Skip to main content
Log in

Autophagy precedes apoptosis during the remodeling of silkworm larval midgut

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

An Erratum to this article was published on 06 January 2012

Abstract

Although several features of apoptosis and autophagy have been reported in the larval organs of Lepidoptera during metamorphosis, solid experimental evidence for autophagy is still lacking. Moreover, the role of the two processes and the nature of their relationship are still cryptic. In this study, we perform a cellular, biochemical and molecular analysis of the degeneration process that occurs in the larval midgut of Bombyx mori during larval–adult transformation, with the aim to analyze autophagy and apoptosis in cells that die under physiological conditions. We demonstrate that larval midgut degradation is due to the concerted action of the two mechanisms, which occur at different times and have different functions. Autophagy is activated from the wandering stage and reaches a high level of activity during the spinning and prepupal stages, as demonstrated by specific autophagic markers. Our data show that the process of autophagy can recycle molecules from the degenerating cells and supply nutrients to the animal during the non-feeding period. Apoptosis intervenes later. In fact, although genes encoding caspases are transcribed at the end of the larval period, the activity of these proteases is not appreciable until the second day of spinning and apoptotic features are observable from prepupal phase. The abundance of apoptotic features during the pupal phase, when the majority of the cells die, indicates that apoptosis is actually responsible for cell death and for the disappearance of larval midgut cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Kroemer G, Galluzzi L, Vandenabeele P, Abrams J, Alnemri ES, Baehrecke EH et al (2009) Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ 16:3–11

    Article  PubMed  CAS  Google Scholar 

  2. Galluzzi L, Vitale I, Abrams JM, Alnemri ES, Baehrecke EH, Blagosklonny MV et al (2011) Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ. doi:10.1038/cdd.2011.96

  3. Ulukaya E, Acilan C, Yilmaz Y (2011) Apoptosis: why and how does it occur in biology? Cell Biochem Funct. doi:10.1002/cbf.1774

  4. He CC, Klionsky DJ (2009) Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet 43:67–93

    Article  PubMed  CAS  Google Scholar 

  5. Mizushima N, Levine B, Cuervo AM, Klionsky DJ (2008) Autophagy fights disease through cellular self-digestion. Nature 451:1069–1075

    Article  PubMed  CAS  Google Scholar 

  6. Berry DL, Baehrecke EH (2007) Growth arrest and autophagy are required for salivary gland cell degradation in Drosophila. Cell 131:1137–1148

    Article  PubMed  CAS  Google Scholar 

  7. Velentzas AD, Nezis IP, Stravopodis DJ, Papassideri IS, Margaritis LH (2007) Apoptosis and autophagy function cooperatively for the efficacious execution of programmed nurse cell death during Drosophila virilis oogenesis. Autophagy 3:130–132

    PubMed  CAS  Google Scholar 

  8. Denton D, Shravage B, Simin R, Mills K, Berry DL, Baehrecke EH et al (2009) Autophagy, not apoptosis, is essential for midgut cell death in Drosophila. Curr Biol 19:1741–1746

    Article  PubMed  CAS  Google Scholar 

  9. Nezis IP, Shravage BV, Sagona AP, Lamark T, Bjorkoy G, Johansen T et al (2010) Autophagic degradation of dBruce controls DNA fragmentation in nurse cells during late Drosophila melanogaster oogenesis. J Cell Biol 190:523–531

    Article  PubMed  CAS  Google Scholar 

  10. Shen HM, Codogno P (2011) Autophagic cell death: Loch Ness monster or endangered species? Autophagy 7:457–465

    Article  PubMed  CAS  Google Scholar 

  11. Melendez A, Neufeld TP (2008) The cell biology of autophagy in metazoans: a developing story. Development 135:2347–2360

    Article  PubMed  CAS  Google Scholar 

  12. Tettamanti G, Grimaldi A, Casartelli M, Ambrosetti E, Ponti B, Congiu T et al (2007) Programmed cell death and stem cell differentiation are responsible for midgut replacement in Heliothis virescens during prepupal instar. Cell Tissue Res 330:345–359

