Skip to main content
Log in

Caspase-2 activation in neural stem cells undergoing oxidative stress-induced apoptosis

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Oxidative stress occurs as a consequence of disturbance in the balance between the generation of reactive oxygen species (ROS) and the antioxidant defence mechanisms. The interaction of ROS with DNA can cause single-, or double-strand breaks that subsequently can lead to the activation of p53, which is central for the regulation of cellular response, e.g. apoptosis, to a range of environmental and intracellular stresses. Previous reports have suggested a regulatory role of p53 in the early activation of caspase-2, upstream of mitochondrial apoptotic signaling. Here we show that excessive ROS formation, induced by 2,3-dimethoxy-1,4-naphthoquinone (DMNQ) exposure, induces apoptosis in primary cultured neural stem cells (NSCs) from cortices of E15 rat embryos. Following DMNQ exposure cells exhibited apoptotic hallmarks such as Bax oligomerization and activation, cytochrome c release, caspase activation and chromatin condensation. Additionally, we could show early p53 accumulation and a subsequent activation of caspase-2. The attenuation of caspase-2 activity with selective inhibitors could antagonize the mitochondrial signaling pathway and cell death. Overall, our results strongly suggest that DMNQ-induced oxidative stress causes p53 accumulation and consequently caspase-2 activation, which in turn initiates apoptotic cell death via the mitochondria-mediated caspase-dependent pathway in NSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Schwartz LM, Smith SW, Jones ME, Osborne BA (1993) Do all programmed cell deaths occur via apoptosis? Proc Natl Acad Sci USA 90:980–984

    Article  PubMed  CAS  Google Scholar 

  2. Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239–257

    PubMed  CAS  Google Scholar 

  3. Zhivotovsky B (2003) Caspases: the enzymes of death. Essays Biochem 39:25–40

    PubMed  CAS  Google Scholar 

  4. Fadeel B, Orrenius S, Zhivotovsky B (1999) Apoptosis in human disease: a new skin for the old ceremony? Biochem Biophys Res Commun 266:699–717

    Article  PubMed  CAS  Google Scholar 

  5. Thompson CB (1995) Apoptosis in the pathogenesis and treatment of disease. Science 267:1456–1462

    Article  PubMed  CAS  Google Scholar 

  6. Gorman AM, Orrenius S, Ceccatelli S (1998) Apoptosis in neuronal cells: role of caspases. Neuroreport 9:R49–R55

    Article  PubMed  CAS  Google Scholar 

  7. Becker J, Mezger V, Courgeon AM, Best-Belpomme M (1991) On the mechanism of action of H2O2 in the cellular stress. Free Radic Res Commun 12–13(Pt 1):455–460

    Article  PubMed  Google Scholar 

  8. Carney JM, Starke-Reed PE, Oliver CN et al (1991) Reversal of age-related increase in brain protein oxidation, decrease in enzyme activity, and loss in temporal and spatial memory by chronic administration of the spin-trapping compound N-tert-butyl-alpha-phenylnitrone. Proc Natl Acad Sci USA 88:3633–3636

    Article  PubMed  CAS  Google Scholar 

  9. Djordjevic A, Spasic S, Jovanovic-Galovic A, Djordjevic R, Grubor-Lajsic G (2004) Oxidative stress in diabetic pregnancy: SOD, CAT and GSH-Px activity and lipid peroxidation products. J Matern Fetal Neonatal Med 16:367–372

    Article  PubMed  CAS  Google Scholar 

  10. Byczkowski JZ, Gessner T (1988) Biological role of superoxide ion-radical. Int J Biochem 20:569–580

    Article  PubMed  CAS  Google Scholar 

  11. Sies H, Cadenas E (1985) Oxidative stress: damage to intact cells and organs. Philos Trans R Soc Lond B Biol Sci 311:617–631

    Article  PubMed  CAS  Google Scholar 

  12. Betteridge DJ (2000) What is oxidative stress? Metabolism 49:3–8

    Article  PubMed  CAS  Google Scholar 

  13. Stadtman ER (1993) Oxidation of free amino acids and amino acid residues in proteins by radiolysis and by metal-catalyzed reactions. Annu Rev Biochem 62:797–821

    Article  PubMed  CAS  Google Scholar 

  14. Renzing J, Hansen S, Lane DP (1996) Oxidative stress is involved in the UV activation of p53. J Cell Sci 109(Pt 5):1105–1112

    PubMed  CAS  Google Scholar 

  15. Uberti D, Schwartz D, Almog N et al (1999) Epithelial cells of different organs exhibit distinct patterns of p53-dependent and p53-independent apoptosis following DNA insult. Exp Cell Res 252:123–133

