Skip to main content
Log in

Recombinant human PDCD5 sensitizes chondrosarcomas to cisplatin chemotherapy in vitro and in vivo

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Clinical management of chondrosarcoma remains a challenging problem, largely due to the toxicity and resistance of this tumor to conventional chemotherapy. Programmed Cell Death 5 (PDCD5) is a protein that accelerates apoptosis in different cell types in response to various stimuli, and has been shown to be down-regulated in many cancer tissues. In this study, mRNA and protein levels of PDCD5 were found to be up-regulated in cisplatin-treated SW1353 chondrosarcoma cells compared with untreated cells. Recombinant human PDCD5 (rhPDCD5) was also shown to sensitize chondrosarcoma cells to cisplatin-based chemotherapy, with inhibition of cell growth and apoptosis detected both in vitro and in vivo. Increased expression of Bax and decreased expression of Bcl-2 were also observed, along with release of cytochrome c from mitochondria into the cytosol. Additionally, cleavage of caspase-9 and caspase-3, as well as the cleavage of poly (ADP-ribose) polymerase (PARP), were detected, suggesting that sensitization of chondrosarcoma cells involves the intrinsic mitochondrial apoptosis pathway. In vivo, the treatment of a xenograft model of chondrosarcoma with rhPDCD5 and cisplatin significantly inhibited tumor cell proliferation and induced apoptosis compared to treatment with cisplatin alone. Overall, these data provide a theoretical basis for the administration of rhPDCD5 and cisplatin for the treatment of patients with chondrosarcoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rozeman LB, Cleton-Jansen AM, Hogendoorn PC (2006) Pathology of primary malignant bone and cartilage tumours. Int Orthop 30:437–444

    Article  CAS  PubMed  Google Scholar 

  2. Gelderblom H, Hogendoorn PC, Dijkstra SD, van Rijswijk CS, Krol AD, Taminiau AH et al (2008) The clinical approach towards chondrosarcoma. Oncologist 13:320–329

    Article  PubMed  Google Scholar 

  3. Wunder JS, Nielsen TO, Maki RG, O’Sullivan B, Alman BA (2007) Opportunities for improving the therapeutic ratio for patients with sarcoma. Lancet Oncol 8:513–524

    Article  PubMed  Google Scholar 

  4. Riedel RF, Larrier N, Dodd L, Kirsch D, Martinez S, Brigman BE (2009) The clinical management of chondrosarcoma. Curr Treat Options Oncol 10:94–106

    Article  PubMed  Google Scholar 

  5. Herbst RS, Mendolson DS, Ebbinghaus S et al (2006) A phase I safety and pharmacokinetic (PK) study of recombinant Apo2L/TRAIL, an apoptosis inducing protein in patients with advanced cancer. J Clin Oncol 24:3013

    Article  Google Scholar 

  6. Liu H, Wang Y, Zhang Y et al (1999) TFAR19, a novel apoptosis-related gene cloned from human leukemia cell line TF-1, could enhance apoptosis of some tumor cells induced by growth factor withdrawal. Biochem Biophys Res Commun 254:203–210

    Article  CAS  PubMed  Google Scholar 

  7. Wang Y, Li X, Wang L et al (2004) An alternative form of paraptosis-like cell death, triggered by TAJ/TROY and enhanced by PDCD5 overexpression. J Cell Sci 117:1525–1532

    Article  CAS  PubMed  Google Scholar 

  8. Chen Y, Sun R, Han W et al (2001) Nuclear translocation of PDCD5 (TFAR19): an early signal for apoptosis? FEBS Lett 509:191–196

    Article  CAS  PubMed  Google Scholar 

  9. Xu L, Chen Y, Song Q, Xu D, Wang Y, Ma D (2009) PDCD5 interacts with Tip60 and functions as a cooperator in acetyltransferase activity and DNA damage-induced apoptosis. Neoplasia 11:345–354

