Skip to main content

Advertisement

Log in

Combination of all-trans retinoic acid and taxol regressed glioblastoma T98G xenografts in nude mice

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Glioblastoma is the most prevalent and highly malignant brain tumor that continues to defy current treatment strategies. This investigation used all-trans retinoic acid (ATRA) and taxol (TXL) as a combination therapy for controlling the growth of human glioblastoma T98G xenografted in athymic nude mice. Histopathological examination revealed that ATRA induced differentiation and combination of ATRA and TXL caused more apoptosis than either treatment alone. Combination therapy decreased expression of telomerase, nuclear factor kappa B (NFκВ), and inhibitor-of-apoptosis proteins (IAPs) indicating suppression of survival factors while upregulated Smac/Diablo. Combination therapy also changed expression of Bax and Bcl-2 proteins leading to increased Bax:Bcl-2 ratio, mitochondrial release of cytochrome c and apoptosis-inducing factor (AIF), and activation of caspase-9. Increased activities of calpain and caspase-3 degraded 270 kD α-spectrin at the specific sites to generate 145 kD spectrin breakdown product (SBDP) and 120 kD SBDP, respectively. Further, increased activity of caspase-3 cleaved inhibitor-of-caspase-activated DNase (ICAD). In situ double immunofluorescent labelings showed overexpression of calpain, caspase-12, caspase-3, and AIF during apoptosis, suggesting involvement of both caspase-dependent and caspase-independent pathways for apoptosis. Our investigation revealed that treatment of glioblastoma T98G xenografts with the combination of ATRA and TXL induced differentiation and multiple molecular mechanisms for apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AIF:

Apoptosis inducing factor

ATRA:

All-trans retinoic acid

BIRC-2:

Baculovirus inhibitor-of-apoptosis repeat containing-2

BIRC-3:

Baculovirus inhibitor-of-apoptosis repeat containing-3

BIRC-5:

Baculovirus inhibitor-of-apoptosis repeat containing-5

CAD:

Caspase-3-activated DNase

c-IAP1:

Cellular inhibitor-of-apoptosis protein 1

c-IAP2:

Cellular inhibitor-of-apoptosis protein 2

DIF:

Double immunofluorescent

EB:

Equilibration buffer

ER:

Endoplasmic reticulum

FITC:

Fluorescein isothiocyanate

hTERT:

Human telomerase reverse transcriptase

IAP:

Inhibitor-of-apoptosis protein

ICAD:

Inhibitor of caspase-activated DNase

NFκВ:

Nuclear factor kappa B

TUNEL:

Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling

TXL:

Taxol

SBDP:

Spectrin breakdown product

SIF:

Single immunofluorescent

Smac/Diablo:

Second mitochondrial activator of caspases/Direct IAP Binding protein with Low pI

References

  1. Greenlee RT, Murray T, Bolden S, Wingo PA (2000) Cancer statistics, 2000. CA Cancer J Clin 50(1):7–33

    Article  PubMed  CAS  Google Scholar 

  2. Teicher BA, Menon K, Alvarez E, Galbreath E, Shih C, Faul M (2001) Antiangiogenic and antitumor effects of a protein kinase Cβ inhibitor in human T98G glioblastoma multiforme xenografts. Clin Cancer Res 7(3):634–640

    PubMed  CAS  Google Scholar 

  3. Phuong LK, Allen C, Peng KW et al (2003) Use of a vaccine strain of measles virus genetically engineered to produce carcinoembryonic antigen as a novel therapeutic agent against glioblastoma multiforme. Cancer Res 63(10):2462–2469

    PubMed  CAS  Google Scholar 

  4. Nagane M, Levitzki A, Gazit A, Cavenee WK, Huang HJ (1998) Drug resistance of human glioblastoma cells conferred by a tumor-specific mutant epidermal growth factor receptor through modulation of Bcl-xL and caspase-3-like proteases. Proc Natl Acad Sci USA 95(10):5724–5729

    Article  PubMed  CAS  Google Scholar 

  5. Ashkenazi A, Dixit VM (1998) Death receptors: signaling and modulation. Science 281(5381):1305–1308

    Article  PubMed  CAS  Google Scholar 

  6. Green DR, Reed JC (1998) Mitochondria and apoptosis. Science 281(5381):1309–1312

    Article  PubMed  CAS  Google Scholar 

  7. Pennarun G, Granotier C, Gauthier LR et al (2005) Apoptosis related to telomere instability and cell cycle alterations in human glioma cells treated by new highly selective G-quadruplex ligands. Oncogene 24(18):2917–2928

