Skip to main content
Log in

Caspase-8 dependent trail-induced apoptosis in cancer cell lines is inhibited by vitamin C and catalase

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

TNF-related apoptosis-inducing ligand (TRAIL/ Apo-2L) is a member of the TNF family of apoptosis-inducing proteins that initiates apoptosis in a variety of neoplastic cells while displaying minimal or absent cytotoxicity to most normal cells. Therefore, TRAIL is currently considered a promising target to develop anti-cancer therapies. TRAIL-receptor ligation recruits and activates pro-caspase-8, which in turn activates proteins that mediate disruption of the mitochondrial membranes. These events lead to the nuclear and cytosolic damage characteristic of apoptosis. Here we report that TRAIL-induced apoptosis is mediated by oxidative stress and that vitamin C (ascorbic acid), a potent nutritional antioxidant, protects cancer cell lines from apoptosis induced by TRAIL. Vitamin C impedes the elevation of reactive oxygen species (ROS) levels induced by TRAIL and impairs caspase-8 activation. We found that the removal of hydrogen peroxide by extracellular catalase during TRAIL-induced apoptosis also impairs caspase-8 activation. These data suggest that hydrogen peroxide is produced during TRAIL-receptor ligation, and that the increase of intracellular ROS regulates the activation of caspase-8 during apoptosis. Additionally we propose a mechanism by which cancer cells might resist apoptosis via TRAIL, by the intake of the nutritional antioxidant vitamin C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Rath PC, Aggarwal BB (1999) TNF-induced signaling in apoptosis. J Clin Immunol 19:350–64

    Article  CAS  PubMed  Google Scholar 

  2. Walczak H, Krammer PH (2000) The CD95 (APO-1/Fas) and the TRAIL (APO-2L) apoptosis systems. Exp Cell Res 256: 58–6

    Article  CAS  PubMed  Google Scholar 

  3. Chapman PB, Lester TJ, Casper ES et al. (1987) Clinical pharmacology of recombinant human tumor necrosis factor in patients with advanced cancer. J Clin Oncol 5:1942–951

    CAS  PubMed  Google Scholar 

  4. Tanaka M, Suda T, Yatomi T, Nakamura N, Nagata S (1997) Lethal effect of recombinant human Fas ligand in mice pretreated with Propionibacterium acnes. J Immunol 158:2303–309

    CAS  PubMed  Google Scholar 

  5. Wiley SR, Schooley K, Smolak PJ et al. (1995) Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity 3:673–82

    Article  CAS  PubMed  Google Scholar 

  6. Ashkenazi A, Pai RC, Fong S et al. (1999) Safety and antitumor activity of recombinant soluble Apo2 ligand. J Clin Invest 104:155–62

    Article  CAS  PubMed  Google Scholar 

  7. Walczak H, Miller RE, Ariail K et al. (1999) Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo. Nat Med 5:157–63

    Article  CAS  PubMed  Google Scholar 

  8. Bodmer JL, Holler N, Reynard S et al. (2000) TRAIL receptor-2 signals apoptosis through FADD and caspase-8. Nat Cell Biol 2:241–43

    Article  CAS  PubMed  Google Scholar 

  9. Yamada H, Tada-Oikawa S, Uchida A, Kawanishi S (1999) TRAIL causes cleavage of bid by caspase-8 and loss of mitochondrial membrane potential resulting in apoptosis in BJAB cells. Biochem Biophys Res Commun 265:130–33

    Article  CAS  PubMed  Google Scholar 

  10. Wang S, El-Deiry WS (2003) TRAIL and apoptosis induction by TNF-family death receptors. Oncogene 22:8628–633

    Article  CAS  PubMed  Google Scholar 

  11. Muzio M, Stockwell B, Stennicke H, Salvesen G, Dixit V (1998) An induced proximity model for caspase-8 activation. J Biol Chem 273:2926–930

    Article  CAS  PubMed  Google Scholar 

  12. Perez-Cruz I, Carcamo JM, Golde DW (2003) Vitamin C inhibits FAS-induced apoptosis in monocytes and U937 cells. Blood 102:336–43

    Article  CAS  PubMed  Google Scholar 

  13. Simon HU, Haj-Yehia A, Levi-Schaffer F (2000) Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis 5:415–18

    Article  CAS  PubMed  Google Scholar 

  14. Slater AF, Nobel CS, Orrenius S (1995) The role of intracellular oxidants in apoptosis. Biochim Biophys Acta 1271:59–2

    PubMed  Google Scholar 

  15. Meng TC, Fukada T, Tonks NK (2002) Reversible oxidation and inactivation of protein tyrosine phosphatases in vivo. Mol Cell 9:387–99

