Skip to main content
Log in

Impairment of phagocytosis of apoptotic cells and its role in chronic airway diseases

  • Clearance of dead cells: mechanisms, immune responses and implication in the development of diseases
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Phagocytosis of dying cells is a complex and dynamic process coordinated by the interaction of many surface molecules, adaptors, and chemotactic molecules, and it is controlled at multiple levels. This well regulated clearance process is of utmost importance for the development and homeostasis of organisms because defective or inefficient phagocytosis may contribute to human pathologies. In this review we discuss recent advances in the knowledge of the molecular interactions involved in recognition and clearance of apoptotic cells and how derangement of these processes can contribute to the pathogenesis of chronic airway diseases such as chronic obstructive pulmonary disease, cystic fibrosis and asthma. We will briefly consider how different types of macrophages are implicated in chronic airway diseases. Finally, we will address possible therapeutic strategies, such as the use of macrolide antibiotics and statins, for modulating apoptotic cell clearance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Barnes PJ (2009) The cytokine network in chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol 41:631–638

    Article  PubMed  Google Scholar 

  2. Demedts IK, Demoor T, Bracke KR, Joos GF, Brusselle GG (2006) Role of apoptosis in the pathogenesis of COPD and pulmonary emphysema. Respir Res 7:53

    Article  PubMed  Google Scholar 

  3. Henson PM, Tuder RM (2008) Apoptosis in the lung: induction, clearance and detection. Am J Physiol 294:601–611

    Google Scholar 

  4. Tuder RM, Petrache I, Elias JA, Voelkel NF, Henson PM (2003) Apoptosis and emphysema: the missing link. Am J Respir Cell Mol Biol 28:551–554

    Article  PubMed  Google Scholar 

  5. Imai K, Mercer BA, Schulman LL, Sonett JR, D’Armiento JM (2005) Correlation of lung surface area to apoptosis and proliferation in human emphysema. Eur Respir J 25:250–258

    Article  PubMed  Google Scholar 

  6. Makris D, Vrekoussis T, Izoldi M et al (2009) Increased apoptosis of neutrophils in induced sputum of COPD patients. Respir Med 103:1130–1135

    Article  PubMed  Google Scholar 

  7. Segura-Valdez L, Pardo A, Gaxiola M, Uhal BD, Becerril C, Selman M (2000) Upregulation of gelatinases A and B, collagenases 1 and 2, and increased parenchymal cell death in COPD. Chest 117:684–694

    Article  PubMed  Google Scholar 

  8. Uhal BD, Joshi I, Hughes WF, Ramos C, Pardo A, Selman M (1998) Alveolar epithelial cell death adjacent to underlying myofibroblasts in advanced fibrotic human lung. Am J Physiol 275:L1192–L1199

    PubMed  Google Scholar 

  9. Hodge S, Hodge G, Holmes M, Reynolds PN (2005) Increased peripheral blood T-cell apoptosis and decreased Bcl-2 in chronic obstructive pulmonary disease. Immunol Cell Biol 83:160–166

    Article  PubMed  Google Scholar 

  10. Kasahara Y, Tuder RM, Cool CD, Voelkel NF (2000) Expression of 15-lipoxygenase and evidence for apoptosis in the lungs from patients with COPD. Chest 117:260S

    Article  PubMed  Google Scholar 

  11. Calabrese F, Giacometti C, Beghe B, et al (2005) Marked alveolar apoptosis/proliferation imbalance in end-stage emphysema. Respir Res 6:14–26

    Google Scholar 

  12. Yokohori N, Aoshiba K, Nagai A (2004) Increased levels of cell death and proliferation in alveolar wall cells in patients with pulmonary emphysema. Chest 125:626–632

    Article  PubMed  Google Scholar 

  13. Rangasamy T, Misra V, Zhen L, Tankersley CG, Tuder RM, Biswal S (2009) Cigarette smoke-induced emphysema in A/J mice is associated with pulmonary oxidative stress, apoptosis of lung cells, and global alterations in gene expression. Am J Physiol 296:L888–L900

