Skip to main content
Log in

Effect of hypoxia on immunological, physiological response, and hepatopancreatic metabolism of juvenile Chinese mitten crab Eriocheir sinensis

  • Published:
Aquaculture International Aims and scope Submit manuscript

Abstract

The juvenile Chinese mitten crabs Eriocheir sinensis (1.40 ± 0.43 g) were cultured in water of 5.34 ± 0.43 (hypoxia, treatment group) and 21.02 ± 0.06 kPa (high dissolved oxygen (DO), control group) DO for 24 h, respectively. The total hemocyte counts (THC), the hyaline hemocyte counts were measured at 0 and 24 h in the treatment group, and superoxide dismutase (SOD) activity, concentrations of lactic acid and hemocyanin (Hc) in hemolymph and the metabolism of hepatopancreas (concentrations of glucose, total cholesterol, uric acid, total protein, urea, triglyceride in hepatopancreas) were assayed at 0, 2, 8, and 24 h in both treatment and control groups. The hyaline hemocyte counts and THC decreased significantly by 66 and 49% after exposure to hypoxic water for 24 h, respectively. SOD activity, Hc and lactic acid content were significantly affected in treatment group, and there were significant differences between treatment and control groups. In the treatment group, the concentration of glucose, cholesterol and uric acid in hepatopancreas had a significant variation for 24 h. The concentration of total protein, urea and triglyceride between treatment and control groups was not significantly different after 0, 2, 8, 24 h. However, there were significant differences between treatment and control groups in terms of total protein, glucose, and uric acid concentration. Taken together, the effect of hypoxia is comprehensive in juvenile Chinese mitten crab Eriocheir sinensis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

DO:

Dissolved oxygen

THC:

Total hemocyte counts

SOD:

Superoxide dismutase

Hc:

Hemocyanin

TC:

Total cholesterol

TG:

Triglyceride

Glu:

Glucose

UA:

Uric acid

ROIs:

Reactive oxygen intermediates

References

  • Bachère E, Miahle E, Rodriguez J (1995) Identification of defence effectors in the haemolymph of crustaceans with particular reference to the shrimp Penaeus japonicus (Bate): prospects and application. Fish Shellfish Immunol 5:597–612

    Article  Google Scholar 

  • Barham D, Trinder P (1972) Enzymatic determination of uric acid. Analyst 97:142–145

    Article  PubMed  CAS  Google Scholar 

  • Bell GW, Eggleston DB (2005) Species-specific avoidance responses by blue crabs and fish to chronic and episodic hypoxia. Mar Biol 146:761–770

    Article  Google Scholar 

  • Bell KL, Smith VJ (1993) In vitro superoxide production by hyaline cells of the shore crab Carcinus maenas (L.). Dev Comp Immunol 17:211–219

    Article  PubMed  CAS  Google Scholar 

  • Bernatis JL, Gerstenberger SL, McGaw IJ (2007) Behavioural responses of the Dungeness crab, Cancer magister, during feeding and digestion in hypoxic conditions. Mar Biol 150:941–951

    Article  Google Scholar 

  • Bouchet JY, Trouchot JP (1985) Effects of hypoxia and l-Lactate on the haemocyanin-oxygen affinity of the lobster, Homarus vulgaris. Comp Biochem Physiol A 80(1):69–73

    Article  Google Scholar 

  • Bridges CR (2001) Modulation of haemocyanin oxygen affinity: properties and physiological implications in a changing world. J Exp Biol 204:1021–1032

    PubMed  CAS  Google Scholar 

  • Buckup L, Dutra BK, Ribarcki FP et al (2008) Seasonal variations in the biochemical composition of the crayfish Parastacus defossus (Crustacean, Decapoda) in its natural environment. Comp Biochem Physiol A 149:59–67

    Article  CAS  Google Scholar 

  • Burgents JE, Burnett KG, Burnett LE (2005) Effects of hypoxia and hypercapnic hypoxia on the localization and elimination of Vibrio campbellii in Litopenaeus vannamei, the Pacific white shrimp. Biol Bull 208:159–168

    Article  PubMed  Google Scholar 

  • Campa-Córdova AI, Hernández-Saavedra NY, Ascencio F (2002) Superoxide dismutase as modulator of immune function in American white shrimp (Litopenaeus vannamei). Comp Biochem Physiol C 133:557–565