    Article  PubMed  CAS  Google Scholar 

  8. Sun J, Huang H, Zhu Y et al (2005) The expression of telomeric proteins and their probable regulation of telomerase during the differentiation of all-trans-retinoic acid-responsive and -resistant acute promyelocytic leukemia cells. Int J Hematol 82(3):215–223

    Article  PubMed  CAS  Google Scholar 

  9. Haque A, Das A, Hajiaghamohseni LM, Younger A, Banik NL, Ray SK (2007) Induction of apoptosis and immune response by all-trans retinoic acid plus interferon-gamma in human malignant glioblastoma T98G and U87MG cells. Cancer Immunol Immunother 56(5):615–625

    Article  PubMed  CAS  Google Scholar 

  10. Nehme A, Varadarajan P, Sellakumar G et al (2001) Modulation of docetaxel-induced apoptosis and cell cycle arrest by all-trans retinoic acid in prostate cancer cells. Br J Cancer 84(11):1571–1576

    Article  PubMed  CAS  Google Scholar 

  11. Merino R, Hurle JM (2003) The molecular basis of retinoid action in tumors. Trends Mol Med 9(12):509–511

    Article  PubMed  CAS  Google Scholar 

  12. Horwitz SB (1992) Mechanism of action of taxol. Trends Pharmacol Sci 13(4):134–136

    Article  PubMed  CAS  Google Scholar 

  13. Jordan MA, Wilson L (2004) Microtubules as a target for anticancer drugs. Nat Rev Cancer 4(4):253–265

    Article  PubMed  CAS  Google Scholar 

  14. Haldar S, Jena N, Croce CM (1995) Inactivation of Bcl-2 by phosphorylation. Proc Natl Acad Sci USA 92(10):4507–4511

    Article  PubMed  CAS  Google Scholar 

  15. Pasquier E, Carre M, Pourroy B et al (2004) Antiangiogenic activity of paclitaxel is associated with its cytostatic effect, mediated by the initiation but not completion of a mitochondrial apoptotic signaling pathway. Mol Cancer Ther 3(10):1301–1310

    PubMed  CAS  Google Scholar 

  16. Wang Q, Wieder R (2004) All-trans retinoic acid potentiates taxotere-induced cell death mediated by Jun N-terminal kinase in breast cancer cells. Oncogene 23(2):426–433

    Article  PubMed  CAS  Google Scholar 

  17. Karmakar S, Weinberg MS, Banik NL, Patel SJ, Ray SK (2006) Activation of multiple molecular mechanisms for apoptosis in human malignant glioblastoma T98G and U87MG cells treated with sulforaphane. Neuroscience 141(3):1265–1280

    Article  PubMed  CAS  Google Scholar 

  18. Karmakar S, Banik NL, Patel SJ, Ray SK (2006) Curcumin activated both receptor-mediated and mitochondria-mediated proteolytic pathways for apoptosis in human glioblastoma T98G cells. Neurosci Lett 407(1):53–58

    Article  PubMed  CAS  Google Scholar 

  19. Rubenstein M, Shaw M, Mirochnik Y et al (1999) In vivo establishment of T98G human glioblastoma. Method Find Exp Clin Pharmacol 21(6):391–393

    Article  CAS  Google Scholar 

  20. Karmakar S, Banik NL, Patel SJ, Ray SK (2007) Garlic compounds induced calpain and intrinsic caspase cascade for apoptosis in human malignant neuroblastoma SH-SY5Y cells. Apoptosis 12(4):671–684

    Article  PubMed  CAS  Google Scholar 

  21. Karmakar S, Banik NL, Patel SJ, Ray SK (2007) 5-Aminolevulinic acid-based photodynamic therapy suppressed survival factors and activated proteases for apoptosis in human glioblastoma U87MG cells. Neurosci Lett 415(3):242–247

    Article  PubMed  CAS  Google Scholar 

  22. Banik NL, Hogan EL, Jenkins MG, McDonald JK, McAlhaney WW, Sostek MB (1983) Purification of a calcium-activated neutral proteinase from bovine brain. Neurochem Res 8(11):1389–1405

    Article  PubMed  CAS  Google Scholar 

  23. Chera B, Schaecher KE, Rocchini A et al (2004) Immunofluorescent labeling of increased calpain expression and neuronal death in the spinal cord of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mice. Brain Res 1006(2):150–156