    Google Scholar 

  14. Hodge S, Hodge G, Scicchitano R, Reynolds PN, Holmes M (2003) Alveolar macrophages from subjects with chronic obstructive pulmonary disease are deficient in their ability to phagocytose apoptotic airway epithelial cells. Immunol Cell Biol 81:289–296

    Article  PubMed  Google Scholar 

  15. Nakamura Y, Romberger DJ, Tate L et al (1995) Cigarette smoke inhibits lung fibroblast proliferation and chemotaxis. Am J Respir Crit Care Med 151:1497–1503

    PubMed  Google Scholar 

  16. Rennard SI, Togo S, Holz O (2006) Cigarette smoke inhibits alveolar repair: a mechanism for the development of emphysema. Proc Am Thorac Soc 3:703–708

    Article  PubMed  Google Scholar 

  17. Hoshino S, Yoshida M, Inoue K et al (2005) Cigarette smoke extract induces endothelial cell injury via JNK pathway. Biochem Biophys Res Commun 329:58–63

    Article  PubMed  Google Scholar 

  18. Hodge S, Hodge G, Ahern J, Jersmann H, Holmes M, Reynolds PN (2007) Smoking alters alveolar macrophage recognition and phagocytic ability: implications in chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol 37:748–755

    Article  PubMed  Google Scholar 

  19. Powell WC, Fingleton B, Wilson CL, Boothby M, Matrisian LM (1999) The metalloproteinase matrilysin proteolytically generates active soluble Fas ligand and potentiates epithelial cell apoptosis. Curr Biol 9:1441–1447

    Article  PubMed  Google Scholar 

  20. Dini L, Vergallo C (2009) Environmental factors affecting phagocytosis of dying cells: smoking and static magnetic fields. In: Krysko DV, Vandenabeele P (eds) Phagocytosis of dying cells. Springer, Dordrecht, pp 409–438

  21. Richens TR, Linderman DJ, Horstmann SA et al (2009) Cigarette smoke impairs clearance of apoptotic cells through oxidant-dependent activation of RhoA. Am J Respir Crit Care Med 179:1011–1021

    Article  PubMed  Google Scholar 

  22. D’Hulst AI, Bracke KR, Maes T et al (2006) Role of tumour necrosis factor-alpha receptor p75 in cigarette smoke-induced pulmonary inflammation and emphysema. Eur Respir J 28:102–112

    Article  PubMed  Google Scholar 

  23. Churg A, Dai J, Tai H, Xie C, Wright JL (2002) Tumor necrosis factor-alpha is central to acute cigarette smoke-induced inflammation and connective tissue breakdown. Am J Respir Crit Care Med 166:849–854

    Article  PubMed  Google Scholar 

  24. Keatings VM, Collins PD, Scott DM, Barnes PJ (1996) Differences in interleukin-8 and tumor necrosis factor-alpha in induced sputum from patients with chronic obstructive pulmonary disease or asthma. Am J Respir Crit Care Med 153:530–534

    PubMed  Google Scholar 

  25. McPhillips K, Janssen WJ, Ghosh M et al (2007) TNF-alpha inhibits macrophage clearance of apoptotic cells via cytosolic phospholipase A2 and oxidant-dependent mechanisms. J Immunol 178:8117–8126

    PubMed  Google Scholar 

  26. Borges VM, Vandivier RW, McPhillips KA et al (2009) TNFalpha inhibits apoptotic cell clearance in the lung, exacerbating acute inflammation. Am J Physiol 297:586–595

    Google Scholar 

  27. Kirkham PA, Spooner G, Rahman I, Rossi AG (2004) Macrophage phagocytosis of apoptotic neutrophils is compromised by matrix proteins modified by cigarette smoke and lipid peroxidation products. Biochem Biophys Res Commun 318:32–37

