, 218–226. doi:10.1126/science.252.5009.1177.

    Article  Google Scholar 

  • Falkenstein, M., Hoormann, J., & Hohnsbein, J. (1999). ERP components in go/nogo tasks and their relation to inhibition. Acta Psychologica, 101, 267–291. doi:10.1016/S0001-6918(99)00008-6.

    Article  PubMed  Google Scholar 

  • Falkenstein, M., Hoormann, J., & Hohnsbein, J. (2002). Inhibition-related ERP components: Variation with modality, age, and time-on-task. Journal of Psychophysiology, 16, 167–175. doi:10.1027//0269-8803.16.3.167.

    Article  Google Scholar 

  • Favorov, O. V., & Kelly, D. G. (1994a). Minicolumnar organization within somatosensory cortical segregates, I: Development of afferent connections. Cerebral Cortex (New York, N.Y.), 4, 408–427. doi:10.1093/cercor/4.4.408.

    Article  Google Scholar 

  • Favorov, O. V., & Kelly, D. G. (1994b). Minicolumnar organization within somatosensory cortical segregates, II: Emergent functional properties. Cerebral Cortex (New York, N.Y.), 4, 428–442. doi:10.1093/cercor/4.4.428.

    Article  Google Scholar 

  • Ferree, T. C., Luu, P., Russell, G. S., & Tucker, D. M. (2001). Scalp electrode impedance, infection risk, and EEG data quality. Clinical Neurophysiology, 112, 444–536. doi:10.1016/S1388-2457(00)00533-2.

    Article  Google Scholar 

  • Ferri, R., Elia, M., Agarwal, N., Lanuzza, B., Musumeci, S. A., & Pennisi, G. (2003). The mismatch negativity and the P3a components of the auditory event-related potentials in autistic low-functioning subjects. Clinical Neurophysiology, 114, 1671–1680. doi:10.1016/S1388-2457(03)00153-6.

    Article  PubMed  Google Scholar 

  • First, M. B., Spitzer, R. L., Gibbon, M., & Williams, J. B. W. (2001). Structured clinical interview for DSM-IV-TR axis I disorders—non-patient edition (SCID-NP). New York: New York State Psychiatric Institute.

    Google Scholar 

  • Fletcher, E. M., Kussmaul, C. L., & Mangun, G. R. (1996). Estimation of interpolation errors in scalp topographic mapping. Electroctoencephalography and Clinical Neuraphysiology, 98, 422–434. doi:10.1016/0013-4694(96)95135-4.

    Article  Google Scholar 

  • Friedman, D., Simpson, G. V., & Hamberger, M. (1993). Age-related changes in scalp topography to novel and target stimuli. Psychophysiology, 30, 383–396. doi:10.1111/j.1469-8986.1993.tb02060.x.

    Article  PubMed  Google Scholar 

  • Frith, U., & Happé, F. (1994). Autism: Beyond theory of mind. Cognition, 50, 115–132. doi:10.1016/0010-0277(94)90024-8.

    Article  PubMed  Google Scholar 

  • Gomez-Gonzales, C. M., Clark, V. P., Fan, S., Luck, S., & Hillyard, S. A. (1994). Sources of attention-sensitive visual event-related potentials. Brain Topography, 7, 41–51. doi:10.1007/BF01184836.

    Article  Google Scholar 

  • Goto, Y., Brigell, M. G., & Parmeggiani, L. (1996). Dipole-modeling of the visual evoked P300. Journal of Psychosomatic Research, 41, 71–79. doi:10.1016/0022-3999(96)00062-1.

    Article  PubMed  Google Scholar 

  • Griffith, E. M., Pennington, B. F., Wehner, E. A., & Rogers, S. J. (1999). Executive functions in young children with autism. Child Development, 70, 817–832. doi:10.1111/1467-8624.00059.

    Article  PubMed  Google Scholar 

  • Guy, W. (1976). Clinical global impressions. ECDEU assessment manual for psychopharmacology. Rockville, MD: National Institute of Mental Health.

    Google Scholar 

  • Halgren, E., Marinkovic, K., & Chauvel, P. (1998). Generators of the late cognitive potentials in auditory and visual oddball tasks. Electroencephalography and Clinical Neurophysiology, 106, 156–164. doi:10.1016/S0013-4694(97)00119-3.

