Skip to main content
Log in

AGGF1 protects from myocardial ischemia/reperfusion injury by regulating myocardial apoptosis and angiogenesis

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

A Correction to this article was published on 06 November 2021

This article has been updated

Abstract

Angiogenic factor with G patch and FHA domains 1 (AGGF1) is a newly identified proangiogenic protein, which plays an important role in vascular disease and angiogenesis. However, its role in myocardial ischemia/reperfusion (I/R) injury remains unknown. This study investigated whether AGGF1 is involved in the pathogenesis of mouse myocardial I/R injury and the underlying mechanisms. Wild-type (WT) C57BL/6 J mice were treated at 30 min prior to I/R injury with anti-AGGF1 neutralizing antibody (3 mg/kg) or recombinant human AGGF1 (rhAGGF1, 0.25 mg/kg). After I/R injury, the infarct size, the number of TUNEL-positive cardiomyocytes, Bax/Bcl2 ratio, inflammatory cytokine expression and angiogenesis were markedly increased as compared with sham control. Treatment of WT mice with anti-AGGF1 neutralizing antibody resulted in exaggeration of myocardial I/R injury but reducing angiogenesis. In contrast, administration of rhAGGF1 markedly reversed these effects. Furthermore, anti-AGGF1- or rhAGGF1-mediated effects on I/R-induced cardiac apoptosis, inflammation and angiogenesis were dose dependent. In addition, the protective effects of AGGF1 on cardiomyocyte apoptosis and inflammation were confirmed in cultured cardiomyocytes after I/R. Finally, these effects were associated with activation of ERK1/2, Stat3 and HIF-1α/VEGF pathways and inhibition of activation of NF-κB, p53 and JNK1/2 pathways. In conclusion, we report the first in vivo and in vitro evidence that AGGF1 reduces myocardial apoptosis and inflammation and enhances angiogenesis, leading to decreased infarct size after I/R injury. These results may provide a novel therapeutic approach for ischemic heart diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

References

  1. Hosoda T, Kajstura J, Leri A, Anversa P (2010) Mechanisms of myocardial regeneration. Circ J 74:13–17

    Article  CAS  PubMed  Google Scholar 

  2. Eefting F, Rensing B, Wigman J, Pannekoek WJ, Liu WM, Cramer MJ et al (2004) Role of apoptosis in reperfusion injury. Cardiovasc Res 61:414–426

    Article  CAS  PubMed  Google Scholar 

  3. El-Menyar AA (2008) Cytokines and myocardial dysfunction: state of the art. J Card Fail 14:61–74

    Article  CAS  PubMed  Google Scholar 

  4. Armstrong SC (2004) Protein kinase activation and myocardial ischemia/reperfusion injury. Cardiovasc Res 61:427–436

    Article  CAS  PubMed  Google Scholar 

  5. Tabibiazar R, Rockson SG (2001) Angiogenesis and the ischaemic heart. Eur Heart J 22:903–918

    Article  CAS  PubMed  Google Scholar 

  6. Syed IS, Sanborn TA, Rosengart TK (2004) Therapeutic angiogenesis: a biologic bypass. Cardiology 101:131–143

    Article  PubMed  Google Scholar 

  7. Mitsos S, Katsanos K, Koletsis E, Kagadis GC, Anastasiou N, Diamantopoulos A et al (2012) Therapeutic angiogenesis for myocardial ischemia revisited: basic biological concepts and focus on latest clinical trials. Angiogenesis 15:1–22

    Article  CAS  PubMed  Google Scholar 

  8. Han Y, Yang K, Proweller A, Zhou G, Jain MK, Ramirez-Bergeron DL (2012) Inhibition of ARNT severely compromises endothelial cell viability and function in response to moderate hypoxia. Angiogenesis 15:409–420

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Timur AA, Driscoll DJ, Wang Q (2005) Biomedicine and diseases: the Klippel-Trenaunay syndrome, vascular anomalies and vascular morphogenesis. Cell Mol Life Sci 62:1434–1447

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Tian XL, Kadaba R, You SA, Liu M, Timur AA, Yang L et al (2004) Identification of an angiogenic factor that when mutated causes susceptibility to Klippel-Trenaunay syndrome. Nature 427:640–645