    Article  PubMed  Google Scholar 

  28. Krysko DV, D’Herde K, Vandenabeele P (2006) Clearance of apoptotic and necrotic cells and its immunological consequences. Apoptosis 11:1709–1726

    Article  PubMed  Google Scholar 

  29. Krysko DV, Vandenabeele P (2008) From regulation of dying cell engulfment to development of anti-cancer therapy. Cell Death Differ 15:29–38

    Article  PubMed  Google Scholar 

  30. Kazeros A, Harvey BG, Carolan BJ, Vanni H, Krause A, Crystal RG (2008) Overexpression of apoptotic cell removal receptor MERTK in alveolar macrophages of cigarette smokers. Am J Respir Cell Mol Biol 39:747–757

    Article  PubMed  Google Scholar 

  31. Pastva AM, Wright JR, Williams KL (2007) Immunomodulatory roles of surfactant proteins A and D: implications in lung disease. Proc Am Thorac Soc 4:252–257

    Article  PubMed  Google Scholar 

  32. Wright JR (2005) Immunoregulatory functions of surfactant proteins. Nat Rev 5:58–68

    Article  Google Scholar 

  33. Ohya M, Nishitani C, Sano H et al (2006) Human pulmonary surfactant protein D binds the extracellular domains of Toll-like receptors 2 and 4 through the carbohydrate recognition domain by a mechanism different from its binding to phosphatidylinositol and lipopolysaccharide. Biochemistry 45:8657–8664

    Article  PubMed  Google Scholar 

  34. Yamada C, Sano H, Shimizu T et al (2006) Surfactant protein A directly interacts with TLR4 and MD-2 and regulates inflammatory cellular response. Importance of supratrimeric oligomerization. J Biol Chem 281:21771–21780

    Article  PubMed  Google Scholar 

  35. Vandivier RW, Ogden CA, Fadok VA et al (2002) Role of surfactant proteins A, D, and C1q in the clearance of apoptotic cells in vivo and in vitro: calreticulin and CD91 as a common collectin receptor complex. J Immunol 169:3978–3986

    PubMed  Google Scholar 

  36. Kishore U, Greenhough TJ, Waters P et al (2006) Surfactant proteins SP-A and SP-D: structure, function and receptors. Mol Immunol 43:1293–1315

    Article  PubMed  Google Scholar 

  37. Hodge S, Hodge G, Jersmann H et al (2008) Azithromycin improves macrophage phagocytic function and expression of mannose receptor in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 178:139–148

    Article  PubMed  Google Scholar 

  38. Ohlmeier S, Vuolanto M, Toljamo T et al (2008) Proteomics of human lung tissue identifies surfactant protein A as a marker of chronic obstructive pulmonary disease. J Proteome Res 7:5125–5132

    Article  PubMed  Google Scholar 

  39. Vlachaki EM, Koutsopoulos AV, Tzanakis N et al (2010) Altered surfactant protein-a (Sp-a) expression in type Ii pneumocytes in copd. Chest 137:37–45

    Article  PubMed  Google Scholar 

  40. Honda Y, Takahashi H, Kuroki Y, Akino T, Abe S (1996) Decreased contents of surfactant proteins A and D in BAL fluids of healthy smokers. Chest 109:1006–1009

    Article  PubMed  Google Scholar 

  41. Schagat TL, Wofford JA, Wright JR (2001) Surfactant protein A enhances alveolar macrophage phagocytosis of apoptotic neutrophils. J Immunol 166:2727–2733

    PubMed  Google Scholar 

  42. Reidy MF, Wright JR (2003) Surfactant protein A enhances apoptotic cell uptake and TGF-beta1 release by inflammatory alveolar macrophages. Am J Physiol 285:L854–L861

