Skip to main content
Log in

Different levels of p53 induced either apoptosis or cell cycle arrest in a doxycycline-regulated hepatocellular carcinoma cell line in vitro

  • Report
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Induction of p53 gene expression in cancer cells can lead to both cell cycle arrest and apoptosis. To clarify whether the level of p53 expression determines the apoptotic response of hepatocellullar carcinoma (HCC) cells, we assessed the effect of various levels of expression of p53 gene on a p53-deficient HCC cell line, Hep3B, utilizing a doxycycline (Dox)-regulated inducible p53 expression system. Our results showed that apoptosis was induced in HCC cells with high levels of p53 expression. However, lower level of p53 expression induced only cell cycle arrest but not apoptosis. Bax expression was up-regulated following high levels of p53 expression, while bcl-2 expression was not altered by the level of p53 expression. Moreover, p21 expression was observed in both high and low expression of p53. These results suggest the level of p53 expression could determine if the HCC cells would go into cell cycle arrest or apoptosis. Bax may participate, at least in part, in inducing p53-dependent apoptosis and the induction of p21 alone was able to cause cell cycle arrest but not apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Hollstein M, Sidransky D, Vogelstein B, Harris CC (1991) p53 mutations in human cancers. Science 253:49–53

    Article  PubMed  CAS  Google Scholar 

  2. Takahashi T, Carbone D, Takashi T, Nau MM, Hida T, Linnoila Z, Ueda RR, Minna J D (1992) Wild-type but mutant p53 suppresses the growth of human lung cancer cells bearing multiple genetic lesions. Cancer Res 52:2340–2343

    PubMed  CAS  Google Scholar 

  3. Dameron KM, Volpert OV, Tainsky MA, Bouck N (1994) Control of angiogenesis in fibroblasts by p53 regulation of angiogenesis of thrombospondin-1. Science 265:1582–1584

    Article  PubMed  CAS  Google Scholar 

  4. El-Deiry WS, Tokino T, Velculesu VE, Levy DB, Parsons R, Trent J, Lin D, Mercer WE, Kinzler KW, Vogelstein B (1993) WAF1, a potential mediator of p53 tumour suppression. Cell 75:817–825

    Article  PubMed  CAS  Google Scholar 

  5. Harper JW, Adami GR, Wei N, Keyomarsi K, Elledge SJ (1993) The p21 Cdk-interacting Cip1 is a potent inhibitor of G1 cyclin-dependent kinase. Cell 75:805–816

    Article  PubMed  CAS  Google Scholar 

  6. Xiong Y, Hannon GJ, Zhang H, Casso D, Kobayashi R, Beach D (1993) P21 is a universal inhibitor of cyclin kinase. Nature 366:701–704

    Article  PubMed  CAS  Google Scholar 

  7. Miyashita T, Reed JC (1995) Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 80:293–299

    Article  PubMed  CAS  Google Scholar 

  8. Olitvai ZN, Milliman CL, Korsmeyer SJ (1993) Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell-death. Cell 74:609–619

    Article  Google Scholar 

  9. Bargou RC, Bommert K, Weinmann P, Damiel PT, Wagener C, Mapara MY, Dorken B (1995) Induction of Bax-alpha precedes apoptosis in a human B lymphoma cell line: potential role of the bcl-2 gene family in surface IgM-mediated apoptosis. Eur J Immunol 75:770–775

    Google Scholar 

  10. Sabbatini P, Han J, Chiou SK, Nicholson DW, White E (1997) Interleukin 1β converting enzyme-like proteases are essential for p53-mediated transcriptionally dependent apoptosis. Cell Growth Differ 8:643–653

    PubMed  CAS  Google Scholar 

  11. Unsal H,Yakicier C, Marcais C, Kew M, Volkmann M, Zentgraf H, Isselbacher KJ, Ozturk K (1994) Genetic heterogeneity of hepatocellular carcinoma. Proc Natl Acad Sci USA 91:822–826

    Article  PubMed  CAS  Google Scholar 

  12. Chi TY, Chen GG, Ho LK, Lai PB (2005) Establishment of a doxycycline-regulated cell line with inducible, doubly-stable expression of the wild-type p53 gene from p53-deleted hepatocellular carcinoma cells. Cancer Cell Int 5:27