    Article  PubMed  CAS  Google Scholar 

  24. Oltvai ZN, Milliman CL, Korsmeyer SJ (1993) Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 74(4):609–619

    Article  PubMed  CAS  Google Scholar 

  25. Vaux DL (1993) Toward an understanding of the molecular mechanisms of physiological cell death. Proc Natl Acad Sci USA 90(3):786–789

    Article  PubMed  CAS  Google Scholar 

  26. Beg AA, Baltimore D (1996) An essential role for NFκB in preventing TNF-α-induced cell death. Science 274(5288):782–784

    Article  PubMed  CAS  Google Scholar 

  27. LaCasse EC, Baird S, Korneluk RG, MacKenzie AE (1998) The inhibitors of apoptosis (IAPs) and their emerging role in cancer. Oncogene 17(25):3247–3259

    Article  PubMed  Google Scholar 

  28. Wang CY, Mayo MW, Korneluk RG, Goeddel DV, Baldwin AS Jr (1998) NFκB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science 281(5383):1680–1683

    Article  PubMed  CAS  Google Scholar 

  29. Chu ZL, McKinsey TA, Liu L, Gentry JJ, Malim MH, Ballard DW (1997) Suppression of tumor necrosis factor-induced cell death by inhibitor of apoptosis c-IAP2 is under NFκB control. Proc Natl Acad Sci USA 94(19):10057–10062

    Article  PubMed  CAS  Google Scholar 

  30. Notarbartolo M, Poma P, Perri D, Dusonchet L, Cervello M, D’Alessandro N (2005) Antitumor effects of curcumin, alone or in combination with cisplatin or doxorubicin, on human hepatic cancer cells: analysis of their possible relationship to changes in NFκB activation levels and in IAP gene expression. Cancer Lett 224(1):53–65

    PubMed  CAS  Google Scholar 

  31. Du C, Fang M, Li Y, Li L, Wang X (2000) Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102(1):33–42

    Article  PubMed  CAS  Google Scholar 

  32. Li P, Nijhawan D, Budihardjo I et al (1997) Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91(4):479–489

    Article  PubMed  CAS  Google Scholar 

  33. Cregan SP, Dawson VL, Slack RS (2004) Role of AIF in caspase-dependent and caspase-independent cell death. Oncogene 23(16):2785–2796

    Article  PubMed  CAS  Google Scholar 

  34. Buki A, Okonkwo DO, Wang KK, Povlishock JT (2000) Cytochrome c release and caspase activation in traumatic axonal injury. J Neurosci 20(8):2825–2834

    PubMed  CAS  Google Scholar 

  35. Polster BM, Basanez G, Etxebarria A, Hardwick JM, Nicholls DG (2005) Calpain I induces cleavage and release of apoptosis-inducing factor from isolated mitochondria. J Biol Chem 280(8):6447–6454

    Article  PubMed  CAS  Google Scholar 

  36. Sergeev IN (2004) Genistein induces Ca2+-mediated, calpain/caspase-12-dependent apoptosis in breast cancer cells. Biochem Biophys Res Commun 321(2):462–467

    Article  PubMed  CAS  Google Scholar 

  37. Rao RV, Castro-Obregon S, Frankowski H et al (2002) Coupling endoplasmic reticulum stress to the cell death program: an Apaf-1-independent intrinsic pathway. J Biol Chem 277(24):21836–21842

    Article  PubMed  CAS  Google Scholar 

  38. Neumar RW, Xu YA, Gada H, Guttmann RP, Siman R (2003) Cross-talk between calpain and caspase proteolytic systems during neuronal apoptosis. J Biol Chem 278(16):14162–14167

    Article  PubMed  CAS  Google Scholar 

  39. von Haefen C, Wieder T, Essmann F, Schulze-Osthoff K, Dorken B, Daniel PT (2003) Paclitaxel-induced apoptosis in BJAB cells proceeds via a death receptor-independent, caspases-3/-8-driven mitochondrial amplification loop. Oncogene 22(15):2236–2247

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Our investigation was supported in part by the R01 grants (CA-91460 and NS-57811 to S.K.R.) from the National Institutes of Health (NIH, Bethesda, MD, USA). This work was also supported by another NIH grant (C06 RR015455) from the Extramural Research Facilities Program of the National Center for Research Resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swapan K. Ray.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karmakar, S., Banik, N.L., Patel, S.J. et al. Combination of all-trans retinoic acid and taxol regressed glioblastoma T98G xenografts in nude mice. Apoptosis 12, 2077–2087 (2007). https://doi.org/10.1007/s10495-007-0116-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-007-0116-2

Keywords

Navigation