    Google Scholar 

  43. Janssen WJ, McPhillips KA, Dickinson MG et al (2008) Surfactant proteins A and D suppress alveolar macrophage phagocytosis via interaction with SIRP alpha. Am J Respir Crit Care Med 178:158–167

    Article  PubMed  Google Scholar 

  44. Hodge S, Matthews G, Dean MM et al (2010) Therapeutic role for mannose-binding lectin in cigarette smoke-induced lung inflammation? Evidence from a murine model. Am J Respir Cell Mol Biol 42:235–242

    Article  PubMed  Google Scholar 

  45. Stuart LM, Takahashi K, Shi L, Savill J, Ezekowitz RA (2005) Mannose-binding lectin-deficient mice display defective apoptotic cell clearance but no autoimmune phenotype. J Immunol 174:3220–3226

    PubMed  Google Scholar 

  46. Feghali-Bostwick CA, Gadgil AS, Otterbein LE et al (2008) Autoantibodies in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 177:156–163

    Article  PubMed  Google Scholar 

  47. Lee SH, Goswami S, Grudo A et al (2007) Antielastin autoimmunity in tobacco smoking-induced emphysema. Nat Med 13:567–569

    Article  PubMed  Google Scholar 

  48. Gadgil A, Zhu X, Sciurba FC, Duncan SR (2006) Altered T-cell phenotypes in chronic obstructive pulmonary disease. Proc Am Thorac Soc 3:487–488

    Article  PubMed  Google Scholar 

  49. van der Strate BW, Postma DS, Brandsma CA et al (2006) Cigarette smoke-induced emphysema: A role for the B cell? Am J Respir Crit Care Med 173:751–758

    Article  PubMed  Google Scholar 

  50. Cosio MG, Saetta M, Agusti A (2009) Immunologic aspects of chronic obstructive pulmonary disease. N Engl J Med 360:2445–2454

    Article  PubMed  Google Scholar 

  51. Eggleton P, Haigh R, Winyard PG (2008) Consequence of neo-antigenicity of the ‘altered self’. Rheumatology 47:567–571

    Article  PubMed  Google Scholar 

  52. Agusti A, MacNee W, Donaldson K, Cosio M (2003) Hypothesis: does COPD have an autoimmune component? Thorax 58:832–834

    Article  PubMed  Google Scholar 

  53. Mantovani A, Sozzani S, Locati M, Allavena P, Sica A (2002) Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 23:549–555

    Article  PubMed  Google Scholar 

  54. Gordon S, Taylor PR (2005) Monocyte and macrophage heterogeneity. Nat Rev 5:953–964

    Article  Google Scholar 

  55. Mantovani A, Sica A, Locati M (2005) Macrophage polarization comes of age. Immunity 23:344–346

    Article  PubMed  Google Scholar 

  56. Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M (2004) The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 25:677–686

    Article  PubMed  Google Scholar 

  57. Gratchev A, Schledzewski K, Guillot P, Goerdt S (2001) Alternatively activated antigen-presenting cells: molecular repertoire, immune regulation, and healing. Skin Pharmacol Appl Skin Physiol 14:272–279

    PubMed  Google Scholar 

  58. Shaykhiev R, Krause A, Salit J et al (2009) Smoking-dependent reprogramming of alveolar macrophage polarization: implication for pathogenesis of chronic obstructive pulmonary disease. J Immunol 183:2867–2883

    Article  PubMed  Google Scholar 

  59. Reynolds PN, Hodge SJ (2009) Chapter 14. The impact of defective clearance of apoptotic cells in the pathogenesis of chronic lung diseases: chronic obstructive pulmonary disease, asthma and cystic fibrosis. In: Krysko DV, Vandenabeele P (eds) Phagocytosis of dying cells from molecular mechanisms to human diseases. Springer, Dordrecht, pp 393–407

  60. Gaschler GJ, Zavitz CC, Bauer CM et al (2008) Cigarette smoke exposure attenuates cytokine production by mouse alveolar macrophages. Am J Respir Cell Mol Biol 38:218–226

