Skip to main content
Log in

Inhibition of cell death by a novel 16.2 kD heat shock protein predominantly via Hsp90 mediated lipid rafts stabilization and Akt activation pathway

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

AlphaB-crystallin homology, heat stress induction and chaperone activity suggested that a previously encloned gene product is a novel small heat shock protein (Hsp16.2). Suppression of Hsp16.2 by siRNA sensitized cells to hydrogen peroxide or taxol induced cell-death. Over-expressing of Hsp16.2 protected cells against stress stimuli by inhibiting cytochrome c release from the mitochondria, nuclear translocation of AIF and endonuclease G, and caspase 3 activation. Recombinant Hsp16.2 protected mitochondrial membrane potential against calcium induced collapse in vitro indicating that Hsp16.2 stabilizes mitochondrial membrane systems. Hsp16.2 formed self-aggregates and bound to Hsp90. Inhibition of Hsp90 by geldanamycin diminished the cytoprotective effect of Hsp16.2 indicating that this effect was Hsp90-mediated. Hsp16.2 over-expression increased lipid rafts formation as demonstrated by increased cell surface labeling with fluorescent cholera toxin B, and increased Akt phosphorylation. The inhibition of PI-3-kinase—Akt pathway by LY-294002 or wortmannin significantly decreased the protective effect of the Hsp16.2. These data indicate that the over-expression of Hsp16.2 inhibits cell death via the stabilization of mitochondrial membrane system, activation of Hsp90, stabilization of lipid rafts and by the activation of PI-3-kinase—Akt cytoprotective pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sun Y, MacRae TH (2005) The small heat shock proteins and their role in human disease. FEBS J 272:2613–627

    PubMed  Google Scholar 

  2. Parcellier A, Schmitt E, Brunet M et al (2005) Small heat shock proteins Hsp27 and alphaB-crystallin: cytoprotective and oncogenic functions. Antioxid Redox Signal 7:404–13

    Article  CAS  PubMed  Google Scholar 

  3. Arrigo AP (2005) In search of the molecular mechanism by which small stress proteins counteract apoptosis during cellular differentiation. J Cell Biochem 94:241–46

    Article  CAS  PubMed  Google Scholar 

  4. Arrigo AP, Paul C, Ducasse C et al (2002) Small stress proteins: modulation of intracellular redox state and protection against oxidative stress. Prog Mol Subcell Biol 28:171–84

    CAS  PubMed  Google Scholar 

  5. Kamradt MC, Lu M, Werner M et al (2005) The small heat shock protein alpha B-crystallin is a novel inhibitor of TRAIL-induced apoptosis that suppresses the activation of caspase-3. J Biol Chem 280:11059–1066

    Article  CAS  PubMed  Google Scholar 

  6. Schepers H, Geugien M, Van Der Toorn M et al (2005) HSP27 protects AML cells against VP-16-induced apoptosis through modulation of p38 and c-Jun. Exp Hematol 33:660–70

    Article  CAS  PubMed  Google Scholar 

  7. Nakagomi S, Suzuki Y, Namikawa K et al (2003) Expression of the activating transcription factor 3 prevents c-Jun N-terminal kinase-induced neuronal death by promoting heat shock protein 27 expression and Akt activation. J Neurosci 23:5187–196

    CAS  PubMed  Google Scholar 

  8. Mehlen P, Preville X, Chareyron P et al (1995) Constitutive expression of human hsp27, Drosophila hsp27, or human αB-crystallin confers resistance to TNF- and oxidative stress-induced cytotoxicity in stably transfected murine L929 fibroblasts. J Immunol 154:363–74

    CAS  PubMed  Google Scholar 

  9. Kamradt MC, Chen F, Cryns VL (2001) The small heat shock protein αB-crystallin negatively regulates cytochrome c- and caspase-8-dependent activation of caspase-3 by inhibiting its autoproteolytic maturation. J Biol Chem 276:16059–6063

    Article  CAS  PubMed  Google Scholar 

  10. Kamradt MC, Chen F, Sam S et al (2002) The small heat shock protein αB-crystallin negatively regulates apoptosis during myogenic differentiation by inhibiting caspase-3 activation. J Biol Chem 277:38731–8736

    Article  CAS  PubMed  Google Scholar 

  11. Mao YW, Liu JP, Xiang H et al (2004) Human αA- and αB-crystallins bind to Bax and Bcl-X(S) to sequester their translocation during staurosporine-induced apoptosis. Cell Death Differ 11:512–26

    Article  CAS  PubMed  Google Scholar 

  12. Sreedhar AS, Csermely P (2004) Heat shock proteins in the regulation of apoptosis: new strategies in tumor therapy: a comprehensive review. Pharmacol Ther 101:227–57