    Article  PubMed  Google Scholar 

  13. Tettamanti G, Grimaldi A, Pennacchio F, de Eguileor M (2007) Lepidopteran larval midgut during prepupal instar: digestion or self-digestion? Autophagy 3:630–631

    PubMed  Google Scholar 

  14. Parthasarathy R, Palli SR (2007) Developmental and hormonal regulation of midgut remodeling in a lepidopteran insect, Heliothis virescens. Mech Dev 124:23–34

    Article  PubMed  CAS  Google Scholar 

  15. Malagoli D, Abdalla FC, Cao Y, Feng QL, Fujisaki K, Gregorc A et al (2010) Autophagy and its physiological relevance in arthropods: current knowledge and perspectives. Autophagy 6:575–588

    Article  CAS  Google Scholar 

  16. Komuves LG, Sass M, Kovacs J (1985) Autophagocytosis in the larval midgut cells of Pieris brassicae during metamorphosis. Cell Tissue Res 240:215–221

    Article  CAS  Google Scholar 

  17. Uwo MF, Ui-Tei K, Park P, Takeda M (2002) Replacement of midgut epithelium in the greater wax moth, Galleria mellonela, during larval–pupal moult. Cell Tissue Res 308:319–331

    Article  PubMed  Google Scholar 

  18. Dai JD, Gilbert LI (1997) Programmed cell death of the prothoracic glands of Manduca sexta during pupal-adult metamorphosis. Insect Biochem Mol Biol 27:69–78

    Article  PubMed  CAS  Google Scholar 

  19. Sumithra P, Britto CP, Krishnan M (2010) Modes of cell death in the pupal perivisceral fat body tissue of the silkworm Bombyx mori L. Cell Tissue Res 339:349–358

    Article  PubMed  Google Scholar 

  20. Dai JD, Gilbert LI (1999) An in vitro analysis of ecdysteroid-elicited cell death in the prothoracic gland of Manduca sexta. Cell Tissue Res 297:319–327

    Article  PubMed  CAS  Google Scholar 

  21. Muller F, Adori C, Sass M (2004) Autophagic and apoptotic features during programmed cell death in the fat body of the tobacco hornworm (Manduca sexta). Eur J Cell Biol 83:67–78

    Article  PubMed  CAS  Google Scholar 

  22. Lockshin RA, Zakeri Z (2004) Apoptosis, autophagy, and more. Int J Biochem Cell Biol 36:2405–2419

    Article  PubMed  CAS  Google Scholar 

  23. Silva-Zacarin EC, Tomaino GA, Brocheto-Braga MR, Taboga SR, De Moraes RL (2007) Programmed cell death in the larval salivary glands of Apis mellifera (Hymenoptera, Apidae). J Biosci 32:309–328

    Article  PubMed  CAS  Google Scholar 

  24. Facey COB, Lockshin RA (2010) The execution phase of autophagy associated PCD during insect metamorphosis. Apoptosis 15:639–652

    Article  PubMed  CAS  Google Scholar 

  25. Misch DW (1965) Alteration in subcellular structure of metamorphosing insect intestinal cells. Am Zool 5:699

    Google Scholar 

  26. Matsuura S, Tashiro Y (1976) Cup-shaped mitochondria in the posterior silk gland of Bombyx mori in the prepupal stadium. Cell Struct Funct 1:137–145

    Article  Google Scholar 

  27. Lockshin R, Beaulaton J (1979) Programmed cell death. Electrophysiological and ultrastructural correlations in metamorphosing muscles of lepidopteran insects. Tissue Cell 11:803–819

    Article  PubMed  CAS  Google Scholar 

  28. Beaulaton J, Lockshin R (1977) Ultrastructural study of the normal degeneration of the intersegmental muscles of Anthereae polyphemus and Manduca sexta (Insecta, Lepidoptera) with particular reference of cellular autophagy. J Morphol 154:39–58