    Article  PubMed  CAS  Google Scholar 

  16. Clarke AR, Purdie CA, Harrison DJ et al (1993) Thymocyte apoptosis induced by p53-dependent and independent pathways. Nature 362:849–852

    Article  PubMed  CAS  Google Scholar 

  17. Lane DP (1992) Cancer. p53, guardian of the genome. Nature 358:15–16

    Article  PubMed  CAS  Google Scholar 

  18. van Lookeren Campagne M, Gill R (1998) Tumor-suppressor p53 is expressed in proliferating and newly formed neurons of the embryonic and postnatal rat brain: comparison with expression of the cell cycle regulators p21Waf1/Cip1, p27Kip1, p57Kip2, p16Ink4a, cyclin G1, and the proto-oncogene Bax. J Comp Neurol 397:181–198

    Article  PubMed  Google Scholar 

  19. D’Sa-Eipper C, Leonard JR, Putcha G et al (2001) DNA damage-induced neural precursor cell apoptosis requires p53 and caspase 9 but neither Bax nor caspase 3. Development 128:137–146

    PubMed  CAS  Google Scholar 

  20. Meletis K, Wirta V, Hede SM, Nister M, Lundeberg J, Frisen J (2006) p53 suppresses the self-renewal of adult neural stem cells. Development 133:363–369

    Article  PubMed  CAS  Google Scholar 

  21. Brady HJ, Gil-Gomez G (1998) Bax. The pro-apoptotic Bcl-2 family member, Bax. Int J Biochem Cell Biol 30:647–650

    Article  PubMed  CAS  Google Scholar 

  22. Jordan J, Galindo MF, Prehn JH, et al (1997) p53 expression induces apoptosis in hippocampal pyramidal neuron cultures. J Neurosci 17:1397–1405

    PubMed  CAS  Google Scholar 

  23. Miyashita T, Reed JC (1995) Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 80:239–299

    Article  Google Scholar 

  24. Morrison RS, Kinoshita Y, Johnson MD, Guo W, Garden GA (2003) p53-dependent cell death signaling in neurons. Neurochem Res 28:15–27

    Article  PubMed  CAS  Google Scholar 

  25. Xiang H, Kinoshita Y, Knudson CM, Korsmeyer SJ, Schwartzkroin PA, Morrison RS (1998) Bax involvement in p53-mediated neuronal cell death. J Neurosci 18:1363–1373

    PubMed  CAS  Google Scholar 

  26. Zhivotovsky B, Orrenius S (2005) Caspase-2 function in response to DNA damage. Biochem Biophys Res Commun 331:859–867

    Article  PubMed  CAS  Google Scholar 

  27. Lassus P, Opitz-Araya X, Lazebnik Y (2002) Requirement for caspase-2 in stress-induced apoptosis before mitochondrial permeabilization. Science 297:1352–1354

    Article  PubMed  CAS  Google Scholar 

  28. Tamm C, Robertson JD, Sleeper E et al (2004) Differential regulation of the mitochondrial and death receptor pathways in neural stem cells. Eur J Neurosci 19:2613–2621

    Article  PubMed  Google Scholar 

  29. Day BJ, Shawen S, Liochev SI, Crapo JD (1995) A metalloporphyrin superoxide dismutase mimetic protects against paraquat-induced endothelial cell injury, in vitro. J Pharmacol Exp Ther 275:1227–1232

    PubMed  CAS  Google Scholar 

  30. Snyder EY, Yoon C, Flax JD, Macklis JD (1997) Multipotent neural precursors can differentiate toward replacement of neurons undergoing targeted apoptotic degeneration in adult mouse neocortex. Proc Natl Acad Sci USA 94:11663–11668

    Article  PubMed  CAS  Google Scholar 

  31. Snyder EY, Deitcher DL, Walsh C, Arnold-Aldea S, Hartwieg EA, Cepko CL (1992) Multipotent neural cell lines can engraft and participate in development of mouse cerebellum. Cell 68:33–51

    Article  PubMed  CAS  Google Scholar 

  32. Hermanson O, Jepsen K, Rosenfeld MG (2002) N-CoR controls differentiation of neural stem cells into astrocytes. Nature 419:934–939

    Article  PubMed  CAS  Google Scholar 

  33. Johe KK, Hazel TG, Muller T, Dugich-Djordjevic MM, McKay RD (1996) Single factors direct the differentiation of stem cells from the fetal and adult central nervous system. Genes Dev 10:3129–3140

    Article  PubMed  CAS  Google Scholar 

  34. Bottenstein JE, Sato GH (1979) Growth of a rat neuroblastoma cell line in serum-free supplemented medium. Proc Natl Acad Sci USA 76:514–517

    Article  PubMed  CAS  Google Scholar 

  35. Gorman AM, Hirt UA, Zhivotovsky B, Orrenius S, Ceccatelli S (1999) Application of a fluorometric assay to detect caspase activity in thymus tissue undergoing apoptosis in vivo. J Immunol Methods 226:43–48

