Skip to main content

Advertisement

Log in

Calpain, Atg5 and Bak play important roles in the crosstalk between apoptosis and autophagy induced by influx of extracellular calcium

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Calcium (Ca2+) signals are involved in important checkpoints in cell death pathways and promote both apoptosis and autophagy. However, the relationship between autophagy and apoptosis in response to Ca2+ level elevation is poorly understood. Here, we provided evidence that the influx of extracellular Ca2+ triggered by Trichokonin VI (TK VI), an antimicrobial peptide, induced calpain-dependent apoptosis and autophagy in hepatocellular carcinoma (HCC) cells. Remarkably, TK VI preferentially induced apoptosis that was associated with calpain-mediated Bax and Atg5 cleavage, which resulted in the collapse of the mitochondrial membrane potential and cytochrome c release. Interestingly, truncated, but not full-length Atg5, associated with Bcl-xL and promoted the intrinsic pathway. Moreover, TK VI treatment induced reactive oxygen species (ROS) accumulation, an effect in which Bak might play a major role. This accumulation of ROS resulted in the subsequent disposal of damaged mitochondria within autophagosomes via Atg5-mediated and mitochondria-selective autophagy. Both the inhibition of calpain activity and Bax deficiency activated a switch that promoted an enhancement of autophagy. The inhibition of both apoptosis and autophagy significantly attenuated the TK VI cytotoxicity, indicating that the two processes had stimulatory effects during TK VI-meditated cell death. These results suggested that calpain, Bak and Atg5 were molecular links between autophagy and apoptosis and revealed novel aspects of the crosstalk between these two processes. The potential of TK VI is proposed as a promising anticancer agent for its well-characterized activity of Ca2+ agonist and as a possible novel therapeutic strategy that acts on cancer cell mitochondria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Harr MW, Distelhorst CW (2010) Apoptosis and autophagy: decoding calcium signals that mediate life or death. Cold Spring Harb Perspect Biol 2:a005579

    Article  PubMed  CAS  Google Scholar 

  2. Scott RC, Schuldiner O, Neufeld TP (2004) Role and regulation of starvation-induced autophagy in the Drosophila fat body. Dev Cell 7:167–178

    Article  PubMed  CAS  Google Scholar 

  3. Takeuchi H, Kondo Y, Fujiwara K, Kanzawa T, Aoki H et al (2005) Synergistic augmentation of rapamycin-induced autophagy in malignant glioma cells by phosphatidylinositol 3-kinase/protein kinase B inhibitors. Cancer Res 65:3336–3346

    PubMed  CAS  Google Scholar 

  4. Xu ZX, Liang J, Haridas V, Gaikwad A, Connolly FP et al (2007) A plant triterpenoid, avicin D, induces autophagy by activation of AMP-activated protein kinase. Cell Death Differ 14:1948–1957

    Article  PubMed  CAS  Google Scholar 

  5. Chen N, Karantza-Wadsworth V (2009) Role and regulation of autophagy in cancer. Biochim Biophys Acta 1793:1516–1523

    Article  PubMed  CAS  Google Scholar 

  6. Xue L, Fletcher GC, Tolkovsky AM (2001) Mitochondria are selectively eliminated from eukaryotic cells after blockade of caspases during apoptosis. Curr Biol 11:361–365

    Article  PubMed  CAS  Google Scholar 

  7. Thorburn A (2008) Apoptosis and autophagy: regulatory connections between two supposedly different processes. Apoptosis 13:1–9

    Article  PubMed  CAS  Google Scholar 

  8. Wang SH, Shih YL, Ko WC, Wei YH, Shih CM (2008) Cadmium-induced autophagy and apoptosis are mediated by a calcium signaling pathway. Cell Mol Life Sci 65:3640–3652

    Article  PubMed  CAS  Google Scholar 

  9. Yee KS, Wilkinson S, James J, Ryan KM, Vousden KH (2009) PUMA- and Bax-induced autophagy contributes to apoptosis. Cell Death Differ 16:1135–1145