    Article  PubMed  CAS  Google Scholar 

  29. de Sousa MEC, Wanderley-Teixeira V, Teixeira AAC, de Siqueira HAA, Santos FAB, Alves LC (2009) Ultrastructure of the Alabama argillacea (Hubner) (Lepidoptera: Noctuidae) midgut. Micron 40:743–749

    Article  PubMed  Google Scholar 

  30. Xia Q, Wang J, Zhou Z, Li R, Fan W, Cheng D et al (2008) The genome of a lepidopteran model insect, the silkworm Bombyx mori. Insect Biochem Mol Biol 38:1036–1045

    Article  Google Scholar 

  31. Tettamanti G, Cao Y, Feng C, Grimaldi A, de Eguileor M (2011) Autophagy in Lepidoptera: more than old wine in new bottle. Invert Surv J 8:5–14

    Google Scholar 

  32. Zhang X, Hu ZY, Li WF, Li QR, Deng XJ, Yang WY et al (2009) Systematic cloning and analysis of autophagy-related genes from the silkworm Bombyx mori. BMC Mol Biol 10:50

    Google Scholar 

  33. Li QR, Deng XJ, Yang WY, Huang ZJ, Tettamanti G, Cao Y et al (2010) Autophagy, apoptosis, and ecdysis-related gene expression in the silk gland of the silkworm (Bombyx mori) during metamorphosis. Can J Zool 88:1169–1178

    Article  CAS  Google Scholar 

  34. Vilaplana L, Pascual N, Perera N, Belles X (2007) Molecular characterization of an inhibitor of apoptosis in the Egyptian armyworm, Spodoptera littoralis, and midgut cell death during metamorphosis. Insect Biochem Mol Biol 37:1241–1248

    Article  PubMed  CAS  Google Scholar 

  35. Goncu E, Parlak O (2008) Some autophagic and apoptotic features of programmed cell death in the anterior silk glands of the silkworm, Bombyx mori. Autophagy 4:1069–1072

    PubMed  CAS  Google Scholar 

  36. Mpakou VE, Nezis IP, Stravopodis DJ, Margaritis LH, Papassideri IS (2006) Programmed cell death of the ovarian nurse cells during oogenesis of the silkmoth Bombyx mori. Dev Growth Differ 48:419–428

    Article  PubMed  Google Scholar 

  37. Hoffman KL, Weeks JC (2001) Role of caspases and mitochondria in the steroid-induced programmed cell death of a motoneuron during metamorphosis. Dev Biol 229:517–536

    Article  PubMed  CAS  Google Scholar 

  38. Kinch G, Hoffman KL, Rodrigues EM, Zee MC, Weeks JC (2003) Steroid-triggered programmed cell death of a motoneuron is autophagic and involves structural changes in mitochondria. J Comp Neurol 457:384–403

    Article  PubMed  CAS  Google Scholar 

  39. Mpakou VE, Nezis IP, Stravopodis DJ, Margaritis LH, Papassideri IS (2008) Different modes of programmed cell death during oogenesis of the silkmoth Bombyx mori. Autophagy 4:97–100

    PubMed  Google Scholar 

  40. Zhong Y, Imanishi S, Kawasaki H (2005) Ecdysone responsiveness of several cell lines derived from Bombyx mori. J Insect Biotech Sericol 74:117–123

    CAS  Google Scholar 

  41. Hakim RS, Baldwin K, Smagghe G (2010) Regulation of midgut growth, development, and metamorphosis. Annu Rev Entomol 55:593–608

    Article  PubMed  CAS  Google Scholar 

  42. Truman JW, Riddiford LM (2002) Endocrine insights into the evolution of metamorphosis in insects. Annu Rev Entomol 47:467–500