    Article  PubMed  CAS  Google Scholar 

  36. Minami T, Adachi M, Kawamura R, Zhang Y, Shinomura Y, Imai K (2005) Sulindac enhances the proteasome inhibitor bortezomib-mediated oxidative stress and anticancer activity. Clin Cancer Res 11:5248–5256

    Article  PubMed  CAS  Google Scholar 

  37. Armeni T, Damiani E, Battino M, Greci L, Principato G (2004) Lack of in vitro protection by a common sunscreen ingredient on UVA-induced cytotoxicity in keratinocytes. Toxicology 203:165–178

    Article  PubMed  CAS  Google Scholar 

  38. Nair VD (2006) Activation of p53 signaling initiates apoptotic death in a cellular model of Parkinson’s disease. Apoptosis 11:955–966

    Article  PubMed  CAS  Google Scholar 

  39. Varadarajan S, Yatin S, Aksenova M, Butterfield DA (2000) Review: Alzheimer’s amyloid beta-peptide-associated free radical oxidative stress and neurotoxicity. J Struct Biol 130:184–208

    Article  PubMed  CAS  Google Scholar 

  40. Troy CM, Rabacchi SA, Friedman WJ, Frappier TF, Brown K, Shelanski ML (2000) Caspase-2 mediates neuronal cell death induced by beta-amyloid. J Neurosci 20:1386–1392

    PubMed  CAS  Google Scholar 

  41. Shi MM, Kugelman A, Iwamoto T, Tian L, Forman HJ (1994) Quinone-induced oxidative stress elevates glutathione and induces gamma-glutamylcysteine synthetase activity in rat lung epithelial L2 cells. J Biol Chem 269:26512–26517

    PubMed  CAS  Google Scholar 

  42. Kappus H, Sies H (1981) Toxic drug effects associated with oxygen metabolism: redox cycling and lipid peroxidation. Experientia 37:1233–1241

    Article  PubMed  CAS  Google Scholar 

  43. Gant TW, Rao DN, Mason RP, Cohen GM (1988) Redox cycling and sulphydryl arylation; their relative importance in the mechanism of quinone cytotoxicity to isolated hepatocytes. Chem Biol Interact 65:157–173

    Article  PubMed  CAS  Google Scholar 

  44. Orrenius S, Zhivotovsky B, Nicotera P (2003) Regulation of cell death: the calcium-apoptosis link. Nat Rev Mol Cell Biol 4:552–565

    Article  PubMed  CAS  Google Scholar 

  45. Wahl GM, Carr AM (2001) The evolution of diverse biological responses to DNA damage: insights from yeast and p53. Nat Cell Biol 3:E277–E286

    Article  PubMed  CAS  Google Scholar 

  46. Vousden KH, Lu X (2002) Live or let die: the cell’s response to p53. Nat Rev Cancer 2:594–604

    Article  PubMed  CAS  Google Scholar 

  47. Michael D, Oren M (2003) The p53-Mdm2 module and the ubiquitin system. Semin Cancer Biol 13:49–58

    Article  PubMed  CAS  Google Scholar 

  48. Gudkov AV, Komarova EA (2003) The role of p53 in determining sensitivity to radiotherapy. Nat Rev Cancer 3:117–129

    Article  PubMed  CAS  Google Scholar 

  49. Chowdary DR, Dermody JJ, Jha KK, Ozer HL (1994) Accumulation of p53 in a mutant cell line defective in the ubiquitin pathway. Mol Cell Biol 14:1997–2003

    PubMed  CAS  Google Scholar 

  50. Scheffner M, Werness BA, Huibregtse JM, Levine AJ, Howley PM (1990) The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 63:1129–1136

    Article  PubMed  CAS  Google Scholar 

  51. Oren M, Maltzman W, Levine AJ (1981) Post-translational regulation of the 54K cellular tumor antigen in normal and transformed cells. Mol Cell Biol 1:101–110

    PubMed  CAS  Google Scholar 

  52. Fritsche M, Haessler C, Brandner G (1993) Induction of nuclear accumulation of the tumor-suppressor protein p53 by DNA damaging agents. Oncogene 8:307–318

    PubMed  CAS  Google Scholar 

  53. Kastan MB, Onyekwere O, Sidransky D, Vogelstein B, Craig RW (1991) Participation of p53 protein in the cellular response to DNA damage. Cancer Res 51:6304–6311

    PubMed  CAS  Google Scholar 

  54. Maltzman W, Czyzyk L (1984) UV irradiation stimulates levels of p53 cellular tumor antigen in nontransformed mouse cells. Mol Cell Biol 4:1689–1694