    Article  PubMed  CAS  Google Scholar 

  10. Crighton D, Wilkinson S, O’Prey J, Syed N, Smith P et al (2006) DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell 126:121–134

    Article  PubMed  CAS  Google Scholar 

  11. Bhoopathi P, Chetty C, Gujrati M, Dinh DH, Rao JS et al (2010) Cathepsin B facilitates autophagy-mediated apoptosis in SPARC overexpressed primitive neuroectodermal tumor cells. Cell Death Differ 17:1529–1539

    Article  PubMed  CAS  Google Scholar 

  12. Kim JY, Yu SJ, Oh HJ, Lee JY, Kim Y et al (2011) Panaxydol induces apoptosis through an increased intracellular calcium level, activation of JNK and p38 MAPK and NADPH oxidase-dependent generation of reactive oxygen species. Apoptosis 16:347–358

    Article  PubMed  CAS  Google Scholar 

  13. Mathiasen IS, Sergeev IN, Bastholm L, Elling F, Norman AW et al (2002) Calcium and calpain as key mediators of apoptosis-like death induced by vitamin D compounds in breast cancer cells. J Biol Chem 277:30738–30745

    Article  PubMed  CAS  Google Scholar 

  14. Hetz C, Bono MR, Barros LF, Lagos R (2002) Microcin E492, a channel-forming bacteriocin from Klebsiella pneumoniae, induces apoptosis in some human cell lines. Proc Natl Acad Sci 99:2696–2701

    Article  PubMed  CAS  Google Scholar 

  15. Ye JS, Zhengm XJ, Leungm KW, Chenm HM, Sheu FS (2004) Induction of transient ion channel-like pores in a cancer cell by antibiotic peptide. J Biochem 136:255–259

    Article  PubMed  CAS  Google Scholar 

  16. Chakrabarti G, McClane BA (2005) The importance of calcium influx, calpain and calmodulin for the activation of CaCo-2 cell death pathways by Clostridium perfringens enterotoxin. Cell Microbiol 7:129–146

    Article  PubMed  CAS  Google Scholar 

  17. Cywes Bentley C, Hakansson A, Christianson J, Wessels MR (2005) Extracellular group A Streptococcus induces keratinocyte apoptosis by dysregulating calcium signalling. Cell Microbiol 7:945–955

    Article  PubMed  CAS  Google Scholar 

  18. Swerdlow S, Distelhorst CW (2007) Bcl-2-regulated calcium signals as common mediators of both apoptosis and autophagy. Dev Cell 12:178–179

    Article  PubMed  CAS  Google Scholar 

  19. Toniolo C, Crisma M, Formaggio F, Peggion C, Epand RF et al (2001) Lipopeptaibols, a novel family of membrane active, antimicrobial peptides. Cell Mol Life Sci 58:1179–1188

    Article  PubMed  CAS  Google Scholar 

  20. Chugh JK, Wallace BA (2001) Peptaibols: models for ion channels. Biochem Soc Trans 29:565–570

    Article  PubMed  CAS  Google Scholar 

  21. Polster BM, Basañez G, Etxebarria A, Hardwick JM, Nicholls DG (2005) Calpain I induces cleavage and release of apoptosis-inducing factor from isolated mitochondria. J Biol Chem 280:6447–6454

    Article  PubMed  CAS  Google Scholar 

  22. Anguissola S, Köhler B, O’Byrne R, Düssmann H, Cannon MD et al (2009) Bid and calpains cooperate to trigger oxaliplatin-induced apoptosis of cervical carcinoma HeLa cells. Mol Pharmacol 76:998–1010

    Article  PubMed  CAS  Google Scholar 

  23. Yousefi S, Perozzo R, Schmid I, Ziemiecki A, Schaffner T et al (2006) Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis. Nat Cell Biol 8:1124–1132