    Article  PubMed  CAS  Google Scholar 

  43. Wu Y, Parthasarathy R, Bai H, Palli SR (2006) Mechanisms of midgut remodeling: juvenile hormone analog methoprene blocks midgut metamorphosis by modulating ecdysone action. Mech Dev 123:530–547

    Article  PubMed  CAS  Google Scholar 

  44. Tettamanti G, Grimaldi A, Pennacchio F, de Eguileor M (2008) Toxoneuron nigriceps parasitization delays midgut replacement in fifth-instar Heliothis virescens larvae. Cell Tissue Res 332:371–379

    Article  PubMed  CAS  Google Scholar 

  45. Klionsky DJ, Abeliovich H, Agostinis P, Agrawal DK, Aliev G, Askew DS et al (2008) Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy 4:151–175

    PubMed  CAS  Google Scholar 

  46. Galluzzi L, Aaronson SA, Abrams J, Alnemri ES, Andrews DW, Baehrecke EH et al (2009) Guidelines for the use and interpretation of assays for monitoring cell death in higher eukaryotes. Cell Death Differ 16:1093–1107

    Article  PubMed  CAS  Google Scholar 

  47. Cappellozza L, Cappellozza S, Saviane A, Sbrenna G (2005) Artificial diet rearing system for the silkworm Bombyx mori (Lepidoptera: Bombycidae): effect of vitamin C deprivation on larval growth and cocoon production. Appl Entomol Zool 40:405–412

    Article  CAS  Google Scholar 

  48. Kiguchi K, Agui N (1981) Ecdysteroid levels and developmental events during larval moulting in the silkworm, Bombyx mori. J Insect Physiol 27:805–812

    Article  CAS  Google Scholar 

  49. Yla-Anttila P, Vihinen H, Jokitalo E, Eskelinen EL (2009) Monitoring autophagy by electron microscopy in mammalian cells. Methods Enzymol 452:143–164

    Article  PubMed  CAS  Google Scholar 

  50. Tettamanti G, Malagoli D (2008) In vitro methods to monitor autophagy in Lepidoptera. Method Enzymol 451:685–709

    Article  CAS  Google Scholar 

  51. Dartsch DC, Schaefer A, Boldt S, Kolch W, Marquardt H (2002) Comparison of anthracycline-induced death of human leukemia cells: programmed cell death versus necrosis. Apoptosis 7:537–548

    Article  PubMed  CAS  Google Scholar 

  52. Hu C, Zhang XA, Teng YB, Hu HX, Li WF (2010) Structure of autophagy-related protein Atg8 from the silkworm Bombyx mori. Acta Crystallogr F 66:787–790

    Article  Google Scholar 

  53. Sambrook J, Fritsch EF, Maniatis T (1989) Detection and analysis of proteins expressed from cloned genes. In: Molecular cloning—a laboratory manual. Cold Spring Harbor Laboratory Press, New York, pp 18.11–18.88

  54. Welinder C, Ekblad L (2011) Coomassie staining as loading control in Western blot analysis. J Proteome Res 10:1416–1419

    Article  PubMed  CAS  Google Scholar 

  55. Romero-Calvo I, Ocon B, Martinez-Moya P, Suarez MD, Zarzuelo A, Martinez-Augustin O et al (2010) Reversible Ponceau staining as a loading control alternative to actin in Western blots. Anal Biochem 401:318–320

    Article  PubMed  CAS  Google Scholar 

  56. Ferguson RE, Carroll HP, Harris A, Maher ER, Selby PJ, Banks RE (2005) Housekeeping proteins: a preliminary study illustrating some limitations as useful references in protein expression studies. Proteomics 5:566–571

    Article  PubMed  CAS  Google Scholar 

  57. Cardoso TC, Castanheira TLL, Teixeira MCB, Rosa ACG, Hirata KY, Astolphi RD et al (2008) Validation of an immunohistochemistry assay to detect turkey coronavirus: a rapid and simple screening tool for limited resource settings. Poultry Sci 87:1347–1352