    Article  CAS  PubMed  Google Scholar 

  13. Tsuruo T, Naito M, Tomida A et al (2003) Molecular targeting therapy of cancer: drug resistance, apoptosis and survival signal. Cancer Sci 94:15–1

    Article  CAS  PubMed  Google Scholar 

  14. Lee SA, Ndisang D, Patel C et al (2005) Expression of the Brn-3b transcription factor correlates with expression of Hsp-27 in breast cancer biopsies and is required for maximal activation of the Hsp-27 promoter. Cancer Res 65:3072–080

    CAS  PubMed  Google Scholar 

  15. Kang SH, Fung MA, Gandour-Edwards R et al (2004) Heat shock protein 27 is expressed in normal and malignant human melanocytes in vivo. J Cutan Pathol 31:665–71

    Article  PubMed  Google Scholar 

  16. Rocchi P, So A, Kojima S et al (2004) Heat shock protein 27 increases after androgen ablation and plays a cytoprotective role in hormone-refractory prostate cancer. Cancer Res 64:6595–602

    Article  CAS  PubMed  Google Scholar 

  17. Kappe G, Franck E, Verschuure P et al (2003) The human genome encodes 10 alpha-crystallin-related small heat shock proteins: HspB1-10. Cell Stress Chaperones 8:53–1

    Article  CAS  PubMed  Google Scholar 

  18. Altschul SF, Madden TL, Schäffer AA et al (1997) BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–402

    Article  CAS  PubMed  Google Scholar 

  19. Pruitt KD, Maglott DR (2001) RefSeq and LocusLink: NCBI gene-centered resources. Nucleic Acids Res 29:137–40

    Article  CAS  PubMed  Google Scholar 

  20. Tapodi A, Debreceni B, Hanto K et al (2005) Pivotal role of Akt activation in mitochondrial protection and cell survival by poly(ADP-ribose)polymerase-1 inhibition in oxidative stress. J Biol Chem 280:35767–5775

    Article  CAS  PubMed  Google Scholar 

  21. Haslbeck M, Walke S, Stromer T et al (1999) Hsp26: a temperature-regulated chaperonee. EMBO J 18:6744–751

    Article  CAS  PubMed  Google Scholar 

  22. Jakob U, Lilie H, Meyer I et al (1995) Transient interaction of Hsp90 with early unfolding intermediates of citrate synthase. Implications for heat shock in vivo. J Biol Chem 270:7288–294

    Article  CAS  PubMed  Google Scholar 

  23. Sims NR (1990) Rapid isolation of metabolically active mitochondria from rat brain and subregions using Percoll density gradient centrifugation. J Neurochem 55:698–07

    Article  CAS  PubMed  Google Scholar 

  24. Shevchenko A, Wilm M, Vorm O et al (1996) Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem 68:850–58

    Article  CAS  PubMed  Google Scholar 

  25. Clauser KR, Baker PR, Burlingame AL (1999) Role of accurate mass measurement (+/− 10 ppm) in protein identification strategies employing MS or MS/MS and database searching. Anal Chem 71:2871–882

    Article  CAS  PubMed  Google Scholar 

  26. Buchner J, Grallert H, Jakob U (1998) Analysis of chaperonee function using citrate synthase as nonnative substrate protein. Methods Enzymol 290:323–38

    Article  CAS  PubMed  Google Scholar 

  27. Reers M, Smith TW, Chen LB (1991) J-aggregate formation of a carbocyanine as a quantitative fluorescent indicator of membrane potential. Biochemistry 30:4480–486

    Article  CAS  PubMed  Google Scholar 

  28. Sreedhar AS, Mihaly K, Pato B et al (2003) Hsp90 inhibition accelerates cell lysis. Anti-Hsp90 ribozyme reveals a complex mechanism of Hsp90 inhibitors involving both superoxide- and Hsp90-dependent events. J Biol Chem 278:35231–5240

    Article  CAS  PubMed  Google Scholar 

  29. Chen S, Bawa D, Besshoh S et al (2005) Association of heat shock proteins and neuronal membrane components with lipid rafts from the rat brain. J Neurosci Res 81:522–29

    Article  CAS  PubMed  Google Scholar 

  30. Waheed AA, Jones TL (2002) Hsp90 interactions and acylation target the G protein Galpha 12 but not Galpha 13 to lipid rafts. J Biol Chem 277:32409–2412

    Article  CAS  PubMed  Google Scholar 

  31. Soti C, Csermely P (1998) Molecular chaperonees in the etiology and therapy of cancer. Pathol Oncol Res 4:316–21

    Article  CAS  PubMed  Google Scholar 

  32. Jolly C, Morimoto RI (2000) Role of the heat shock response and molecular chaperonees in oncogenesis and cell death. J Nat Cancer Inst 92:1564–572

