Skip to main content

Advertisement

Log in

Interruption of the MEK/ERK signaling cascade promotes dihydroartemisinin-induced apoptosis in vitro and in vivo

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Artemisinin, the active principle of the Chinese medicinal herb Artemisia annua, and its derivatives (i.e. dihydroartemisinin, DHA) were reported to exhibit anti-tumor activity both in vitro and in vivo. The purpose of the present study was to investigate the functional role of Mitogen-Activated Protein Kinase (MEK)/Extracellular signal-regulated protein Kinase (ERK) signaling cascade in dihydroartemisinin (DHA)-induced apoptosis in human leukemia cells in vitro and anti-leukemic activity in vivo. Human leukemia cells were treated with DHA in dose- and time-dependent manners, after which apoptosis, caspase activation, Mcl-1 expression, and cell signaling pathways were evaluated. Parallel studies were performed in AML and ALL primary human leukemia cells. In vivo anti-leukemic activity mediated by DHA was also investigated using U937 xenograft mouse model. Exposure of DHA resulted in a pronounced increase in apoptosis in both transformed and primary human leukemia cells but not in normal peripheral blood mononuclear cells. DHA-induced apoptosis was accompanied by caspase activation, cytochrome c release, Mcl-1 down-regulation, as well as MEK/ERK inactivation. Pretreatment with MEK inhibitor PD98059, which potentiated DHA-mediated MEK and ERK inactivation, intensified DHA-mediated apoptosis. Conversely, enforced expression of a constitutively active MEK1 attenuated DHA-induced apoptosis. Furthermore, DHA-mediated inhibition of tumor growth of mouse U937 xenograft was associated with induction of apoptosis and inactivation of ERK. The findings in the present study showed that DHA-induced apoptosis in human leukemia cells in vitro and exhibited an anti-leukemic activity in vivo through a process that involves MEK/ERK inactivation, Mcl-1 down-regulation, culminating in cytochrome c release and caspase activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. White NJ (2008) Qinghaosu (artemisinin): the price of success. Science 320:330–334

    Article  PubMed  CAS  Google Scholar 

  2. German PI, Aweeka FT (2008) Clinical pharmacology of artemisinin-based combination therapies. Clin Pharmacokinet 47:91–102

    Article  PubMed  Google Scholar 

  3. Merali S, Meshnick SR (1991) Susceptibility of Pneumocystis carinii to artemisinin in vitro. Antimicrob Agents Chemother 35:1225–1227

    PubMed  CAS  Google Scholar 

  4. Ke OY, Krug EC, Marr JJ, Berens RL (1990) Inhibition of growth of Toxoplasma gondii by qinghaosu and derivatives. Antimicrob Agents Chemother 34:1961–1965

    PubMed  CAS  Google Scholar 

  5. Efferth T, Marschall M, Wang X, Huong SM, Hauber I, Olbrich A et al (2002) Antiviral activity of artesunate towards wild-type, recombinant, and ganciclovir-resistant human cytomegaloviruses. J Mol Med 80:233–242

    Article  PubMed  CAS  Google Scholar 

  6. Romero MR, Efferth T, Serrano MA, Castano B, Macias RI, Briz O et al (2005) Effect of artemisinin/artesunate as inhibitors of hepatitis B virus production in an “in vitro” replicative system. Antiviral Res 68:75–83

    Article  PubMed  CAS  Google Scholar 

  7. Kaptein SJ, Efferth T, Leis M, Rechter S, Auerochs S, Kalmer M et al (2006) The anti-malaria drug artesunate inhibits replication of cytomegalovirus in vitro and in vivo. Antiviral Res 69:60–69

    Article  PubMed  CAS  Google Scholar 

  8. Lai H, Singh NP (2006) Oral artemisinin prevents and delays the development of 7,12-dimethylbenz[a]anthracene [DMBA]-induced breast cancer in the rat. Cancer Lett 231:43–48

    Article  PubMed  CAS  Google Scholar 

  9. Efferth T, Dunstan H, Sauerbrey A, Miyachi H, Chitambar CR (2001) The anti-malaria artesunate is also active against cancer. Int J Oncol 18:767–773

    PubMed  CAS  Google Scholar 

  10. Wu JM, Shan F, Wu GS, Li Y, Ding J, Xiao D et al (2001) Synthesis and cytotoxicity of artemisinin derivatives containing cyanoarylmethyl group. Eur J Med Chem 36:469–479