    Article  PubMed  Google Scholar 

  61. Laan M, Bozinovski S, Anderson GP (2004) Cigarette smoke inhibits lipopolysaccharide-induced production of inflammatory cytokines by suppressing the activation of activator protein-1 in bronchial epithelial cells. J Immunol 173:4164–4170

    PubMed  Google Scholar 

  62. Sopori M (2002) Effects of cigarette smoke on the immune system. Nat Rev 2:372–377

    Article  Google Scholar 

  63. Li L, Hamilton RF Jr, Holian A (1999) Effect of acrolein on human alveolar macrophage NF-kappaB activity. Am J Physiol 277:L550–L557

    PubMed  Google Scholar 

  64. Hagiwara E, Takahashi KI, Okubo T et al (2001) Cigarette smoking depletes cells spontaneously secreting Th(1) cytokines in the human airway. Cytokine 14:121–126

    Article  PubMed  Google Scholar 

  65. Sakaguchi S, Yamaguchi T, Nomura T, Ono M (2008) Regulatory T cells and immune tolerance. Cell 133:775–787

    Article  PubMed  Google Scholar 

  66. Rowe SM, Miller S, Sorscher EJ (2005) Cystic fibrosis. N Engl J Med 352:1992–2001

    Article  PubMed  Google Scholar 

  67. Vandivier RW, Fadok VA, Ogden CA et al (2002) Impaired clearance of apoptotic cells from cystic fibrosis airways. Chest 121:89S

    Article  PubMed  Google Scholar 

  68. Maiuri L, Raia V, De Marco G et al (1997) DNA fragmentation is a feature of cystic fibrosis epithelial cells: a disease with inappropriate apoptosis? FEBS Lett 408:225–231

    Article  PubMed  Google Scholar 

  69. Di A, Brown ME, Deriy LV et al (2006) CFTR regulates phagosome acidification in macrophages and alters bactericidal activity. Nat Cell Biol 8:933–944

    Article  PubMed  Google Scholar 

  70. Vandivier RW, Richens TR, Horstmann SA et al (2009) Dysfunctional cystic fibrosis transmembrane conductance regulator inhibits phagocytosis of apoptotic cells with proinflammatory consequences. Am J Physiol 297:677–686

    Google Scholar 

  71. Kreiselmeier NE, Kraynack NC, Corey DA, Kelley TJ (2003) Statin-mediated correction of STAT1 signaling and inducible nitric oxide synthase expression in cystic fibrosis epithelial cells. Am J Physiol 285:L1286–L1295

    Google Scholar 

  72. Elkin S, Geddes D (2003) Pseudomonal infection in cystic fibrosis: the battle continues. Expert Rev Anti Infect Ther 1:609–618

    Article  PubMed  Google Scholar 

  73. Bianchi SM, Prince LR, McPhillips K et al (2008) Impairment of apoptotic cell engulfment by pyocyanin, a toxic metabolite of Pseudomonas aeruginosa. Am J Respir Crit Care Med 177:35–43

    Article  PubMed  Google Scholar 

  74. Peter C, Wesselborg S, Lauber K (2009) Role of attraction and danger signals in the uptake of apoptotic and necrotic cells and its immunological outcome. In: Krysko DV, Vandenabeele P (eds) Phagocytosis of dying cells: from molecular mechanisms to human disease. Springer, Dordrecht, pp 63–101

  75. Peter C, Wesselborg S, Herrmann M, Lauber K (2010) Dangerous attraction: phagocyte recruitment and danger signals of apoptotic and necrotic cells. Apoptosis, Feb 6 [Epub ahead of print]

  76. Rowe SM, Jackson PL, Liu G et al (2008) Potential role of high-mobility group box 1 in cystic fibrosis airway disease. Am J Respir Crit Care Med 178:822–831