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Fan C, Ouyang P, Timur AA, He P, You SA, Hu Y et al (2009) Novel roles of GATA1 in regulation of angiogenic factor AGGF1 and endothelial cell function. J Biol Chem 284:23331–23343

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Li HH, Kedar V, Zhang C, McDonough H, Arya R, Wang DZ et al (2004) Atrogin-1/muscle atrophy F-box inhibits calcineurin-dependent cardiac hypertrophy by participating in an SCF ubiquitin ligase complex. J Clin Invest 114:1058–1071

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Zheng W, Seftor EA, Meininger CJ, Hendrix MJ, Tomanek RJ (2001) Mechanisms of coronary angiogenesis in response to stretch: role of VEGF and TGF-beta. Am J Physiol Heart Circ Physiol 280:H909–H917

    CAS  PubMed  Google Scholar 

  14. Zheng W, Christensen LP, Tomanek RJ (2004) Stretch induces upregulation of key tyrosine kinase receptors in microvascular endothelial cells. Am J Physiol Heart Circ Physiol 287:H2739–H2745

    Article  CAS  PubMed  Google Scholar 

  15. Xie P, Guo S, Fan Y, Zhang H, Gu D, Li H (2009) Atrogin-1/MAFbx enhances simulated ischemia/reperfusion-induced apoptosis in cardiomyocytes through degradation of MAPK phosphatase-1 and sustained JNK activation. J Biol Chem 284:5488–5496

    Article  CAS  PubMed  Google Scholar 

  16. Zhang Y, Zeng Y, Wang M, Tian C, Ma X, Chen H et al (2011) Cardiac-specific overexpression of E3 ligase Nrdp1 increases ischemia and reperfusion-induced cardiac injury. Basic Res Cardiol 106:371–383

    Article  CAS  PubMed  Google Scholar 

  17. Amaral SL, Maier KG, Schippers DN, Roman RJ, Greene AS (2003) CYP4A metabolites of arachidonic acid and VEGF are mediators of skeletal muscle angiogenesis. Am J Physiol Heart Circ Physiol 284:H1528–H1535

    CAS  PubMed  Google Scholar 

  18. Besse S, Boucher F, Linguet G, Riou L, De Leiris J, Riou B et al (2010) Intramyocardial protein therapy with vascular endothelial growth factor (VEGF-165) induces functional angiogenesis in rat senescent myocardium. J Physiol Pharmacol 61:651–661

    CAS  PubMed  Google Scholar 

  19. Yang K, Zhang TP, Tian C, Jia LX, Du J, Li HH (2012) Carboxyl terminus of heat shock protein 70-interacting protein inhibits angiotensin II-induced cardiac remodeling. Am J Hypertens 25:994–1001

    Article  CAS  PubMed  Google Scholar 

  20. Zhang Y, Kang YM, Tian C, Zeng Y, Jia LX, Ma X et al (2011) Overexpression of Nrdp1 in the heart exacerbates doxorubicin-induced cardiac dysfunction in mice. PLoS One 6:e21104

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Li HH, Willis MS, Lockyer P, Miller N, McDonough H, Glass DJ et al (2007) Atrogin-1 inhibits Akt-dependent cardiac hypertrophy in mice via ubiquitin-dependent coactivation of Forkhead proteins. J Clin Invest 117:3211–3223

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Wang L, Li YL, Zhang CC, Cui W, Wang X, Xia Y et al (2013) Inhibition of Toll-like receptor 2 reduces cardiac fibrosis by attenuating macrophage-mediated inflammation. Cardiovasc Res 101:383–392

    Article  PubMed  Google Scholar 

  23. Song L, Yang H, Wang HX, Tian C, Liu Y, Zeng XJ et al (2013) Inhibition of 12/15 lipoxygenase by baicalein reduces myocardial ischemia/reperfusion injury via modulation of multiple signaling pathways. Apoptosis 19:567–580

    Article  Google Scholar 

  24. Lu Q, Yao Y, Yao Y, Liu S, Huang Y, Lu S et al (2012) Angiogenic factor AGGF1 promotes therapeutic angiogenesis in a mouse limb ischemia model. PLoS One 7:e46998