    Article  PubMed  CAS  Google Scholar 

  11. Efferth T, Ocbrich A, Bauer R (2002) mRNA expression profiles for the response of human tumor cell lines to the antimalarial drugs artesunate, arteether, and artemether. Biochem Pharmacol 64:617–623

    Article  PubMed  CAS  Google Scholar 

  12. Moore JC, Lai H, Li JR, Ren RL, McDougall JA, Singh NP et al (1995) Oral administration of dihydroartemisinin and ferrous sulfate retarded implanted fibrosarcoma growth in the rat. Cancer Lett 98:83–87

    PubMed  CAS  Google Scholar 

  13. Zhou HJ, Zhang JL, Li A, Wang Z, Lou XE (2010) Dihydroartemisinin improves the efficiency of chemotherapeutics in lung carcinomas in vivo and inhibits murine Lewis lung carcinoma cell line growth in vitro. Cancer Chemother Pharmacol 66:21–29

    Article  PubMed  CAS  Google Scholar 

  14. Singh NP, Lai HC (2005) Synergistic cytotoxicity of artemisinin and sodium butyrate on human cancer cells. Anticancer Res 25:4325–4331

    PubMed  CAS  Google Scholar 

  15. Singh NP, Lai H (2001) Selective toxicity of dihydroartemisinin and holotransferrin toward human breast cancer cells. Life Sci 70:49–56

    Article  PubMed  CAS  Google Scholar 

  16. He Q, Shi J, Shen XL, An J, Sun H, Wang L, Hu YJ, Sun Q, Fu LC, Sheikh MS, Huang Y (2010) Dihydroartemisinin upregulates death receptor 5 expression and cooperates with TRAIL to induce apoptosis in human prostate cancer cells. Cancer Biol Ther 9:819–824

    Article  PubMed  CAS  Google Scholar 

  17. Chen T, Li M, Zhang R, Wang H (2009) Dihydroartemisinin induces apoptosis and sensitizes human ovarian cancer cells to carboplatin therapy. J Cell Mol Med 13:1358–1370

    Article  PubMed  CAS  Google Scholar 

  18. Huang XJ, Ma ZQ, Zhang WP, Lu YB, Wei EQ (2007) Dihydroartemisinin exerts cytotoxic effects and inhibits hypoxia inducible factor-1alpha activation in C6 glioma cells. J Pharm Pharmacol 59:849–856

    Article  PubMed  CAS  Google Scholar 

  19. Wang SJ, Gao Y, Chen H, Kong R, Jiang HC, Pan SH, Xue DB, Bai XW, Sun B (2010) Dihydroartemisinin inactivates NF-κB and potentiates the anti-tumor effect of gemcitabine on pancreatic cancer both in vitro and in vivo. Cancer Lett 293:99–108

    Article  PubMed  CAS  Google Scholar 

  20. Lu JJ, Meng LH, Cai YJ, Chen Q, Tong LJ, Lin LP (2008) Dihydroartemisinin induces apoptosis in HL60 leukemia cells dependent of iron and p38 mitogen-activated protein kinase activation but independent of reactive oxygen species. Cancer Biol Ther 7:1017–1023

    Article  PubMed  CAS  Google Scholar 

  21. Sprick MR, Walczak H (2004) The interplay between the Bcl-2 family and death receptor-mediated apoptosis. Biochim Biophys Acta 1644:125–132

    Article  PubMed  CAS  Google Scholar 

  22. Buggins AGS, Pepper CJ (2010) The role of Bcl-2 family proteins in chronic lymphocytic leukaemia. Leuk Res 34:837–842

    Article  PubMed  CAS  Google Scholar 

  23. Derenne S, Monia B, Dean NM, Taylor JK, Rapp MJ, Harousseau JL et al (2002) Antisense strategy shows that Mcl-1 rather than Bcl-2 or Bcl-x(L) is an essential survival protein of human myeloma cells. Blood 100:194–199

    Article  PubMed  CAS  Google Scholar 

  24. Cho-Vega JH, Rassidakis GZ, Admirand JH, Oyarzo M, Ramalingam P, Paraguya A et al (2004) MCL-1 expression in B-cell non-Hodgkin’s lymphomas. Hum Pathol 35:1095–1100