    CAS  PubMed  Google Scholar 

  10. Ma X, Ruan G, Wang Y et al (2005) Two single-nucleotide polymorphisms with linkage disequilibrium in the human programmed cell death 5 gene 5′ regulatory region affect promoter activity and the susceptibility of chronic myelogenous leukemia in Chinese population. Clin Cancer Res 11:8592–8599

    Article  CAS  PubMed  Google Scholar 

  11. Spinola M, Meyer P, Kammerer S et al (2006) Association of the PDCD5 locus with lung cancer risk and prognosis in smokers. J Clin Oncol 24:1672–1678

    Article  CAS  PubMed  Google Scholar 

  12. Li H, Wang Q, Gao F et al (2008) Reduced expression of PDCD5 is associated with high-grade astrocytic gliomas. Oncol Rep 20:573–579

    CAS  PubMed  Google Scholar 

  13. Hedenfalk I, Duggan D, Chen Y et al (2001) Gene-expression profiles in hereditary breast cancer. N Engl J Med 344:539–548

    Article  CAS  PubMed  Google Scholar 

  14. Yang Y, Zhao M, Li W et al (2006) Expression of programmed cell death 5 gene involves in regulation of apoptosis in gastric tumor cells. Apoptosis 11:993–1001

    Article  CAS  PubMed  Google Scholar 

  15. Xu X, Huang J, Xu Z et al (2001) Insight into hepatocellular carcinogenesis at transcriptome level by comparing gene expression profiles of hepatocellular carcinoma with those of corresponding noncancerous liver. Proc Natl Acad Sci USA 98:15089–15094

    Article  CAS  PubMed  Google Scholar 

  16. Ruan G, Qin Y, Chen S et al (2006) Abnormal expression of the programmed cell death 5 gene in acute and chronic myeloid leukemia. Leuk Res 30:1159–1165

    Article  CAS  PubMed  Google Scholar 

  17. Papachristou DJ, Papavassiliou AG (2007) Osteosarcoma and chondrosarcoma: new signaling pathways as targets for novel therapeutic interventions. Int J Biochem Cell Biol 39:857–862

    Article  CAS  PubMed  Google Scholar 

  18. Ruan G, Zhao H, Chang Y et al (2008) Adenovirus-mediated PDCD5 gene transfer sensitizes K562 cells to apoptosis induced by idarubicin in vitro and in vivo. Apoptosis 13:641–648

    Article  CAS  PubMed  Google Scholar 

  19. Xie M, Niu J, Chang Y et al (2009) A novel triple-regulated oncolytic adenovirus carrying PDCD5 gene exerts potent antitumor efficacy on common human leukemic cell lines. Apoptosis 14:1086–1094

    Article  CAS  PubMed  Google Scholar 

  20. Wang Y, Li D, Fan H et al (2006) Cellular uptake of exogenous human PDCD5 protein. J Biol Chem 281:24803–24817

    Article  CAS  PubMed  Google Scholar 

  21. Wang Y, Shi L, Song Q et al (2009) Recombinant human PDCD5 protein enhances chemosensitivities of hematologic malignancies. Chin Sci Bull 54:3981–3990

    Article  CAS  Google Scholar 

  22. Seki K, Yoshikawa H, Shiiki K, Hamada Y, Akamatsu N, Tasaka K (2000) Cisplatin (CDDP) specifically induces apoptosis via sequential activation of caspase-8, -3 and -6 in osteosarcoma. Cancer Chemother Pharmacol 45:199–206

    Article  CAS  PubMed  Google Scholar 

  23. Rebillard A, Tekpli X, Meurette O et al (2007) Cisplatin-induced apoptosis involves membrane fluidification via inhibition of NHE1 in human colon cancer cells. Cancer Res 67:7865–7874

    Article  CAS  PubMed  Google Scholar 

  24. Vondracek J, Soucek K, Sheard MA et al (2006) Dimethyl sulfoxide potentiates death receptor-mediated apoptosis in the human myeloid leukemia U937 cell line through enhancement of mitochondrial membrane depolarization. Leuk Res 30:81–89