    PubMed  CAS  Google Scholar 

  55. Lu X, Lane DP (1993) Differential induction of transcriptionally active p53 following UV or ionizing radiation: defects in chromosome instability syndromes? Cell 75:765–778

    Article  PubMed  CAS  Google Scholar 

  56. Gansauge S, Gansauge F, Gause H, Poch B, Schoenberg MH, Beger HG (1997) The induction of apoptosis in proliferating human fibroblasts by oxygen radicals is associated with a p53- and p21WAF1CIP1 induction. FEBS Lett 404:6–10

    Article  PubMed  CAS  Google Scholar 

  57. Dumont A, Hehner SP, Hofmann TG, Ueffing M, Droge W, Schmitz ML (1999) Hydrogen peroxide-induced apoptosis is CD95-independent, requires the release of mitochondria-derived reactive oxygen species and the activation of NF-kappaB. Oncogene 18:747–757

    Article  PubMed  CAS  Google Scholar 

  58. von Harsdorf R, Li PF, Dietz R (1999) Signaling pathways in reactive oxygen species-induced cardiomyocyte apoptosis. Circulation 99:2934–2941

    Google Scholar 

  59. Lin X, Ramamurthi K, Mishima M, Kondo A, Howell SB (2000) p53 interacts with the DNA mismatch repair system to modulate the cytotoxicity and mutagenicity of hydrogen peroxide. Mol Pharmacol 58:1222–1229

    PubMed  CAS  Google Scholar 

  60. Enoksson M, Robertson JD, Gogvadze V et al (2004) Caspase-2 permeabilizes the outer mitochondrial membrane and disrupts the binding of cytochrome c to anionic phospholipids. J Biol Chem 279:49575–49578

    Article  PubMed  CAS  Google Scholar 

  61. Guo Y, Srinivasula SM, Druilhe A, Fernandes-Alnemri T, Alnemri ES (2002) Caspase-2 induces apoptosis by releasing proapoptotic proteins from mitochondria. J Biol Chem 277:13430–13437

    Article  PubMed  CAS  Google Scholar 

  62. Kumar S, Tomooka Y, Noda M (1992) Identification of a set of genes with developmentally down-regulated expression in the mouse brain. Biochem Biophys Res Commun 185:1155–1161

    Article  PubMed  CAS  Google Scholar 

  63. Davis AA, Temple S (1994) A self-renewing multipotential stem cell in embryonic rat cerebral cortex. Nature 372:263–266

    Article  PubMed  CAS  Google Scholar 

  64. Temple S (2001) The development of neural stem cells. Nature 414:112–117

    Article  PubMed  CAS  Google Scholar 

  65. Robertson JD, Enoksson M, Suomela M, Zhivotovsky B, Orrenius S (2002) Caspase-2 acts upstream of mitochondria to promote cytochrome c release during etoposide-induced apoptosis. J Biol Chem 277:29803–29809

    Article  PubMed  CAS  Google Scholar 

  66. Henshall DC, Skradski SL, Bonislawski DP, Lan JQ, Simon RP (2001) Caspase-2 activation is redundant during seizure-induced neuronal death. J Neurochem 77:886–895

    Article  PubMed  CAS  Google Scholar 

  67. Kumar S, Kinoshita M, Noda M, Copeland NG, Jenkins NA (1994) Induction of apoptosis by the mouse Nedd2 gene, which encodes a protein similar to the product of the Caenorhabditis elegans cell death gene ced-3 and the mammalian IL-1 beta-converting enzyme. Genes Dev 8:1613–1626

    Article  PubMed  CAS  Google Scholar 

  68. Tinel A, Tschopp J (2004) The PIDDosome, a protein complex implicated in activation of caspase-2 in response to genotoxic stress. Science 304:843–846

    Article  PubMed  CAS  Google Scholar 

  69. Vakifahmetoglu H, Olsson M, Tamm C, Heidari N, Orrenius S, Zhivotovsky B (2007) DNA damage induces two distinct modes of cell death in ovarian carcinomas. Cell Death Differ

  70. Vakifahmetoglu H, Olsson M, Orrenius S, Zhivotovsky B (2006) Functional connection between p53 and caspase-2 is essential for apoptosis induced by DNA damage. Oncogene 25:5683–5692

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the European Commission (CT 2003-506143, Oncodeath, Chemores and APO-SYS), the Swedish Research Council, the Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning, the Swedish Animal Welfare Agency, the Swedish and Stockholm Cancer Societies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoffer Tamm.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tamm, C., Zhivotovsky, B. & Ceccatelli, S. Caspase-2 activation in neural stem cells undergoing oxidative stress-induced apoptosis. Apoptosis 13, 354–363 (2008). https://doi.org/10.1007/s10495-007-0172-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-007-0172-7

Keywords

Navigation