Skip to main content

Advertisement

Log in

An intelligent system for automated breast cancer diagnosis and prognosis using SVM based classifiers

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

In recent years, computational diagnostic tools and artificial intelligence techniques provide automated procedures for objective judgments by making use of quantitative measures and machine learning techniques. In this paper we propose a Support Vector Machines (SVMs) based classifier in comparison with Bayesian classifiers and Artificial Neural Networks for the prognosis and diagnosis of breast cancer disease. The paper provides the implementation details along with the corresponding results for all the assessed classifiers. Several comparative studies have been carried out concerning both the prognosis and diagnosis problem demonstrating the superiority of the proposed SVM algorithm in terms of sensitivity, specificity and accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Estimated new cancer cases and deaths for 2005. http://seer.cancer.gov/cgi-bin/csr

  2. Mangasarian et al. (1995) Breast cancer diagnosis and prognosis via linear programming. Oper Res 43(4):570–577

    Article  MATH  MathSciNet  Google Scholar 

  3. Burke HB, Goodman PH et al. (1997) Artificial neural networks improve the accuracy of cancer survival prediction. Cancer 79:857–862

    Article  Google Scholar 

  4. Choong PL, de Silva CJS et al. (1996) Entropy maximization networks, an application to breast cancer prognosis. IEEE Trans Neural Netw 7(3):568–577

    Article  Google Scholar 

  5. Street WN (1998) A neural network model for prognostic prediction. In: Proceedings of the fifteenth international conference on machine learning, Madison, WI. Kaufmann, Los Altos

    Google Scholar 

  6. Perner P, Holt A, Richter M (2005) Image processing in case-based reasoning. Knowl Eng Rev 20(3):311–314

    Article  Google Scholar 

  7. Maintz J, Viergever M (1998) A survey of medical image registration. Med Image Anal 2(1):1–16

    Article  Google Scholar 

  8. Tsotsos J (1985) Knowledge organization and its role in representation and interpretation for time-varying data: the ALVEN system. Comput Intell 1(1):16–32

    Article  Google Scholar 

  9. Martelli A (1976) An application of heuristic search methods to edge and contour detection. Commun ACM 19:73–83

    Article  MATH  Google Scholar 

  10. McInerney T, Terzopoulos D (1996) Deformable models in medical image analysis: a survey. Med Image Anal 1(2):91–108

    Article  Google Scholar 

  11. Metaxas D, Terzopoulos D (1991) In: Medioni G, Horn B (eds) Constrained deformable superquadrics and nonrigid motion tracking, computer vision and pattern Recognition. IEEE Computer Society, Los Alamitos, pp 337–343

    Google Scholar 

  12. Staib L, Duncan J (1996) Model-based deformable surface finding for medical images. IEEE Trans Med Imaging 78(5):720–731

    Article  Google Scholar 

  13. Bocchi L, Nori J (2007) Shape analysis of microcalcifications using Radon transform. Med Eng Phys 29(6):691–698

    Article  Google Scholar 

  14. Amores J, Radeva P (2005) Registration and retrieval of highly elastic bodies using contextual information. Pattern Recognit Lett 26(11):1720–1731

    Article  Google Scholar 

  15. Antani Sameer, Lee DJ, Long LR, Thoma GR, (2004) Evaluation of shape similarity measurement methods for spine X-ray images. J Vis Commun Image Represent 15(3):285–302

    Article  Google Scholar 

  16. Zapater V, Martinez-Costa L, Ayala G (2002) Classifying human endothelial cells based on individual granulometric size distributions. Image Vis Comput 20(11):783–791

    Article  Google Scholar 

  17. Martens H, Thybo AK, Andersen HJ, Karlsson AH, Donstrup S, Stodkilde-Jorgensen H, Martens M (2002) Sensory analysis for magnetic resonance-image analysis: using human perception and cognition to segment and assess the interior of potatoes. Lebensm Wiss Technol 35(1):70–79

    Article  Google Scholar 

  18. Maglogiannis I, Pavlopoulos S, Koutsouris D (2005) An integrated computer supported acquisition, handling and characterization system for pigmented skin lesions in dermatological images. IEEE Trans Inf Technol Biomed 9(1):86–98

    Article  Google Scholar 

  19. Morris D (1988) An evaluation of the use of texture measures for tissue characterization of ultrasound images of in vivo human placenta. Ultrasound Med Biol 14(1):387–395