    Article  CAS  PubMed  Google Scholar 

  33. Sun Y, Mansour M, Crack JA et al (2004) Oligomerization, chaperonee activity, and nuclear localization of p26, a small heat shock protein from Artemia franciscana. J Biol Chem 279:39999–0006

    Article  CAS  PubMed  Google Scholar 

  34. Varbiro G, Toth A, Tapodi A et al (2003) Protective effect of amiodarone but not N-desethylamiodarone on postischemic hearts through the inhibition of mitochondrial permeability transition. J Pharmacol Exp Ther 307:615–25

    Article  CAS  PubMed  Google Scholar 

  35. Mukai M, Kusama T, Hamanaka Y et al (2005) Cross talk between apoptosis and invasion signaling in cancer cells through caspase-3 activation. Cancer Res 65:121–25

    Article  Google Scholar 

  36. Triantafilou M, Miyake K, Golenbock DT et al (2002) Mediators of innate immune recognition of bacteria concentrate in lipid rafts and facilitate lipopolysaccharide-induced cell activation. J Cell Sci 115:2603–611

    CAS  PubMed  Google Scholar 

  37. Jain S, Li Y, Kumar A et al (2005) Transcriptional signaling from membrane raft-associated glucocorticoid receptor. Biochem Biophys Res Commun 336:3–

    Article  CAS  PubMed  Google Scholar 

  38. Shah M, Patel K, Fried VA et al (2002) Interactions of STAT3 with caveolin-1 and heat shock protein 90 in plasma membrane raft and cytosolic complexes. Preservation of cytokine signaling during fever. J Biol Chem 277:45662–5669

    Article  CAS  PubMed  Google Scholar 

  39. Hill MM, Feng J, Hemmings BA (2002) Identification of a plasma membrane Raft-associated PKB Ser473 kinase activity that is distinct from ILK and PDK1. Curr Biol 12:1251–255

    Article  CAS  PubMed  Google Scholar 

  40. Plas DR, Thompson CB (2005) Akt-dependent transformation: there is more to growth than just surviving. Oncogene 24:7435–442

    Article  CAS  PubMed  Google Scholar 

  41. Cheng JQ, Lindsley CW, Cheng GZ et al (2005) The Akt/PKB pathway: molecular target for cancer drug discovery. Oncogene 24:7482–492

    Article  CAS  PubMed  Google Scholar 

  42. Neckers L, Ivy SP (2003) Heat shock protein 90. Curr Opin Oncol 15:419–24

    Article  CAS  PubMed  Google Scholar 

  43. Brazil DP, Yang ZZ, Hemmings BA (2004) Advances in protein kinase B signalling: AKTion on multiple fronts. Trends Biochem Sci 29:233–42

    Article  CAS  PubMed  Google Scholar 

  44. Brognard J, Clark AS, Ni Y et al (2001) Akt/Protein Kinase B is constitutively active in non-small cell cung cancer cells and promotes cellular survival and resistance to chemotherapy and radiation. Cancer Res 61:3986–997

    CAS  PubMed  Google Scholar 

  45. Ringel MD, Hayre N, Saito J et al (2001) Overexpression and overactivation of Akt in thyroid carcinoma. Cancer Res 61:6105–111

    CAS  PubMed  Google Scholar 

  46. Tanno S, Yanagawa N, Habiro A et al (2004) Serine/Threonine kinase AKT is frequently activated in human bile duct cancer and is associated with increased radioresistance. Cancer Res 64:3486–490

    Article  CAS  PubMed  Google Scholar 

  47. Yang L, Dan HC, Sun M et al (2004) Akt/Protein Kinase B signaling inhibitor-2, a selective small molecule inhibitor of Akt signaling with atitumor activity in cancer cells overexpressing Akt. Cancer Res 64:4394–399

    Article  CAS  PubMed  Google Scholar 

  48. Elhyany S, Assa-Kunik E, Tsory S et al (2004) The integrity of cholesterol-enriched microdomains is essential for the constitutive high activity of protein kinase B in tumour cells. Biochem Soc Trans 32:837–39

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balazs Sumegi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bellyei, S., Szigeti, A., Boronkai, A. et al. Inhibition of cell death by a novel 16.2 kD heat shock protein predominantly via Hsp90 mediated lipid rafts stabilization and Akt activation pathway. Apoptosis 12, 97–112 (2007). https://doi.org/10.1007/s10495-006-0486-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-006-0486-x

Keywords

Navigation