    Article  CAS  PubMed  Google Scholar 

  16. Martin D, Salinas M, Fujita N, Tsuruo T, Cuadrado A (2002) Ceramide and reactive oxygen species generated by H2O2 induce caspase-3-independent degradation of Akt/protein kinase B. J Biol Chem 277:42943–2952

    Article  CAS  PubMed  Google Scholar 

  17. Vera JC, Rivas CI, Zhang RH, Farber CM, Golde DW (1994) Human HL-60 myeloid leukemia cells transport dehydroascorbic acid via the glucose transporters and accumulate reduced ascorbic acid. Blood 84:1628–634

    CAS  PubMed  Google Scholar 

  18. Kasahara Y, Iwai K, Yachie A et al. (1997) Involvement of reactive oxygen intermediates in spontaneous and CD95 (Fas/APO-1)-mediated apoptosis of neutrophils. Blood 89:1748–753

    CAS  PubMed  Google Scholar 

  19. Bohler T, Waiser J, Hepburn H et al. (2000) TNF-alpha and IL-1alpha induce apoptosis in subconfluent rat mesangial cells. Evidence for the involvement of hydrogen peroxide and lipid peroxidation as second messengers. Cytokine 12:986–91

    Article  CAS  PubMed  Google Scholar 

  20. Lee MW, Park SC, Kim JH et al. (2002) The involvement of oxidative stress in tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in HeLa cells. Cancer Lett 182:75–2

    CAS  PubMed  Google Scholar 

  21. DeYulia GJ Jr, Carcamo JM, Borquez-Ojeda O, Shelton CC, Golde DW (2005) Hydrogen peroxide generated extracellularly by receptor-ligand interaction facilitates cell signaling. Proc Natl Acad Sci USA 102:5044–049

    Article  CAS  PubMed  Google Scholar 

  22. Liu Q, Berchner-Pfannschmidt U, Moller U et al. (2004) A Fenton reaction at the endoplasmic reticulum is involved in the redox control of hypoxia-inducible gene expression. Proc Natl Acad Sci USA 101:4302–307

    Article  CAS  PubMed  Google Scholar 

  23. Littlefield LG, Joiner EE, Colyer SP, Sayer AM, Frome EL (1988) Modulation of radiation-induced chromosome aberrations by DMSO, an OH radical scavenger. 1: Dose-response studies in human lymphocytes exposed to 220 kV X-rays. Int J Radiat Biol Relat Stud Phys Chem Med 53:875–90

    Article  CAS  PubMed  Google Scholar 

  24. Zamzami N, Susin SA, Marchetti P et al. (1996) Mitochondrial control of nuclear apoptosis. J Exp Med 183:1533–544

    Article  CAS  PubMed  Google Scholar 

  25. Gottlieb E, Vander Heiden MG, Thompson CB (2000) Bcl-x(L) prevents the initial decrease in mitochondrial membrane potential and subsequent reactive oxygen species production during tumor necrosis factor alpha-induced apoptosis. Mol Cell Biol 20:5680–689

    Article  CAS  PubMed  Google Scholar 

  26. Rice ME (2000) Ascorbate regulation and its neuroprotective role in the brain. Trends Neurosci 23:209–16

    Article  CAS  PubMed  Google Scholar 

  27. Levine M, Wang Y, Padayatty S, Morrow J (2001) A new recommended dietary allowance of vitamin C for healthy young women. Proc Natl Acad Sci USA 98:9842–846

    Article  CAS  PubMed  Google Scholar 

  28. Liebes L, Krigel R, Kuo S, Nevrla D, Pelle E, Silber R (1981) Increased ascorbic acid content in chronic lymphocytic leukemia B lymphocytes. Proc Natl Acad Sci USA 78:6481–484

    Article  CAS  PubMed  Google Scholar 

  29. Dang CV, Semenza GL (1999) Oncogenic alterations of metabolism. Trends Biochem Sci 24:68–2

    Article  CAS  PubMed  Google Scholar 

  30. Dhariwal KR, Hartzell WO, Levine M (1991) Ascorbic acid and dehydroascorbic acid measurements in human plasma and serum. Am J Clin Nutr 54:712–16

    CAS  PubMed  Google Scholar 

  31. Nualart FJ, Rivas CI, Montecinos VP et al. (2003) Recycling of vitamin C by a bystander effect. J Biol Chem 278:10128–0133

    Article  CAS  PubMed  Google Scholar 

  32. Jones SA, O’Donnell VB, Wood JD, Broughton JP, Hughes EJ, Jones OT (1996) Expression of phagocyte NADPH oxidase components in human endothelial cells. Am J Physiol 271:H1626–634