    Article  PubMed  Google Scholar 

  77. Liu G, Wang J, Park YJ et al (2008) High mobility group protein-1 inhibits phagocytosis of apoptotic neutrophils through binding to phosphatidylserine. J Immunol 181:4240–4246

    PubMed  Google Scholar 

  78. del Fresno C, Garcia-Rio F, Gomez-Pina V et al (2009) Potent phagocytic activity with impaired antigen presentation identifying lipopolysaccharide-tolerant human monocytes: demonstration in isolated monocytes from cystic fibrosis patients. J Immunol 182:6494–6507

    Article  PubMed  Google Scholar 

  79. Claeys S, Van Hoecke H, Holtappels G et al (2005) Nasal polyps in patients with and without cystic fibrosis: a differentiation by innate markers and inflammatory mediators. Clin Exp Allergy 35:467–472

    Article  PubMed  Google Scholar 

  80. Van Zele T, Claeys S, Gevaert P et al (2006) Differentiation of chronic sinus diseases by measurement of inflammatory mediators. Allergy 61:1280–1289

    Article  PubMed  Google Scholar 

  81. Krysko O, Van Zele T, Claeys S, Bachert C (2009) Comment on “potent phagocytic activity with impaired antigen presentation identifying lipopolysaccharide-tolerant human monocytes: demonstration in isolated monocytes from cystic fibrosis patients”. J Immunol 183:4831; author reply 4831–4832

    Google Scholar 

  82. Van Hove CL, Maes T, Joos GF, Tournoy KG (2008) Chronic inflammation in asthma: a contest of persistence vs resolution. Allergy 63:1095–1109

    Article  PubMed  Google Scholar 

  83. Busse WW, Lemanske RF Jr (2001) Asthma. N Engl J Med 344:350–362

    Article  PubMed  Google Scholar 

  84. Solarewicz-Madejek K, Basinski TM, Crameri R et al (2009) T cells and eosinophils in bronchial smooth muscle cell death in asthma. Clin Exp Allergy 39:845–855

    Article  PubMed  Google Scholar 

  85. Walsh GM (2008) Defective apoptotic cell clearance in asthma and COPD—a new drug target for statins? Trends Pharmacol Sci 29:6–11

    Article  PubMed  Google Scholar 

  86. Duncan CJ, Lawrie A, Blaylock MG, Douglas JG, Walsh GM (2003) Reduced eosinophil apoptosis in induced sputum correlates with asthma severity. Eur Respir J 22:484–490

    Article  PubMed  Google Scholar 

  87. Woolley KL, Gibson PG, Carty K, Wilson AJ, Twaddell SH, Woolley MJ (1996) Eosinophil apoptosis and the resolution of airway inflammation in asthma. Am J Respir Crit Care Med 154:237–243

    PubMed  Google Scholar 

  88. Huynh ML, Malcolm KC, Kotaru C et al (2005) Defective apoptotic cell phagocytosis attenuates prostaglandin E2 and 15-hydroxyeicosatetraenoic acid in severe asthma alveolar macrophages. Am J Respir Crit Care Med 172:972–979

    Article  PubMed  Google Scholar 

  89. Fitzpatrick AM, Holguin F, Teague WG, Brown LA (2008) Alveolar macrophage phagocytosis is impaired in children with poorly controlled asthma. J Allergy Clin Immunol 121:1372–1378, 1378 e1371–1373

    Google Scholar 

  90. Alexis NE, Soukup J, Nierkens S, Becker S (2001) Association between airway hyperreactivity and bronchial macrophage dysfunction in individuals with mild asthma. Am J Physiol 280:L369–L375

    Google Scholar 

  91. Hodge S, Hodge G, Brozyna S, Jersmann H, Holmes M, Reynolds PN (2006) Azithromycin increases phagocytosis of apoptotic bronchial epithelial cells by alveolar macrophages. Eur Respir J 28:486–495