    Google Scholar 

  • Chen JC, Kou TT (1998) Hemolymph acid-balance, oxyhemocyanin, and protein levels of Macrobrachium rosenbergii at different concentrations of dissolved oxygen. J Crustac Biol 18:437–441

    Article  Google Scholar 

  • Chen DW, Zhang M, Shrestha S (2007a) Compositional characteristics and nutritional quality of Chinese mitten crab (Eriocheir sinensis). Food Chem 103:1343–1349

    Article  CAS  Google Scholar 

  • Chen JH, Mai KS, Ma HM et al (2007b) Effects of dissolved oxygen on survival and immune responses of scallop (Chlamys farreri Jones et Preston). Fish Shellfish Immunol 22:272–281

    Article  PubMed  Google Scholar 

  • Cheng W, Chen JC (2000) Effects of pH, temperature and salinity on immune parameters of the freshwater prawn Macrobrachium rosenbergii. Fish Shellfish Immunol 10:387–391

    Article  PubMed  CAS  Google Scholar 

  • Cheng W, Liu CH, Hsu JP et al (2002) Effect of hypoxia on the immune response of giant freshwater prawn Macrobrachium rosenbergii and its susceptibility to pathogen Enterococcus. Fish Shellfish Immunol 13:351–365

    Article  PubMed  Google Scholar 

  • Cheng W, Liu CH, Kuo CM (2003) Effects of dissolved oxygen on hemolymph parameters of freshwater giant prawn, Macrobrachium rosenbergii (de Man). Aquaculture 220:843–856

    Article  CAS  Google Scholar 

  • Childress JJ, Seibel BA (1998) Life at stable low oxygen levels: adaptations of animals to oceanic oxygen minimum layers. J Exp Biol 201:1223–1232

    PubMed  CAS  Google Scholar 

  • Das T, Stickle WB (1993) Sensitivity of crabs Callinectes sapidus and C. similis and the gastropod Stramonita haemastoma to hypoxia and anoxia. Mar Ecol Prog Ser 98:263–274

    Article  Google Scholar 

  • Das T, Stickle WB (1994) Detection and avoidance of hypoxic water by juvenile Callinectes sapidus and C. similis. Mar Biol 120:593–600

    Article  Google Scholar 

  • DeFur PL, Mangum CP, Reese JE (1990) Respiratory responses of the blue crab Callinectes sapidus to long-term hypoxia. Biol Bull 178:46–54

    Article  Google Scholar 

  • Gutmann I, Wahlefeld AW (1974) l-(+)-lactate. Determination with lactate dehydrogenase and NAD+. In: Bergmeyer HU (ed) Methods of enzymatic analysis, 2nd edn. Academic Press, New York, pp 1464–1468

    Google Scholar 

  • Hagerman L (1986) Haemocyanin concentration in the shrimp Crangon crangon (L.) after exposure to moderate hypoxia. Comp Biochem Physiol 85A:721–724

    Article  CAS  Google Scholar 

  • Hagerman L, Oksama M (1985) Haemocyanin concentration, carrying capacity and haemolymph pH under hypoxia in Mesidotea entomon (L.) (Isopoda, Crustacea). Ophelia 24:47–52

    Google Scholar 

  • Hagerman L, Sondergaard T, Weile K et al (1990) Aspects of blood physiology and ammonia excretion in Nephrops norvegicus under hypoxia. Comp Biochem Physiol 97A:51–55

    Article  CAS  Google Scholar 

  • Henry RP, Handley HL, Krarup A et al (1990) Respiratory and cardiovascular response of two species of deep-sea crabs, Chaceon fenneri and C. quinquedens, in normoxia and hypoxia. J Crust Biol 10:413–422

    Article  Google Scholar 

  • Hill AD, Strang RHC, Taylor AC (1991a) Radioisotope studies of the energy metabolism of the shore crab Carcinus maenas (L.) during environmental anoxia and recovery. J Exp Biol Ecol 150:51–62

    Article  CAS  Google Scholar 

  • Hill AD, Taylor AC, Strang RHC (1991b) Physiological and metabolic responses of the shore crab Carcinus maenas (L.) during environmental anoxia and subsequent recovery. J Exp Mar Biol Ecol 150:31–50

    Article  CAS  Google Scholar 

  • Hu FW, Pan LQ, Jing FT (2009) Effects of hypoxia on dopamine concentration and the immune response of white shrimp (Litopenaeus vannamei). J Ocean Univ China 8(1):77–82