    Article  PubMed  CAS  Google Scholar 

  25. Sieghart W, Losert D, Strommer S, Cejka D, Schmid K, Rasoul-Rockenschaub S et al (2006) Mcl-1 overexpression in hepatocellular carcinoma: Apotential target for antisense therapy. J Hepatol 44:151–157

    Article  PubMed  CAS  Google Scholar 

  26. Nguyen M, Marcellus RC, Roulston A, Watson M, Serfass L, Murthy Madiraju SR et al (2007) Small molecule obatoclax (GX15-070) antagonizes MCL-1 and overcomes MCL-1-mediated resistance to apoptosis. Proc Natl Acad Sci USA 104:19512–19517

    Article  PubMed  CAS  Google Scholar 

  27. Andersson Y, Juell S, Fodstad Q (2004) Downregulation of the antiapoptotic MCL-1 protein and apoptosis in MA-11 breast cancer cells induced by an anti-epidermal growth factor receptor-Pseudomonas exotoxin a immunotoxin. Int J Cancer 112:475–483

    Article  PubMed  CAS  Google Scholar 

  28. Chetoui N, Sylla K, Gagnon-Houde JV, Alcaide-Loridan C, Charron D, Al-Daccak R et al (2008) Downregulation of mcl-1 by small interfering RNA sensitizes resistant melanoma cells to Fas-mediated apoptosis. Mol Cancer Res 6:42–52

    Article  PubMed  CAS  Google Scholar 

  29. Jiao Y, Ge CM, Meng QH, Cao JP, Tong J, Fan SJ (2007) Dihydroartemisinin is an inhibitor of ovarian cancer cell growth. Acta Pharmacol Sin 28:1045–1056

    Article  PubMed  CAS  Google Scholar 

  30. Chang L, Karin M (2001) Mammalian MAP kinase signalling cascades. Nature 410:37–40

    Article  PubMed  CAS  Google Scholar 

  31. Pearson G, Robinson F, Beers Gibson T, Xu BE, Karandikar M, Berman K et al (2001) Mitogen-activated protein [MAP] kinase pathways: regulation and physiological functions. Endocr Rev 22:153–183

    Article  PubMed  CAS  Google Scholar 

  32. Xia Z, Dickens M, Raingeaud J, Davis RJ, Greenberg ME (1995) Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 270:1326–1331

    Article  PubMed  CAS  Google Scholar 

  33. Chang F, Steelman LS, Lee JT, Shelton JG, Navolanic PM, Blalock WL et al (2003) Signal transduction mediated by the Ras/Raf/MEK/ERK pathway from cytokine receptors to transcription factors: potential targeting for therapeutic intervention. Leukemia 17:1263–1293

    Article  PubMed  CAS  Google Scholar 

  34. Ricciardi MR, McQueen T, Chism D, Milella M, Estey E, Kaldjian E et al (2005) Quantitative single cell determination of ERK phosphorylation and regulation in relapsed and refractory primary acute myeloid leukemia. Leukemia 19:1543–1549

    Article  PubMed  CAS  Google Scholar 

  35. Kang CD, Yoo SD, Hwang BW, Kim KW, Kim DW, Kim CM, Kim SH, Chung BS (2000) The inhibition of ERK/MAPK not the activation of JNK/SAPK is primarily required to induce apoptosis in chronic myelogenous leukemic K562 cells. Leuk Res 24:527–534

    Article  PubMed  CAS  Google Scholar 

  36. Blalock WL, Pearce M, Steelman LS, Franklin RA, McCarthy SA, Cherwinski H, McMahon M, McCubrey JA (2000) A conditionally active form of MEK1 results in autocrine transformation of human and mouse hematopoietic cells. Oncogene 19:526–536

    Article  PubMed  CAS  Google Scholar 

  37. Blalock WL, Moye PW, Chang F, Pearch M, Steelman S, McMahon M, McCubrey JA (2000) Combined effects of aberrant MEK1 activity and BCL2 overexpression on relieving the cytokine-dependency of hematopoietic cells. Adv Enzyme Regl 40:305–337

    Article  Google Scholar 

  38. Blalock WL, Pearce M, Chang F, Lee JT, Pohnert S, Burrows C, Steelman LS, Franklin RA, McMahon M, McCubrey JA (2001) Effects of inducible MEK1 activation on the cytokine-dependency of lymphoid cells. Leukemia 15:794–807