    Article  CAS  Google Scholar 

  58. Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  59. Moss WD (1983) Acid phosphatases. In: Bergmeyer J, Grassi M (eds) Esterases, glycosidases, lyases, ligases, vol 4: methods of enzymatic analysis. Verlag-Chemie, Weinheim, pp 92–106

    Google Scholar 

  60. Mizushima N, Yoshimori T, Ohsumi Y (2010) The role of Atg proteins in autophagosome formation. Annu Rev Cell Dev Biol. doi:10.1146/annurev-cellbio-092910-154005

  61. Zhang JY, Pan MH, Sun ZY, Huang SJ, Yu ZS, Liu D et al (2010) The genomic underpinnings of apoptosis in the silkworm, Bombyx mori. BMC Genomics 11:611

    Article  PubMed  Google Scholar 

  62. Courtiade J, Pauchet Y, Vogel H, Heckel DG (2011) A comprehensive characterization of the caspase gene family in insects from the order Lepidoptera. BMC Genomics 12:357

    Article  PubMed  CAS  Google Scholar 

  63. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(−Delta Delta C) method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  64. Maiuri MC, Zalckvar E, Kimchi A, Kroemer G (2007) Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol 8:741–752

    Article  PubMed  CAS  Google Scholar 

  65. Martinet W, De Meyer GR (2008) Autophagy in atherosclerosis. Curr Atheroscler Rep 10:216–223

    Article  PubMed  CAS  Google Scholar 

  66. Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239–257

    Article  PubMed  CAS  Google Scholar 

  67. Griswold AJ, Chang KT, Runko AP, Knight MA, Min KT (2008) Sir2 mediates apoptosis through JNK-dependent pathways in Drosophila. Proc Natl Acad Sci USA 105:8673–8678

    Article  PubMed  CAS  Google Scholar 

  68. Goncu E, Parlak O (2011) The influence of juvenile hormone analogue, fenoxycarb on the midgut remodeling in Bombyx mori (L., 1758) (Lepidoptera: Bombycidae) during larval–pupal metamorphosis. Turk J Entomol 35:179–194

    Google Scholar 

  69. Chiarelli R, Agnello M, Roccheri MC (2011) Sea urchin embryos as a model system for studying autophagy induced by cadmium stress. Autophagy 7:1028–1034

    Article  PubMed  CAS  Google Scholar 

  70. Buzgariu W, Chera S, Galliot B (2008) Methods to investigate autophagy during starvation and regeneration in hydra. Methods Enzymol 451:409–437

    Article  PubMed  CAS  Google Scholar 

  71. Shelly S, Lukinova N, Bambina S, Berman A, Cherry S (2009) Autophagy is an essential component of Drosophila immunity against vesicular stomatitis virus. Immunity 30:588–598

    Article  PubMed  CAS  Google Scholar 

  72. Barth JM, Szabad J, Hafen E, Kohler K (2011) Autophagy in Drosophila ovaries is induced by starvation and is required for oogenesis. Cell Death Differ 18(6):915–924

    Article  PubMed  CAS  Google Scholar 

  73. Denton D, Shravage B, Simin R, Baehrecke EH, Kumar S (2010) Larval midgut destruction in Drosophila: not dependent on caspases but suppressed by the loss of autophagy. Autophagy 6:163–165

    Article  PubMed  Google Scholar 

  74. Dupere-Minier G, Hamelin C, Desharnais P, Bernier J (2004) Apoptotic volume decrease, pH acidification and chloride channel activation during apoptosis requires CD45 expression in HPB-ALL T cells. Apoptosis 9:543–551

    Article  PubMed  CAS  Google Scholar 

  75. Thummel CS (2001) Steroid-triggered death by autophagy. Bioessays 23:677–682

    Article  PubMed  CAS  Google Scholar 

  76. Rybczynski R (2005) Prothoracic hormone. In: Gilbert LI, Iatrou K, Gill SS (eds) Endocrinology, vol 3: comprehensive molecular insect science. Elsevier Pergamon, Oxford, pp 61–123