    Article  Google Scholar 

  • Jiang LX, Pan LQ, Fang B (2005) Effect of dissolved oxygen on immune parameters of the white shrimp Litopenaeus vannamei. Fish Shellfish Immunol 18:185–188

    Article  PubMed  CAS  Google Scholar 

  • Johansson MW (1995) Cellular immune reaction in crustaceans: methods for in vitro studies. In: Stolen JS, Fletcher TC, Smith SA et al (eds) Techniques in fish immunology. SOS Publications, New Haven, pp 147–154

    Google Scholar 

  • Johnson BA, Bonaventura C, Bonaventura J (1984) Allosteric modulation of Callinectes sapidus hemocyanin by binging of l-Lactate. Biochemistry 23:872–878

    Article  CAS  Google Scholar 

  • Josephson B, Gyllensward C (1957) The development of the serum electrolyte concentration in the normal infants and children. Scand J Clin Lab Invest 9:29

    Article  PubMed  CAS  Google Scholar 

  • Kassirer JP (1971) Clinical evaluation of kidney function-glomerular function. N Engl J Med 285:385–389

    Article  PubMed  CAS  Google Scholar 

  • Kim EK, Waddel LD, Sundedrland MLE et al (1971) Observations on diagnostic kits for the determination of uric acid. Clin Biochem 4:279–289

    Article  PubMed  CAS  Google Scholar 

  • Larry R, Goodman J, Campbell G (2007) Lethal levels of hypoxia for gulf coast estuarine animals. Mar Biol 152:37–42

    Article  Google Scholar 

  • Le Moullac G, Haffner P (2000) Environmental factors affecting immune responses in Crustacea. Aquaculture 191:121–131

    Article  CAS  Google Scholar 

  • Macedo CF, Pinto-Corilho RM (2001) Nutritional status response of Daphnia laevis and Moina micura from a tropical reservoir to different algal diets: Scenedesmus quadricauda and Ankistrodemus gracilis. Braz J Biol 61:1–10

    Article  Google Scholar 

  • Mangum CP (1997a) Adaptation of the oxygen transport system to hypoxia in the blue crab, Callinectes sapidus. Am Zool 37:604–611

    CAS  Google Scholar 

  • Mangum CP (1997b) Invertebrate blood oxygen carriers. In: Danzler WH (ed) Handbook of physiology. Section 13. Comparative physiology, vol 2, chap 15. American Physiological Society, Bethesda, pp 1097–1135

  • McCord JM, Fridovich I (1969) Superoxide dismutase an enzymic function for erythrocuprein Hemocuprein. J Biol Chem 244:6049–6055

    Google Scholar 

  • McMahon BR (1986) Oxygen binding by haemocyanin: compensation during activity and environmental change. In: Linzen B (ed) Invertebrate oxygen carriers. Springer, Berlin, pp 299–311

    Google Scholar 

  • McMahon BR (2001) Respiratory and circulatory compensation to hypoxia in crustaceans. Respir Physiol 128:349–364

    Article  PubMed  CAS  Google Scholar 

  • Mikulski CM, Burnett LE, Burnett KG (2000) The effects of hypercapnic hypoxia on the survival of shrimp challenged with Vibrio parahaemolyticus. J Shellfish Res 19:301–311

    Google Scholar 

  • Mugnier C, Zipper E, Goarant C et al (2008) Combined effect of exposure to ammonia and hypoxia on the blue shrimp Litopenaeus stylirostris survival and physiological response in relation to molt stage. Aquaculture 274:398–407

    Article  CAS  Google Scholar 

  • Nancy J, Brown-Peterson C, Steve M et al (2008) Effects of cyclic hypoxia on gene expression and reproduction in a grass shrimp, Palaemonetes pugi. Biol Bull 214:6–16

    Article  Google Scholar 

  • Ocampo L, Patinõ D, Ramírez C (2003) Effect of temperature on hemolymph lactate and glucose concentrations in spiny lobster Panulirus interruptus during progressive hypoxia. J Exp Mar Biol Ecol 296:71–77

    Article  CAS  Google Scholar 

  • Paschke K, Cumillaf JP, Loyola S et al (2009) Effect of dissolved oxygen level on respiratory metabolism, nutritional physiology, and immune condition of southern king crab Lithodes santolla (Molina, 1782) (Decapoda, Lithodidae). Mar Biol 157:7–18