    Article  PubMed  CAS  Google Scholar 

  24. Lepine S, Allegood JC, Edmonds Y, Milstien S, Spiegel S (2011) Autophagy induced by deficiency of sphingosine-1-phosphate phosphohydrolase 1 is switched to apoptosis by calpain-mediated autophagy-related gene 5 (Atg5) cleavage. J Biol Chem 286:44380–44390

    Article  PubMed  CAS  Google Scholar 

  25. Bhutia SK, Das SK, Azab B, Dash R, Su ZZ et al (2011) Autophagy switches to apoptosis in prostate cancer cells infected with melanoma differentiation associated gene-7/interleukin-24 (mda-7/IL-24). Autophagy 7:1076–1077

    Article  PubMed  CAS  Google Scholar 

  26. Vaquero EC, Rickmann M, Molero X (2007) Tocotrienols: balancing the mitochondrial crosstalk between apoptosis and autophagy. Autophagy 3:652–654

    PubMed  CAS  Google Scholar 

  27. Luo S, Rubinsztein DC (2007) Atg5 and Bcl-2 provide novel insights into the interplay between apoptosis and autophagy. Cell Death Differ 14:1247–1250

    Article  PubMed  CAS  Google Scholar 

  28. Zhou F, Yang Y, Xing D (2011) Bcl-2 and Bcl-xL play important roles in the crosstalk between autophagy and apoptosis. FEBS J 278:403–413

    Article  PubMed  CAS  Google Scholar 

  29. Scherz-Shouval R, Elazar Z (2007) ROS, mitochondria and the regulation of autophagy. Trends Cell Biol 17:422–427

    Article  PubMed  CAS  Google Scholar 

  30. Chen Y, McMillan-Ward E, Kong J, Israels SJ, Gibson SB (2008) Oxidative stress induces autophagic cell death independent of apoptosis in transformed and cancer cells. Cell Death Differ 15:171–182

    Article  PubMed  CAS  Google Scholar 

  31. Dewaele M, Maes H, Agostinis P (2010) ROS-mediated mechanisms of autophagy stimulation and their relevance in cancer therapy. Autophagy 6:838–854

    Article  PubMed  CAS  Google Scholar 

  32. Shi M, Wang HN, Xie ST, Luo Y, Sun CY et al (2010) Antimicrobial peptaibols, novel suppressors of tumor cells, targeted calcium-mediated apoptosis and autophagy in human hepatocellular carcinoma cells. Mol Cancer 9:26–41

    Article  PubMed  Google Scholar 

  33. He TC, Zhou S, da Costa LT, Yu J, Kinzler KW et al (1998) A simplified system for generating recombinant adenoviruses. Proc Natl Acad Sci 95:2509–2514

    Article  PubMed  CAS  Google Scholar 

  34. Cao X, Deng X, May WS (2003) Cleavage of Bax to p18 Bax accelerates stress-induced apoptosis, and a cathepsin-like protease may rapidly degrade p18 Bax. Blood 102:2605–2614

    Article  PubMed  CAS  Google Scholar 

  35. Li X, Marani M, Yu J, Nan B, Roth JA et al (2001) Adenovirus-mediated Bax overexpression for the induction of therapeutic apoptosis in prostate cancer. Cancer Res 61:186–191

    PubMed  CAS  Google Scholar 

  36. Hu B, Zhu H, Qiu S, Su Y, Ling W et al (2004) Enhanced TRAIL sensitivity by E1A expression in human cancer and normal cell lines: inhibition by adenovirus E1B19K and E3 proteins. Biochem Biophys Res Commun 325:1153–1162

    Article  PubMed  CAS  Google Scholar 

  37. Chiu HW, Lin JH, Chen YA, Ho SY, Wang YJ (2010) Combination treatment with arsenic trioxide and irradiation enhances cell-killing effects in human fibrosarcoma cells in vitro and in vivo through induction of both autophagy and apoptosis. Autophagy 6:353–365