    Article  Google Scholar 

  20. Doukas C, Maglogiannis I, Chatzioannou A, Papapetropoulos C (2006) Automated angiogenesis quantification through advanced image processing techniques. In: Proceedings of the 28th IEEE engineering in medicine and biology conference, EMBC 2006, pp 2345–2348

  21. Anagnostopoulos, Anagnostopoulos C, Vergados D, Rouskas A, Kormentzas G (2006) The Wisconsin breast cancer problem: diagnosis and TTR/DFS time prognosis using probabilistic and generalised regression information classifiers. Oncol Rep, special issue Computational analysis and decision support systems in oncology 15:975–982

    Google Scholar 

  22. Wolberg WH, Street WN, Heisey DM, Mangasarian OL (1995) Computer-derived nuclear features distinguish malignant from benign breast cytology. Hum Pathol 26:792–796

    Article  Google Scholar 

  23. Tourassi GD, Markey MK, Lo JY, Floyd CE Jr (2001) A neural network approach to breast cancer diagnosis as a constraint satisfaction problem. Med Phys 28:804–811

    Article  Google Scholar 

  24. Wolberg WH, Street WN, Heisey DM, Mangasarian OL (1995) Computer-derived nuclear features distinguish malignant from benign breast cytology. Hum Pathol 26:792–796

    Article  Google Scholar 

  25. Wolberg WH, Street WN, Mangasarian OL (1994) Machine learning techniques to diagnose breast cancer from fine-needle aspirates. Cancer Lett 77:163–171

    Article  Google Scholar 

  26. Wolberg WH, Street WN, Mangasarian OL (1995) Image analysis and machine learning applied to breast cancer diagnosis and prognosis. Anal Quant Cytol Histol 17(2):77–87

    Google Scholar 

  27. Hoya T, Chambers JA (2001) Heuristic pattern correction scheme using adaptively trained generalized regression neural networks. IEEE Trans Neural Netw 12(1):91–100

    Article  Google Scholar 

  28. Kaban A, Girolami M (2000) Initialized and guided EM-clustering of sparse binary data with application to text based documents. In: 15th international conference on pattern recognition, vol 2, September 2000, pp 744–747

  29. Anagnostopoulos I, Anagnostopoulos C, Loumos V, Kayafas E (2004) Classifying web pages employing a probabilistic neural network classifier. IEE Proc Softw 151(3):139–150

    Article  Google Scholar 

  30. Burges C. A tutorial on support vector machines for pattern recognition. http://www.kernel-machines.org/

  31. Schölkopf B. Statistical learning and kernel methods. http://research.Microsoft.com/~bsc

  32. Campbell C. Kernel methods: a survey of current techniques. http://www.kernel-machines.org/

  33. Maglogiannis IG, Zafiropoulos EP (2004) Characterization of digital medical images utilizing support vector machines. BMC Med Inform Decis Mak 4:4

    Article  Google Scholar 

  34. Duan KB, Keerthi SS (2005) Which is the best multiclass SVM method? In: Oza NC et al (eds) An empirical study, MCS 2005. Lecture notes in computer science, vol 3541, pp 278–285

  35. Lee Y, Lee C-K (2003) Classification of multiple cancer types by multicategory support vector machines using gene expression data. Bioinformatics 19(9):1132–1139

    Article  Google Scholar 

  36. Witten IH, Frank E (2005) Data mining: practical machine learning tools and techniques, 2nd ed. Kaufmann, Los Altos

    MATH  Google Scholar 

  37. Specht DF (1990) Probabilistic neural networks. Neural Netw 3(1), 109–118

    Article  Google Scholar 

  38. Specht DF (1996) Probabilistic neural networks and general regression neural networks. In: Chen CH (ed) Fuzzy logic and neural network handbook. McGraw-Hill, New York

    Google Scholar 

  39. Masters T (1995) Advanced algorithms for neural networks. Wiley, New York

    Google Scholar 

  40. University of Waikato. Weka software. Available at http://www.cs.waikato.ac.nz/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilias Maglogiannis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maglogiannis, I., Zafiropoulos, E. & Anagnostopoulos, I. An intelligent system for automated breast cancer diagnosis and prognosis using SVM based classifiers. Appl Intell 30, 24–36 (2009). https://doi.org/10.1007/s10489-007-0073-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-007-0073-z

Keywords

Navigation