    CAS  PubMed  Google Scholar 

  33. Pagano PJ, Clark JK, Cifuentes-Pagano ME, Clark SM, Callis GM, Quinn MT (1997) Localization of a constitutively active, phagocyte-like NADPH oxidase in rabbit aortic adventitia: enhancement by angiotensin II. Proc Natl Acad Sci USA 94:14483–4488

    Article  CAS  PubMed  Google Scholar 

  34. Spielholz C, Golde DW, Houghton AN, Nualart F, Vera JC (1997) Increased facilitated transport of dehydroascorbic acid without changes in sodium-dependent ascorbate transport in human melanoma cells. Cancer Res 57:2529–537

    CAS  PubMed  Google Scholar 

  35. Birnbaum MJ, Haspel HC, Rosen OM (1987) Transformation of rat fibroblasts by FSV rapidly increases glucose transporter gene transcription. Science 235:1495–498

    Article  CAS  PubMed  Google Scholar 

  36. Hampton MB, Orrenius S (1997) Dual regulation of caspase activity by hydrogen peroxide: implications for apoptosis. FEBS Lett 414:552–56

    Article  CAS  PubMed  Google Scholar 

  37. Dumont A, Hehner SP, Hofmann TG, Ueffing M, Droge W, Schmitz ML (1999) Hydrogen peroxide-induced apoptosis is CD95-independent, requires the release of mitochondria-derived reactive oxygen species and the activation of NF-kappaB. Oncogene 18:747–57

    Article  CAS  PubMed  Google Scholar 

  38. Marini M, Frabetti F, Canaider S, Dini L, Falcieri E, Poirier GG (2001) Modulation of caspase-3 activity by zinc ions and by the cell redox state. Exp Cell Res 266:323–32

    Article  CAS  PubMed  Google Scholar 

  39. Gruss-Fischer T, Fabian I (2002) Protection by ascorbic acid from denaturation and release of cytochrome c, alteration of mitochondrial membrane potential and activation of multiple caspases induced by H(2)O(2), in human leukemia cells. Biochem Pharmacol 63:1325–335

    Article  CAS  PubMed  Google Scholar 

  40. Devadas S, Hinshaw JA, Zaritskaya L, Williams MS (2003) Fas-stimulated generation of reactive oxygen species or exogenous oxidative stress sensitize cells to Fas-mediated apoptosis. Free Radic Biol Med 35:648–61

    Article  CAS  PubMed  Google Scholar 

  41. Nathan C (2003) Specificity of a third kind: reactive oxygen and nitrogen intermediates in cell signaling. J Clin Invest 111:769–78

    CAS  PubMed  Google Scholar 

  42. Halliwell B, Gutterridge J (1998) Antioxidant defenses. In: Halliwell B (ed) Free radicals in biology and medicine, 3rd edn. Oxford Science Publications, London, pp 105–45

    Google Scholar 

  43. Peus D, Vasa RA, Beyerle A, Meves A, Krautmacher C, Pittelkow MR (1999) UVB activates ERK1/2 and p38 signaling pathways via reactive oxygen species in cultured keratinocytes. J Invest Dermatol 112:751–56

    Article  CAS  PubMed  Google Scholar 

  44. Zhuang S, Lynch MC, Kochevar IE (1999) Caspase-8 mediates caspase-3 activation and cytochrome c release during singlet oxygen-induced apoptosis of HL-60 cells. Exp Cell Res 250:203–12

    Article  CAS  PubMed  Google Scholar 

  45. Green D, Reed J (1998) Mitochondria and apoptosis. Science 281:1309–312

    Article  CAS  PubMed  Google Scholar 

  46. Vier J, Gerhard M, Wagner H, Hacker G (2004) Enhancement of death-receptor induced caspase-8-activation in the death-inducing signalling complex by uncoupling of oxidative phosphorylation. Mol Immunol 40: 661–70

    Article  CAS  PubMed  Google Scholar 

  47. Scaffidi C, Fulda S, Srinivasan A et al. (1998) Two CD95 (APO-1/Fas) signaling pathways. Embo J 17:1675–687

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabel Perez-Cruz.

Additional information

This work was supported by grants from the National Institutes of Health (CA 30388), the New York State Department of Health (M020113) and the Lebensfeld Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perez-Cruz, I., Cárcamo, J.M. & Golde, D.W. Caspase-8 dependent trail-induced apoptosis in cancer cell lines is inhibited by vitamin C and catalase. Apoptosis 12, 225–234 (2007). https://doi.org/10.1007/s10495-006-0475-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-006-0475-0

Keywords

Navigation