    Article  PubMed  Google Scholar 

  • Happé, F. (1999). Autism: Cognitive deficit or cognitive style? Trends in Cognitive Sciences, 3, 216–222. doi:10.1016/S1364-6613(99)01318-2.

    Article  PubMed  Google Scholar 

  • Heinze, H. J., Mangun, G., Burchert, W., Hinrichs, H., Scholz, M., Münte, T. F., et al. (1994). Combined spatial and temporal imaging of brain activity during visual selective attention in humans. Nature, 372, 543–546. doi:10.1038/372543a0.

    Article  PubMed  Google Scholar 

  • Herbert, M. R., Zeiger, A. D., Deutsch, C. K., O’Brien, L., Kennedy, D. N., Filipek, P. A., et al. (2005). Brain asymmetries in autism and developmental language disorder: A nested whole-brain analysis. Brain, 128, 213–226. doi:10.1093/brain/awh330.

    Article  PubMed  Google Scholar 

  • Herrmann, C. S., & Knight, R. T. (2001). Mechanisms of human attention: Event related potentials and oscillations. Neuroscience and Biobehavioral Reviews, 25, 465–476. doi:10.1016/S0149-7634(01)00027-6.

    Article  PubMed  Google Scholar 

  • Hill, E. L. (2004). Evaluating the theory of executive dysfunction in autism. Developmental Review, 24, 189–233. doi:10.1016/j.dr.2004.01.001.

    Article  Google Scholar 

  • Hillyard, S. A., & Annlo-Vento, L. (1998). Event-related brain potentials in the study of visual selective attention. Proceedings of the National Academy of Sciences of the United States of America, 95, 781–787. doi:10.1073/pnas.95.3.781.

    Article  PubMed  Google Scholar 

  • Hughes, C., Russell, J., & Robbins, T. W. (1994). Evidence for executive dysfunction in autism. Neuropsychologia, 32, 477–492. doi:10.1016/0028-3932(94)90092-2.

    Article  PubMed  Google Scholar 

  • Jarusiewicz, B. (2002). Efficacy of neurofeedback for children in the autistic spectrum: A pilot study. Journal of Neurotherapy, 6, 39–49. doi:10.1300/J184v06n04_05.

    Article  Google Scholar 

  • Johnson, M. H. (1999). Cortical plasticity in normal and abnormal cognitive development: Evidence and working hypotheses. Development and Psychopathology, 11, 419–437. doi:10.1017/S0954579499002138.

    Article  PubMed  Google Scholar 

  • Katayama, J., & Polich, J. (1998). Stimulus context determines P3a and P3b. Psychophysiology, 35, 23–33. doi:10.1017/S0048577298961479.

    Article  PubMed  Google Scholar 

  • Kemner, C., van der Gaag, R. J., Verbaten, M., & van Engeland, H. (1999). ERP differences among subtypes of pervasive developmental disorders. Biological Psychiatry, 46(6), 781–789. doi:10.1016/S0006-3223(99)00003-7.

    Article  PubMed  Google Scholar 

  • Kemner, C., Verbaten, M. N., Cuperus, J. M., Camfferman, G., & Van Engeland, H. (1994). Visual and somatosensory event-related brain potentials in autistic children and three different control groups. Electroencephalography and Clinical Neurophysiology, 92, 225–237. doi:10.1016/0168-5597(94)90066-3.

    Article  PubMed  Google Scholar 

  • Kemner, C., Verbaten, M. N., Cuperus, J. M., Camfferman, G., & Van Engeland, H. (1995). Auditory event-related potentials in autistic children and three different control groups. Biological Psychiatry, 38, 150–165. doi:10.1016/0006-3223(94)00247-Z.

    Article  PubMed  Google Scholar 

  • Kenemans, J. L., Kok, A., & Smulders, F. T. (1993). Event-related potentials to conjunctions of spatial frequency and orientation as a function of stimulus parameters and response requirements. Electroencephalography and Clinical Neurophysiology, 88, 51–63. doi:10.1016/0168-5597(93)90028-N.

    Article  PubMed  Google Scholar 

  • Knight, R. T. (1984). Decreased response to novel stimuli after prefrontal lesions in man. Electroencephalography and Clinical Neurophysiology, 59, 9–20. doi:10.1016/0168-5597(84)90016-9.