    Article  PubMed  CAS  Google Scholar 

  38. Herman-Antosiewicz A, Johnson DE, Singh SV (2006) Sulforaphane causes autophagy to inhibit release of cytochrome C and apoptosis in human prostate cancer cells. Cancer Res 66:5828–5835

    Article  PubMed  CAS  Google Scholar 

  39. Hail N Jr, Konopleva M, Sporn M, Lotan R, Andreeff M (2004) Evidence supporting a role for calcium in apoptosis induction by the synthetic triterpenoid 2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid (CDDO). J Biol Chem 279:11179–11187

    Article  PubMed  CAS  Google Scholar 

  40. Werneburg NW, Guicciardi ME, Bronk SF, Kaufmann SH, Gores GJ (2007) Tumor necrosis factor-related apoptosis-inducing ligand activates a lysosomal pathway of apoptosis that is regulated by Bcl-2 proteins. J Biol Chem 282:28960–28970

    Article  PubMed  CAS  Google Scholar 

  41. Xin M, Deng X (2005) Nicotine inactivation of the proapoptotic function of Bax through phosphorylation. J Biol Chem 280:10781–10789

    Article  PubMed  CAS  Google Scholar 

  42. Choi SY, Kim MJ, Kang CM, Bae S, Cho CK et al (2006) Activation of Bak and Bax through c-Abl-protein kinase C-δ-p38 MAPK signaling in response to ionizing radiation in human non-small cell lung cancer cells. J Biol Chem 281:7049–7059

    Article  PubMed  CAS  Google Scholar 

  43. Bai DS, Dai Z, Zhou J, Liu YK, Qiu SJ et al (2009) Capn4 overexpression underlies tumor invasion and metastasis after liver transplantation for hepatocellular carcinoma. Hepatology 49:460–470

    Article  PubMed  CAS  Google Scholar 

  44. Gao M, Yeh PY, Lu YS, Hsu CH, Chen KF et al (2008) OSU-03012, a novel celecoxib derivative, induces reactive oxygen species-related autophagy in hepatocellular carcinoma. Cancer Res 68:9348–9357

    Article  PubMed  CAS  Google Scholar 

  45. Bonfoco E, Krainc D, Ankarcrona M, Nicotera P, Lipton SA (1995) Apoptosis and necrosis: two events induced, respectively, by mild and intense insults with N-methyl-d-aspartate or nitric oxide/superoxide in cortical cell cultures. Proc Natl Acad Sci 92:7162–7166

    Article  PubMed  CAS  Google Scholar 

  46. Wood DE, Newcomb EW (1999) Caspase-dependent activation of calpain during drug-induced apoptosis. J Biol Chem 274:8309–8315

    Article  PubMed  CAS  Google Scholar 

  47. Bhutia SK, Dash R, Das SK, Azab B, Su ZZ et al (2010) Mechanism of autophagy to apoptosis switch triggered in prostate cancer cells by antitumor cytokine melanoma differentiation-associated gene 7/interleukin-24. Cancer Res 70:3667–3676

    Article  PubMed  CAS  Google Scholar 

  48. Gao G, Dou QP (2000) N-terminal cleavage of bax by calpain generates a potent proapoptotic 18-kDa fragment that promotes bcl-2-independent cytochrome C release and apoptotic cell death. J Cell Biochem 80:53–72

    Article  PubMed  CAS  Google Scholar 

  49. Vucicevic L, Misirkic M, Janjetovic K, Vilimanovich U, Sudar E et al (2011) Compound C induces protective autophagy in cancer cells through AMPK inhibition-independent blockade of Akt/mTOR pathway. Autophagy 7:40–50

    Article  PubMed  CAS  Google Scholar 

  50. Kim EH, Sohn S, Kwon HJ, Kim SU, Kim MJ et al (2007) Sodium selenite induces superoxide-mediated mitochondrial damage and subsequent autophagic cell death in malignant glioma cells. Cancer Res 67:6314–6324