    Article  PubMed  CAS  Google Scholar 

  39. Hoyle PE, Loye PW, Steelman LS, Blalock WL, Franklin RA, Pearce M, Cherwinski H, Bosch E, McMahon M, McCubrey JA (2000) Differential abilities of the Raf family of protein kinases to abrogate cytokine-dependency and prevent apoptosis in murine hematopoietic cells by a MEK-1 dependent mechanism. Leukemia 14:642–656

    Article  PubMed  CAS  Google Scholar 

  40. Milella M, Kornblau SM, Estrov Z, Carter BZ, Lapillonne H, Harris D et al (2001) Therapeutic targeting of the MEK/MAPK signal transduction module in acute myeloid leukemia. J Clin Invest 108:851–859

    PubMed  CAS  Google Scholar 

  41. Bonni A, Brunet A, West AE, Datta SR, Takasu MA, Greenberg ME (1999) Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and -independent mechanisms. Science 286:1358–1362

    Article  PubMed  CAS  Google Scholar 

  42. Scheid MP, Schubert KM, Duronio V (1999) Regulation of bad phosphorylation and association with Bcl-x[L] by the MAPK/Erk kinase. J Biol Chem 274:31108–31113

    Article  PubMed  CAS  Google Scholar 

  43. Allan LA, Morrice N, Brady S, Magee G, Pathak S, Clarke PR (2003) Inhibition of caspase-9 through phosphorylation at Thr 125 by ERK MAPK. Nat Cell Biol 5:647–654

    Article  PubMed  CAS  Google Scholar 

  44. Leu CM, Chang C, Hu C (2000) Epidermal growth factor [EGF] suppresses staurosporine-induced apoptosis by inducing mcl-1 via the mitogen-activated protein kinase pathway. Oncogene 19:1665–1675

    Article  PubMed  CAS  Google Scholar 

  45. Nishioka C, Ikezoe T, Yang J, Yokoyama A (2010) Inhibition of MEK/ERK signaling induces apoptosis of acute myelogenous leukemia cells via inhibition of eukaryotic initiation factor 4E-binding protein 1 and down-regulation of Mcl-1. Apoptosis 15:795–804

    Article  PubMed  CAS  Google Scholar 

  46. Lunghi P, Giuliani N, Mazzera L, Lombardi G, Ricca M, Corradi A, Cantoni AM, Salvatore L, Riccioni R, Costanzo A, Testa U, Levrero M, Rizzoli V, Bonati A (2008) Targeting MEK/MAPK signal transduction module potentiates ATO-induced apoptosis in multiple myeloma cells through multiple signaling pathways. Blood 112:2450–2462

    Article  PubMed  CAS  Google Scholar 

  47. Zhou P, Qian L, Kozopas KM, Craig RW (1997) Mcl-1, a Bcl-2 family member, delays the death of hematopoietic cells under a variety of apoptosis-inducing conditions. Blood 89:630–643

    PubMed  CAS  Google Scholar 

  48. Michels J, O’Neill JW, Dallman CL, Mouzakiti A, Habens F, Brimmell M et al (2004) Mcl-1 is required for Akata6 B-lymphoma cell survival and is converted to a cell death molecule by efficient caspase-mediated cleavage. Oncogene 23:4818–4827

    Article  PubMed  CAS  Google Scholar 

  49. Liu L, Cao Y, Chen C, Zhang X, McNabola A, Wilkie D, Wilhelm S, Lynch M, Carter C (2006) Sorafenib blocks the RAF/MEK/ERK pathway, inhibits tumor angiogenesis, and induces tumor cell apoptosis in hepatocellular carcinoma model PLC/PRF/5. Cancer Res 66:11851–11858

    Article  PubMed  CAS  Google Scholar 

  50. Hou J, Wang D, Zhang R, Wang H (2008) Experimental therapy of hepatoma with artemisinin and its derivatives: in vitro and in vivo activity, chemosensitization, and mechanisms of action. Clin Cancer Res 14:5519–5530

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Grant Number RO1 ES015375 (X. Shi) from the National Institute of Health (NIH).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ning Gao or Xianglin Shi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, N., Budhraja, A., Cheng, S. et al. Interruption of the MEK/ERK signaling cascade promotes dihydroartemisinin-induced apoptosis in vitro and in vivo. Apoptosis 16, 511–523 (2011). https://doi.org/10.1007/s10495-011-0580-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-011-0580-6

Keywords

Navigation