    Article  PubMed  Google Scholar 

  92. Allavena P, Chieppa M, Monti P, Piemonti L (2004) From pattern recognition receptor to regulator of homeostasis: the double-faced macrophage mannose receptor. Crit Rev Immunol 24:179–192

    Article  PubMed  Google Scholar 

  93. Kobayashi H, Takeda H, Sakayori S et al (1995) Study on azithromycin in treatment of diffuse panbronchiolitis. Kansenshogaku Zasshi 69:711–722

    PubMed  Google Scholar 

  94. Baumann U, King M, App EM et al (2004) Long term azithromycin therapy in cystic fibrosis patients: a study on drug levels and sputum properties. Can Respir J 11:151–155

    PubMed  Google Scholar 

  95. Nakaya M, Tanaka M, Okabe Y, Hanayama R, Nagata S (2006) Opposite effects of rho family GTPases on engulfment of apoptotic cells by macrophages. J Biol Chem 281:8836–8842

    Article  PubMed  Google Scholar 

  96. Eberlein M, Heusinger-Ribeiro J, Goppelt-Struebe M (2001) Rho-dependent inhibition of the induction of connective tissue growth factor (CTGF) by HMG CoA reductase inhibitors (statins). Br J Pharmacol 133:1172–1180

    Article  PubMed  Google Scholar 

  97. Morimoto K, Janssen WJ, Fessler MB et al (2006) Lovastatin enhances clearance of apoptotic cells (efferocytosis) with implications for chronic obstructive pulmonary disease. J Immunol 176:7657–7665

    PubMed  Google Scholar 

  98. McKay A, Leung BP, McInnes IB, Thomson NC, Liew FY (2004) A novel anti-inflammatory role of simvastatin in a murine model of allergic asthma. J Immunol 172:2903–2908

    PubMed  Google Scholar 

  99. Menzies D, Nair A, Meldrum KT, Fleming D, Barnes M, Lipworth BJ (2007) Simvastatin does not exhibit therapeutic anti-inflammatory effects in asthma. J Allergy Clin Immunol 119:328–335

    Article  PubMed  Google Scholar 

  100. Benati D, Ferro M, Savino MT et al (2009) Opposite effects of simvastatin on the bactericidal and inflammatory response of macrophages to opsonized S. aureus. J Leukoc Biol 87:433–442

    Article  PubMed  Google Scholar 

  101. Maderna P, Godson C (2003) Phagocytosis of apoptotic cells and the resolution of inflammation. Biochim Biophys Acta 1639:141–151

    PubMed  Google Scholar 

  102. Fadok VA, Bratton DL, Konowal A, Freed PW, Westcott JY, Henson PM (1998) Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF. J Clin Invest 101:890–898

    Article  PubMed  Google Scholar 

  103. Golpon HA, Fadok VA, Taraseviciene-Stewart L et al (2004) Life after corpse engulfment: phagocytosis of apoptotic cells leads to VEGF secretion and cell growth. FASEB J 18:1716–1718

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fund for Scientific Research Flanders (FWO-Vlaanderen) (3G064210 to C.B., O.K. and 3G072810 to D.V.K.), by the Interuniversity Attraction Poles Programme (IUAP)—Belgian state—Belgian Science Policy (P6/35 to C.B.) and “krediet aan navorsers” from Fund for Scientific Research Flanders (FWO-Vlaanderen, 31507110 to D.V.K.). D.V.K. is a postdoctoral research fellow of the Fund for Scientific Research Flanders (FWO-Vlaanderen), Belgium. We thank Dr. A. Bredan for proofreading the manuscript and W. Drijvers for the art work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Krysko.

Additional information

Olga Krysko and Dmitri V. Krysko contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krysko, O., Vandenabeele, P., Krysko, D.V. et al. Impairment of phagocytosis of apoptotic cells and its role in chronic airway diseases. Apoptosis 15, 1137–1146 (2010). https://doi.org/10.1007/s10495-010-0504-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-010-0504-x

Keywords

Navigation