    Article  PubMed  Google Scholar 

  13. Bressac B, Galvin KM, Liang J, Isselbacher KJ, Wands JA, Ozturk M (1990) Abnormal structure and expression of p53 gene in human hepatocellular carcinoma. Proc Natl Acad Sci USA 87:1973–1977

    Article  PubMed  CAS  Google Scholar 

  14. Evan GI, Vousden KH (2001) Proliferation, cell cycle and apoptosis in cancer. Nature 411:342–348

    Article  PubMed  Google Scholar 

  15. Selvakumaran M, Lin HK, Miyashita T, Wang HG, Krajewshi S, Reed JC, Hoffiman B, Liebermann D (1994) Immediately early upregulation of Bax expression by p53 but not TGFβ1: a paradigm for distinct apoptotic pathways. Oncogene 9:1791–1798

    PubMed  CAS  Google Scholar 

  16. Brady HJ, Solomans GS, Bobeldijk RC, Berns AJ (1996) T-cells from bax-alpha transgeneic mice show accelerated apoptosis in response to stimuli but do not show restored DNA damage induced cell death in the absence of p53. EMBO J 15:1221–1230

    PubMed  CAS  Google Scholar 

  17. Yin CY, Knudson CM, Korsmeyer SJ, VanDyke T (1997) Bax suppresses tumourigenesis and stimulates apoptosis in vivo. Nature 385:637–640

    Article  PubMed  CAS  Google Scholar 

  18. Dubrez L, Coll JL, Hurbin A, de Fraipont F, Lantejoul S, Favrot MC (2001) Cell cycle arrest is sufficient for p53-mediated tumour regression. Gene Ther 8:1705–1712

    Article  PubMed  CAS  Google Scholar 

  19. Agarwal ML, Agarwal A, Taylor WR, Stark GR (1995) P53 control both the G2/M and the G1 cell cycle checkpoints and mediates reversible growth arrest in human fibroblasts. Proc Natl Acad Sci USA 92:8493–8497

    Article  PubMed  CAS  Google Scholar 

  20. Ryan JJ, Danish R, Gottlieb CA, Clarke MF (1993) Cell cycle analysis of p53-induced cell death in murine erythroleukemia cells. Mol Cell Biol 13:711–719

    PubMed  CAS  Google Scholar 

  21. Aloni-Grinstein R, Schwartz D, Rotter V (1995) Accumulation of wild-type p53 protein upon γ-irradiation induces a G2 arrest-dependent immunoglobulin κ light chain gene expression. EMBO J 14:1392–1401

    PubMed  CAS  Google Scholar 

  22. El-Deiry WS, Tokino T, Walsman T, Oliner JD, Velculescu VE, Burrell M, Hill DE, Healy E, Rees JL, Hamilton SR, Kinzler KW, Vogelstein B (1995) Topological control of p21WAF1/CIP1 expression in normal and neoplastic tissues. Cancer Res 55:2910–2919

    PubMed  CAS  Google Scholar 

  23. Yonish-Rouach E (1996) The p53 tumour suppressor gene: a mediator of a G1 growth arrest and of apoptosis. Experientia 52:1001–1007

    Article  PubMed  CAS  Google Scholar 

  24. Chen X, Ko LJ, Jayaraman L, Prives C (1996) P53 levels, functional domains, and DNA damage determines the extent of the apoptotic response of tumor cells. Genes Dev 10:2438–2451

    PubMed  CAS  Google Scholar 

  25. Adachi J, Ookawa T, Tomizawa Y, Tsuchida S, Yokots J (1998) Phenotypic alterations of small cell lung carcinoma induced by different levels of wild-type p53 expression. Cell Death Differ 5:148–155

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul B. S. Lai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lai, P.B.S., Chi, TY. & Chen, G.G. Different levels of p53 induced either apoptosis or cell cycle arrest in a doxycycline-regulated hepatocellular carcinoma cell line in vitro . Apoptosis 12, 387–393 (2007). https://doi.org/10.1007/s10495-006-0571-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-006-0571-1

Keywords

Navigation