    Article  CAS  PubMed  Google Scholar 

  25. Bissery MC, Guenard D, Gueritte-Voegelein F, Lavelle F (1991) Experimental antitumor activity of taxotere (RP 56976, NSC 628503), a taxol analogue. Cancer Res 51:4845–4852

    CAS  PubMed  Google Scholar 

  26. Chen L, Wang Y, Ma D, Chen Y (2006) Short interfering RNA against the PDCD5 attenuates cell apoptosis and caspase-3 activity induced by Bax overexpression. Apoptosis 11:101–111

    Article  CAS  PubMed  Google Scholar 

  27. Wang D, Lippard SJ (2005) Cellular processing of platinum anticancer drugs. Nat Rev Drug Discov 4:307–320

    Article  CAS  PubMed  Google Scholar 

  28. Siddik ZH (2003) Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene 22:7265–7279

    Article  CAS  PubMed  Google Scholar 

  29. Bove′e JV, van den Broek LJ, Cleton-Jansen AM, Hogendoorn PC (2000) Up-regulation of PTHrP and bcl-2 expression characterizes the progression of osteochondroma towards peripheral chondrosarcoma and is a late event in central chondrosarcoma. Lab Invest 80:1925–1934

    Article  Google Scholar 

  30. Daugaard S, Christensen LH, Høgdall E (2009) Markers aiding the diagnosis of chondroid tumors: an immunohistochemical study including osteonectin, bcl-2, cox-2, actin, calponin, D2–40 (podoplanin), mdm-2, CD117 (c-kit), and YKL-40. APMIS 117:518–525

    Article  CAS  PubMed  Google Scholar 

  31. Filomenko R, Poirson-Bichat F, Billerey C et al (2002) Atypical protein kinase Cζ as a target for chemosensitization of tumor cells. Cancer Res 62:1815–1821

    CAS  PubMed  Google Scholar 

  32. Henson ES, Johnston JB, Gibson SB (2008) The role of TRAIL death receptors in the treatment of hematological malignancies. Leuk Lymphoma 49:27–35

    Article  CAS  PubMed  Google Scholar 

  33. Kim R, Emi M, Tanabe K et al (2004) Therapeutic potential of antisense Bcl-2 as a chemo-sensitizer for cancer therapy. Cancer 101:2491–2502

    Article  CAS  PubMed  Google Scholar 

  34. Scappaticci FA, Contreras A, Smith R et al (2001) Statin-AE: a novel angiostatin-endostation fusion protein with enhanced antiangiogenic and antitumor activity. Angiogenesis 4:263–268

    Article  CAS  PubMed  Google Scholar 

  35. Plum SM, Hanson AD, Volker KM et al (2003) Synergistic activity of recombined human Endostatin in combination with Adriamycin: analysis of in vitro activity on endothelial cells and in vivo tumor progression in an orthotopic murine mammary carcinoma model. Clin Cancer Res 9:4619–4626

    CAS  PubMed  Google Scholar 

  36. Fulda S, Wick W, Weller M et al (2002) Smac agonists sensitize for Apo2L/TRAIL-or anticancer drug-induced apoptosis and induce regression of malignant glioma in vivo. Nat Med 8:808–815

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partly supported by the grants from the National Natural Sciences Foundation of China (30871263 and 30571870); the National Key New Drug Creation Program of China (2009ZX09102-242) and the National High Technology Research and Development Program of China (2006AA02A305).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qingjun Ma or Yingyu Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 207 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, C., Zhou, H., Xu, L. et al. Recombinant human PDCD5 sensitizes chondrosarcomas to cisplatin chemotherapy in vitro and in vivo. Apoptosis 15, 805–813 (2010). https://doi.org/10.1007/s10495-010-0489-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-010-0489-5

Keywords

Navigation