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Hamacher-Brady A, Brady NR, Gottlieb RA (2006) The interplay between pro-death and pro-survival signaling pathways in myocardial ischemia/reperfusion injury: apoptosis meets autophagy. Cardiovasc Drugs Ther 20:445–462

    Article  CAS  PubMed  Google Scholar 

  26. Lopez-Neblina F, Toledo AH, Toledo-Pereyra LH (2005) Molecular biology of apoptosis in ischemia and reperfusion. J Invest Surg 18:335–350

    Article  PubMed  Google Scholar 

  27. Sano M, Minamino T, Toko H, Miyauchi H, Orimo M, Qin Y et al (2007) p53-induced inhibition of Hif-1 causes cardiac dysfunction during pressure overload. Nature 446:444–448

    Article  CAS  PubMed  Google Scholar 

  28. Song H, Yin D, Liu Z (2012) GDF-15 promotes angiogenesis through modulating p53/HIF-1alpha signaling pathway in hypoxic human umbilical vein endothelial cells. Mol Biol Rep 39:4017–4022

    Article  CAS  PubMed  Google Scholar 

  29. Kelly BD, Hackett SF, Hirota K, Oshima Y, Cai Z, Berg-Dixon S et al (2003) Cell type-specific regulation of angiogenic growth factor gene expression and induction of angiogenesis in nonischemic tissue by a constitutively active form of hypoxia-inducible factor 1. Circ Res 93:1074–1081

    Article  CAS  PubMed  Google Scholar 

  30. Pugh CW, Ratcliffe PJ (2003) Regulation of angiogenesis by hypoxia: role of the HIF system. Nat Med 9:677–684

    Article  CAS  PubMed  Google Scholar 

  31. Xu CW, Zhang TP, Wang HX, Yang H, Li HH (2013) CHIP enhances angiogenesis and restores cardiac function after infarction in transgenic mice. Cell Physiol Biochem 31:199–208

    Article  CAS  PubMed  Google Scholar 

  32. Li ZD, Bork JP, Krueger B, Patsenker E, Schulze-Krebs A, Hahn EG et al (2005) VEGF induces proliferation, migration, and TGF-beta1 expression in mouse glomerular endothelial cells via mitogen-activated protein kinase and phosphatidylinositol 3-kinase. Biochem Biophys Res Commun 334:1049–1060

    Article  CAS  PubMed  Google Scholar 

  33. Ushio-Fukai M, Alexander RW (2004) Reactive oxygen species as mediators of angiogenesis signaling: role of NAD(P)H oxidase. Mol Cell Biochem 264:85–97

    Article  CAS  PubMed  Google Scholar 

  34. Liu W, Schoenkerman A, Lowe WL Jr (2000) Activation of members of the mitogen-activated protein kinase family by glucose in endothelial cells. Am J Physiol Endocrinol Metab 279:E782–E790

    CAS  PubMed  Google Scholar 

  35. Valdembri D, Serini G, Vacca A, Ribatti D, Bussolino F (2002) In vivo activation of JAK2/STAT-3 pathway during angiogenesis induced by GM-CSF. FASEB J 16:225–227

    CAS  PubMed  Google Scholar 

  36. Osugi T, Oshima Y, Fujio Y, Funamoto M, Yamashita A, Negoro S et al (2002) Cardiac-specific activation of signal transducer and activator of transcription 3 promotes vascular formation in the heart. J Biol Chem 277:6676–6681

    Article  CAS  PubMed  Google Scholar 

  37. Niu G, Wright KL, Huang M, Song L, Haura E, Turkson J et al (2002) Constitutive Stat3 activity up-regulates VEGF expression and tumor angiogenesis. Oncogene 21:2000–2008

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by China National Natural Science Funds (No. 81025001, 81330003), Chang Jiang Scholar Program, and Beijing Higher Education Young Elite Teacher Project (YETP1668).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yun-Long Xia or Hui-Hua Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Yang, H., Song, L. et al. AGGF1 protects from myocardial ischemia/reperfusion injury by regulating myocardial apoptosis and angiogenesis. Apoptosis 19, 1254–1268 (2014). https://doi.org/10.1007/s10495-014-1001-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-014-1001-4

Keywords

Navigation