    Article  PubMed  Google Scholar 

  • Knight, R. T. (1997). Distributed cortical network for visual attention. Journal of Cognitive Neuroscience, 9, 75–91. doi:10.1162/jocn.1997.9.1.75.

    Article  Google Scholar 

  • Kok, A., Ramautar, J. R., de Ruiter, M., B., Band, G. P., & Ridderinkhof, K. R. (2004). ERP components associated with successful and unsuccessful stopping in a stop-signal paradigm. Psychophysiology, 42, 9–20. doi:10.1046/j.1469-8986.2003.00127.x.

    Article  Google Scholar 

  • Le Couteur, A., Lord, C., & Rutter, M. (2003). The autism diagnostic interview—revised (ADI-R). Los Angeles, CA: Western Psychological Services.

    Google Scholar 

  • Lincoln, A. J., Courchesne, E., Harms, L., & Allen, M. (1993). Contextual probability evaluation in autistic, receptive developmental disorder and control children: Event-related potential evidence. Journal of Autism and Developmental Disorders, 23, 37–58. doi:10.1007/BF01066417.

    Article  PubMed  Google Scholar 

  • Linden, M. (2007). QEEG guided neurofeedback based treatments for ADD, Aspergers, and autism. Presented at the 15th ISNR annual meeting, San Diego, CA, September 6–9.

  • Luck, S. J., Heinze, H., Mangun, G. R., & Hillyard, S. A. (1990). Visual event-related potentials index focused attention within bilateral stimulus arrays. II. Functional dissociation of P1 and N1 components. Electroencephalography and Clinical Neurophysiology, 75, 528–542. doi:10.1016/0013-4694(90)90139-B.

    Article  PubMed  Google Scholar 

  • Luu, P., Tucker, D. M. L., Englander, R., Lockfeld, A., Lutsep, H., & Oken, B. (2001). Localizing acute stroke-related EEC changes: Assessing the effects of spatial undersampling. Journal of Clinical Neurophysiology, 18, 302–317. doi:10.1097/00004691-200107000-00002.

    Article  PubMed  Google Scholar 

  • Mecklinger, A., Maess, B., Opitz, B., Pfeifer, E., Cheyne, D., & Weinberg, D. (1998). An MEG analysis of the P300 in visual discrimination tasks. Electroencephalography and Clinical Neurophysiology, 108, 45–66. doi:10.1016/S0168-5597(97)00092-0.

    Article  PubMed  Google Scholar 

  • Morgan, B., Mayberry, M., & Durkin, K. (2003). Weak central coherence, poor joint attention, and low verbal ability: Independent deficits in early autism. Developmental Psychology, 39(4), 646–656. doi:10.1037/0012-1649.39.4.646.

    Article  PubMed  Google Scholar 

  • Mottron, L., Burack, J., Iarocci, G., Belleville, S., & Enns, J. T. (2003). Locally oriented perception with intact global processing among adolescents with high-functioning autism: Evidence from multiple paradigms. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 44, 904–913. doi:10.1111/1469-7610.00174.

    Article  PubMed  Google Scholar 

  • Mountcastle, V. B. (1997). The columnar organization of the neocortex. Brain, 120, 701–722. doi:10.1093/brain/120.4.701.

    Article  PubMed  Google Scholar 

  • Mountcastle, V. B. (2003). Introduction: Computation in cortical columns. Cerebral Cortex (New York, N.Y.), 13, 2–4. doi:10.1093/cercor/13.1.2.

    Article  Google Scholar 

  • Näätänen, R., Gaillard, A. W. K., & Mäntysalo, S. (1978). Early selective attention effect on evoked potential reinterpreted. Acta Psychologica, 2, 313–329. doi:10.1016/0001-6918(78)90006-9.

    Article  Google Scholar 

  • Näätänen, R., & Michie, P. T. (1979). Early selective-attention effects on the evoked potential: A critical review and reinterpretation. Biological Psychology, 8, 81–136. doi:10.1016/0301-0511(79)90053-X.

    Article  PubMed  Google Scholar 

  • Näätänen, R., Schröger, E., Karakas, S., Tervaniemi, M., & Paavilainen, P. (1993). Development of a memory trace for a complex sound in the human brain. Neuroreport, 4, 503–506.