    Chapter  Google Scholar 

  77. Eisenberg-Lerner A, Bialik S, Simon HU, Kimchi A (2009) Life and death partners: apoptosis, autophagy and the cross-talk between them. Cell Death Differ 16:966–975

    Article  PubMed  CAS  Google Scholar 

  78. Scott RC, Juhasz G, Neufeld TP (2007) Direct induction of autophagy by Atg1 inhibits cell growth and induces apoptotic cell death. Curr Biol 17:1–11

    Article  PubMed  CAS  Google Scholar 

  79. Codogno P, Meijer AJ (2006) Atg5: more than an autophagy factor. Nat Cell Biol 8:1045–1047

    Article  PubMed  CAS  Google Scholar 

  80. Yue ZY, Jin SK, Yang CW, Levine AJ, Heintz N (2003) Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci USA 100:15077–15082

    Article  PubMed  CAS  Google Scholar 

  81. Yousefi S, Perozzo R, Schmid I, Ziemiecki A, Schaffner T, Scapozza L et al (2006) Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis. Nat Cell Biol 8:1124–1132

    Article  PubMed  CAS  Google Scholar 

  82. Neufeld TP, Baehrecke EH (2008) Eating on the fly: function and regulation of autophagy during cell growth, survival and death in Drosophila. Autophagy 4:557–562

    PubMed  CAS  Google Scholar 

  83. Juhasz G, Erdi B, Sass M, Neufeld TP (2007) Atg7-dependent autophagy promotes neuronal health, stress tolerance, and longevity but is dispensable for metamorphosis in Drosophila. Gene Dev 21:3061–3066

    Article  PubMed  CAS  Google Scholar 

  84. Scott RC, Schuldiner O, Neufeld TP (2004) Role and regulation of starvation-induced autophagy in the Drosophila fat body. Dev Cell 7:167–178

    Article  PubMed  CAS  Google Scholar 

  85. Rabinowitz JD, White E (2010) Autophagy and metabolism. Science 330:1344–1348

    Article  PubMed  CAS  Google Scholar 

  86. Parenti P, Giordana B, Sacchi VF, Hanozet GM, Guerritore A (1985) Metabolic activity related to the potassium pump in the midgut of Bombyx mori larvae. J Exp Biol 116:69–78

    Google Scholar 

  87. Jellinger KA, Stadelmann C (2001) Problems of cell death in neurodegeneration and Alzheimer’s disease. J Alzheimers Dis 3:31–40

    PubMed  CAS  Google Scholar 

  88. Guillon-Munos A, van Bemmelen MXP, Clarke PGH (2006) Autophagy can be a killer even in apoptosis-competent cells. Autophagy 2:140–142

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Professor Congzhao Zhou (University of Science and Technology of China) for providing pET-28b-BmATG8 expression vector. This work was supported by a grant from the Italian Ministry of University and Research (PRIN 2008, protocol 2008SMMCJY) and by FAR 2009–2010 (University of Insubria) to GT, and by grants from the “973” National Basic Research Program of China (No. 2012CB114602), the “863” National High Technology and Research Program of China (No. SQ2010AA1000688007) and Guangdong Province Natural Science Foundation (No. 06105204) to YC and QF.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gianluca Tettamanti, Yang Cao or Qili Feng.

Additional information

E. Franzetti and Z.-J. Huang contributed equally to this work.

An erratum to this article can be found at http://dx.doi.org/10.1007/s10495-011-0693-y.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Franzetti, E., Huang, ZJ., Shi, YX. et al. Autophagy precedes apoptosis during the remodeling of silkworm larval midgut. Apoptosis 17, 305–324 (2012). https://doi.org/10.1007/s10495-011-0675-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-011-0675-0

Keywords

Navigation