    Article  PubMed  CAS  Google Scholar 

  51. Scherz-Shouval R, Shvets E, Fass E, Shorer H, Gil L et al (2007) Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J 26:1749–1760

    Article  PubMed  CAS  Google Scholar 

  52. Quinsay MN, Thomas RL, Lee Y, Gustafsson AB (2010) Bnip3-mediated mitochondrial autophagy is independent of the mitochondrial permeability transition pore. Autophagy 6:855–862

    Article  PubMed  CAS  Google Scholar 

  53. Nicolau-Galmés F, Asumendi A, Alonso-Tejerina E, Pérez-Yarza G, Jangi SM et al (2011) Terfenadine induces apoptosis and autophagy in melanoma cells through ROS-dependent and -independent mechanisms. Apoptosis 16:1253–1267

    Article  PubMed  Google Scholar 

  54. Tolkovsky AM (2009) Mitophagy. Biochim Biophys Acta 1793:1508–1515

    Article  PubMed  CAS  Google Scholar 

  55. Maiuri MC, Zalckvar E, Kimchi A, Kroemer G (2007) Self-eating and self-killing: cross talk between autophagy and apoptosis. Nat Rev Mol Cell Biol 8:741–752

    Article  PubMed  CAS  Google Scholar 

  56. Wei Y, Kadia T, Tong W, Zhang M, Jia Y et al (2010) The combination of a histone deacetylase inhibitor with the BH3-mimetic GX15-070 has synergistic antileukemia activity by activating both apoptosis and autophagy. Autophagy 6:976–978

    Article  PubMed  Google Scholar 

  57. Wood DE, Thomas A, Devi LA, Berman Y, Beavis RC et al (1998) Bax cleavage is mediated by calpain during drug-induced apoptosis. Oncogene 17:1069–1078

    Article  PubMed  CAS  Google Scholar 

  58. Moubarak R, Yuste VJ, Artus C (2007) Sequential activation of poly (ADP-Ribose) polymerase 1, calpains, and bax is essential in apoptosis-inducing factor-mediated programmed necrosis. Mol Cell Biol 27:4844–4862

    Article  PubMed  CAS  Google Scholar 

  59. Toyota H, Yanase N, Yoshimoto T, Moriyama M, Sudo T et al (2003) Calpain-induced Bax-cleavage product is a more potent inducer of apoptotic cell death than wild-type Bax. Cancer Lett 189:221–230

    Article  PubMed  CAS  Google Scholar 

  60. Yu L, Wan F, Dutta S, Welsh S, Liu Z et al (2006) Autophagic programmed cell death by selective catalase degradation. Proc Natl Acad Sci 103:4952–4957

    Article  PubMed  CAS  Google Scholar 

  61. Ghavami S, Eshragi M, Ande SR, Chazin WJ, Klonisch T et al (2010) S100A8/A9 induces autophagy and apoptosis via ROS mediated cross-talk between mitochondria and lysosomes that involves BNIP3. Cell Res 20:314–331

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Xiao-Yan Li for providing a vector containing cleaved atg5 gene (Academy of Military Medical Sciences, P. R. China). We are grateful to Dr. Adam Salmon (University of Texas Health Science Center at San Antonio) for his critical revision on this manuscript. The work was supported by Hi-Tech Research and Development program of China [2011AA090704], National Natural Science Foundation of China [30870047, 81071804]; Specialized Research Fund for the Doctoral Program of Higher Education [BA2009YY009]; Program of Shandong for Taishan Scholars, Natural Science Foundation of Shandong Province [JQ200910, 2008BS02019]; and Independent Innovation Foundation of Shandong University [2009TS079, 2011DX002].

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Zhong Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, M., Zhang, T., Sun, L. et al. Calpain, Atg5 and Bak play important roles in the crosstalk between apoptosis and autophagy induced by influx of extracellular calcium. Apoptosis 18, 435–451 (2013). https://doi.org/10.1007/s10495-012-0786-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-012-0786-2

Keywords

Navigation