    Article  PubMed  Google Scholar 

  • Net Station Acquisition. (2003). Technical manual. Eugene, OR: Electrical Geodesics, Inc.

    Google Scholar 

  • Oades, R. D., Walker, M. K., Geffen, L. B., & Stern, L. M. (1988). Event-related potentials in autistic and healthy children on an auditory choice reaction time task. International Journal of Psychophysiology, 6, 25–37. doi:10.1016/0167-8760(88)90032-3.

    Article  PubMed  Google Scholar 

  • Ozonoff, S. (1997). Casual mechanisms of autism: Unifying perspectives from an information-processing framework. In D. J. Cohen & F. R. Volkmar (Eds.), Handbook of autism and pervasive developmental disorders (pp. 868–879). New York: Wiley.

    Google Scholar 

  • Pellicano, E., Gibson, L., Maybery, M., Durkin, K., & Badcock, D. R. (2005). Abnormal global processing along the dorsal visual pathway in autism: A possible mechanism for weak visuospatial coherence? Neuropsychologia, 43, 1044–1053. doi:10.1016/j.neuropsychologia.2004.10.003.

    Article  PubMed  Google Scholar 

  • Perrin, E., Pernier, J., Bertrand, O., Giard, M., & Echallier, J. F. (1987). Mapping of scalp potentials by surface spline interpolation. Electroencephalography and Clinical Neurophysiology, 66, 75–81. doi:10.1016/0013-4694(87)90141-6.

    Article  PubMed  Google Scholar 

  • Picton, T. W. (1992). The P300 wave of the human event-related potential. Journal of Clinical Neurophysiology, 9, 456–479. doi:10.1097/00004691-199210000-00002.

    Article  PubMed  Google Scholar 

  • Pineda, J. (2007). An investigation on the efficacy of neurofeedback training in autism spectrum disorders. Presented at the 15th ISNR annual conference, San Diego, CA, September 6–9.

  • Plaisted, K., Saksida, L., Alcántara, J., & Weisblatt, E. (2003). Towards an understanding of the mechanisms of weak central coherence effects: Experiments in visual configural learning and auditory perception. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 358, 375–386. doi:10.1098/rstb.2002.1211.

    Article  PubMed  Google Scholar 

  • Polich, J. (2003). Theoretical overview of P3a a nd P3b. In J. Polich (Ed.), Detection of change: Event-related potential and fMRI findings (pp. 83–98). Boston: Kluwer Academic Press.

    Google Scholar 

  • Polich, J., & Herbst, K. L. (2000). P300 as a clinical assay. International Journal of Psychophysiology, 38, 3–19. doi:10.1016/S0167-8760(00)00127-6.

    Article  PubMed  Google Scholar 

  • Potts, G. F., Dien, J., Harty-Speiser, A., McDougl, L. M., & Tucker, D. M. (1998). Dense sensor array topography of the event-related potential to task-relevant auditory stimuli. Electroencephalography and Clinical Neurophysiology, 106, 444–456. doi:10.1016/S0013-4694(97)00160-0.

    Article  PubMed  Google Scholar 

  • Potts, G. F., Liotti, M., Tucker, D. M., & Posner, M. I. (1996). Frontal and inferior temporal cortical activity in visual target detection: Evidence from high spatially sampled event-related potentials. Brain Topography, 9, 3–14. doi:10.1007/BF01191637.

    Article  Google Scholar 

  • Potts, G. F., Patel, S. H., & Azzam, P. N. (2004). Impact of instructed relevance on the visual ERP. International Journal of Psychophysiology, 52, 197–209. doi:10.1016/j.ijpsycho.2003.10.005.

    Article  PubMed  Google Scholar 

  • Pritchard, W. (1981). Psychophysiology of P300. Psychological Bulletin, 89, 506–540. doi:10.1037/0033-2909.89.3.506.

    Article  PubMed  Google Scholar 

  • Pritchard, W. S. (1986). Cognitive event-related potential correlates of schizophrenia. Psychological Bulletin, 100, 43–66. doi:10.1037/0033-2909.100.1.43.

    Article  PubMed  Google Scholar 

  • Pritchard, W. S., Raz, N., & August, G. (1987). Visual augmenting/reducing and P300 in autistic children. Journal of Autism and Developmental Disorders, 17, 231–242. doi:10.1007/BF01495058.

    Article  PubMed  Google Scholar 

  • Rippon, G., Brock, J., Brown, C., & Boucher, J. (2007). Disordered connectivity in the autistic brain: Challenges for the ‘new psychophysiology’. International Journal of Psychophysiology, 63, 164–172. doi:10.1016/j.ijpsycho.2006.03.012.

    Article  PubMed  Google Scholar 

  • Roberts, L. E., Rau, H., Lutzenberger, W., & Birbaumer, N. (1994). Mapping P300 waves onto inhibition: Go/Nogo discrimination. Electroencephalography and Clinical Neurophysiology, 92, 44–55. doi:10.1016/0168-5597(94)90006-X.

    Article  PubMed  Google Scholar 

  • Rogers, R. L., Basile, L. F. H., Papanicolaou, A. C., & Eisenberg, H. M. (1993). Magnetoencephalography reveals two distinct sources associated with late positive evoked potentials during visual oddball task. Cerebral Cortex (New York, N.Y.), 3, 163–169. doi:10.1093/cercor/3.2.163.

    Article  Google Scholar 

  • Roid, G. H. (2003). Stanford-binet intelligence scales, fifth edition, technical manual. Itasca, IL: Riverside Publishing.

    Google Scholar 

  • Rubenstein, J. L., & Merzenich, M. M. (2003). Model of autism: Increased ratio of excitation/inhibition in key neural systems. Genes Brain & Behavior, 2, 255–267. doi:10.1034/j.1601-183X.2003.00037.x.

    Article  Google Scholar 

  • Ruble, L., & Brown, S. (2003). Pervasive developmental disorders: Autism. In M. Wolraich (Ed.), Disorders of development and learning (pp. 249–266). London: BC Decker.

    Google Scholar 

  • Salisbury, D. F., Griggs, C. B., Shenton, M. E., & McCarly, R. W. (2004). The NoGo P300 ‘anteriorization’ effect and response inhibition. Clinical Neurophysiology, 115, 1550–1558. doi:10.1016/j.clinph.2004.01.028.

    Article  PubMed  Google Scholar 

  • Schmitz, N., Rubia, K., Dly, E., Smith, A., Williams, S., & Murphy, D. G. M. (2006). Neural correlates of executive function in autistic spectrum disorders. Biological Psychiatry, 59, 7–16. doi:10.1016/j.biopsych.2005.06.007.

    Article  PubMed  Google Scholar 

  • Scolnik, B. (2005). Effects of electroencephalogram biofeedback with asperger’s syndrome. International Journal of Rehabilitation Research. Internationale Zeitschrift fur Rehabilitationsforschung. Revue Internationale de Recherches de Readaptation, 28(2), 159–163. doi:10.1097/00004356-200506000-00010.

    Google Scholar 

  • Seri, S., Cerquiglini, A., Pisani, F., & Curatolo, P. (1999). Autism in tuberous sclerosis: Evoked potential evidence for a deficit in auditory sensory processing. Clinical Neurophysiology, 110, 1825–1830. doi:10.1016/S1388-2457(99)00137-6.

    Article  PubMed  Google Scholar 

  • Sichel, A. G., Fehmi, L. G., & Goldstein, D. M. (1995). Positive outcome with neurofeedback treatment in a case of mild autism. Journal of Neurotherapy, 1, 60–64. doi:10.1300/J184v01n01_08.

    Article  Google Scholar 

  • Srinivasan, R., Tucker, D. M., & Murias, M. (1998). Estimating the spatial Nyquist of the human EEC. Behavior Research Methods, Instruments, & Computers, 30, 8–19.

    Google Scholar 

  • Strik, W. K., Fallgatter, A. J., Brandies, D., & Pascual-Marqui, R. D. (1998). Three-dimensional tomography of event-related potentials during response inhibition: Evidence for phasic frontal lobe activation. Electroencephalography and Clinical Neurophysiology, 108, 406–413. doi:10.1016/S0168-5597(98)00021-5.

    Article  PubMed  Google Scholar 

  • Tallon-Baudry, C. (2003). Oscillatory synchrony and human visual cognition. Journal of Physiology, 97, 355–363. doi:10.1016/j.jphysparis.2003.09.009.

    PubMed  Google Scholar 

  • Tallon-Baudry, C., Bertrand, O., Henaff, M.-A., Isnard, J., & Fischer, C. (2005). Attention modulates gamma-band oscillations differently in the human lateral occipital cortex and fusiform gyrus. Cerebral Cortex (New York, N.Y.), 15, 654–662. doi:10.1093/cercor/bhh167.

    Article  Google Scholar 

  • Townsend, J., Courchesne, E., Covington, J., Westerfield, M., Harris, N. S., Lyden, P., et al. (1999). Spatial attention deficits in patients with acquired or developmental cerebellar abnormality. The Journal of Neuroscience, 19, 5632–5643.

    PubMed  Google Scholar 

  • Townsend, J., Courchesne, E., & Egaas, B. (1996). Slowed orienting of covert visual-spatial attention in autism: Specific deficits associated with cerebellar and parietal abnormality. Development and Psychopathology, 8, 503–584.

    Article  Google Scholar 

  • Townsend, J., Westerfield, M., Leaver, E., Makeig, S., Jung, T., Pierce, K., et al. (2001). Event-related brain response abnormalities in autism: Evidence for impaired cerebello-frontal spatial attention networks. Cognitive Brain Research, 11, 127–145. doi:10.1016/S0926-6410(00)00072-0.

    Article  PubMed  Google Scholar 

  • Varela, F., Lachaux, J., Rodriguez, E., & Martinerie, J. (2001). The brainweb: Phase synchronization and large-scale integration. Neuroscience, 2, 229–239. doi:10.1038/35067550.

    PubMed  Google Scholar 

  • Verbaten, M. N., Roelofs, J. W., van Engeland, H., Kenemans, J. K., & Slangen, J. L. (1991). Abnormal visual event-related potentials of autistic children. Journal of Autism and Developmental Disorders, 21, 449–470. doi:10.1007/BF02206870.

    Article  PubMed  Google Scholar 

  • Villalobos, M. E., Mizuno, A., Dahl, B. C., Kemmotsu, N., & Muller, R.-A. (2005). Reduced functional connectivity between V1 and inferior frontal cortex associated with visuomotor performance in autism. NeuroImage, 25, 916–925. doi:10.1016/j.neuroimage.2004.12.022.

    Article  PubMed  Google Scholar 

  • Volkmar, F. R., & Pauls, D. (2003). Autism. Lancet, 362, 1133–1141. doi:10.1016/S0140-6736(03)14471-6.

    Article  PubMed  Google Scholar 

  • Wechsler, D. (2003). Wechsler intelligence scale for children (4th ed.). San Antonio, TX: Harcourt Assessment, Inc.

    Google Scholar 

  • Wechsler, D. (2004). Wechsler abbreviated scale for intelligence. San Antonio, TX: Harcourt Assessment, Inc.

    Google Scholar 

  • Welchew, D. E., Ashwin, C., Berkouk, K., Salvador, R., Suckling, J., Baron-Cohen, S., et al. (2005). Functional disconnectivity of the medial temporal lobe in Asperger’s syndrome. Biological Psychiatry, 57, 991–998. doi:10.1016/j.biopsych.2005.01.028.

    Article  PubMed  Google Scholar 

  • West, R. (2003). Neural correlates of cognitive control and conflict detection in the Stroop and digit-location tasks. Neuropsychologia, 41, 1122–1135. doi:10.1016/S0028-3932(02)00297-X.

    Article  PubMed  Google Scholar 

  • West, R., Bowry, R., & McConville, C. (2004). Sensitivity of medial frontal cortex to response and nonresponse conflict. Psychophysiology, 41, 739–748. doi:10.1111/j.1469-8986.2004.00205.x.

    Article  PubMed  Google Scholar 

  • Yamazaki, T., Kamijo, K., Kenmochi, A., Fukuzumi, S., Kiyuna, T., & Kuroiwa, Y. (2000). Multiple equivalent current dipole source localization of visual event-related potentials during oddball paradigm with motor response. Brain Topography, 12, 159–175. doi:10.1023/A:1023467806268.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Estate Sokhadze.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sokhadze, E., Baruth, J., Tasman, A. et al. Event-related Potential Study of Novelty Processing Abnormalities in Autism. Appl Psychophysiol Biofeedback 34, 37–51 (2009). https://doi.org/10.1007/s10484-009-9074-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10484-009-9074-5

Keywords

Navigation