    Article  Google Scholar 

  • Paul RJ, Zeis B, Lamkemeyer T et al (2004) Control of oxygen transport in the microcrustacean Daphnia: regulation of haemoglobin expression as central mechanism of adaptation to different oxygen and temperature conditions. Acta Physiol Scand 182:259–275

    Article  PubMed  CAS  Google Scholar 

  • Racotta IS, Palacios E, Mendez L (2002) Metabolic responses to short and long-term exposure to hypoxia in white shrimp (Penaeus vannamei). Mar Freshw Behav Physiol 35:269–275

    Article  CAS  Google Scholar 

  • Regnault M (1987) Nitrogen excretion in marine and fresh-water crustacea. Biol Rev 62:1–24

    Article  Google Scholar 

  • Schettler G, Nussel E (1975) Massnahmen zur Prevention der Arteriosklerose. Arb Soz Med Prav Med 10:25–33

    Google Scholar 

  • Schmitt ASC, Uglow RF (1998) Metabolic responses of Nephrops norvegicus to progressive hypoxia. Aquat Linving Resour 11(2):87–92

    Article  Google Scholar 

  • Schwarz A (1995) Aspects of the physiology of some crustacean species with particular reference to their live marketing. Dissertation, University of Hull, UK

  • Sάnchez A, Pascual C, Sάnchez A et al (2001) Hemolymph metabolic variables and immune response in Litopenaeus setiferus adult males: the effect of acclimation. Aquaculture 198:13–28

    Article  Google Scholar 

  • Taylor HH, Anstiss JM (1999) Copper and haemocyanin dynamics in aquatic invertebrates. Mar Freshw Res 50:907–931

    Article  CAS  Google Scholar 

  • Taylor AC, Spicer JI (1987) Metabolic responses of prawns Palaemon elegans and P. serratus (Crustacea: Decapoda) to acute hypoxia and anoxia. Mar Biol 95:521–530

    Article  CAS  Google Scholar 

  • Terwilliger NB, Dumler K (2001) Ontogeny of decapod crustacean hemocyanin: effects of temperature and nutrition. J Exp Biol 204:1013–1020

    PubMed  CAS  Google Scholar 

  • Teuscher A, Richterich P (1971) Enzymatic method of glucose. Schweiz Med Wochenschr 101:345–390

    PubMed  CAS  Google Scholar 

  • Wang FI, Chen JC (2006) Effect of salinity on the immune response of tiger shrimp Penaeus monodon and its susceptibility to Photobacterium damselae subsp. Damselae. Fish Shellfish Immunol 20:671–681

    Article  PubMed  CAS  Google Scholar 

  • Weichselbaum TE (1946) An accurate and rapid method for determination of proteins in small amounts of blood serum and plasma. Am J Clin Pathol 16:40–48

    Google Scholar 

  • Yang WL, Zhang GH (2005) The current status and sustainable development of Chinese mitten crab farming. Freshw Fish 35(4):62–64 (in Chinese)

    Google Scholar 

  • Zhang LS, Li J (2002) Hatchery technology of Eriocheir sinensis. In: Zhang LS (ed) The breeding and culture of Chinese mitten crab. JingDun Press, Beijing, pp 124–196 (in Chinese)

  • Zhang WZ, Wu XZ, Li DF et al (2005) Immunological functions of blood cells in the scallop Chlamys farreri. Acta Zool Sin 51:669–677

    CAS  Google Scholar 

  • Zou E, Du N, Lai W (1996) The effects of severe hypoxia on lactate and glucose concentrations in the blood of the Chinese freshwater crab Eriocheir sinensis (Crustacea: Decapoda). Comp Biochem Physiol 114A(2):105–109

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the innovation research group developing project in the universities of Shanghai (nutrition, feed and environment of animal aquaculture, the second batch) and National Natural Sciences Foundation of China (Grant: 30871927). The authors would like to thank Que Youqing, Shao Luchang, Shen Tong, Wei Chengkai and Ji Ruijing in my laboratory for their supports in sampling, and thank Mr. Shen Hong (the manager of Muyu crab farm) for the help of sample supply. The experiments comply with the current Chinese animal care and manipulation legislation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongxu Cheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qiu, R., Cheng, Y., Huang, X. et al. Effect of hypoxia on immunological, physiological response, and hepatopancreatic metabolism of juvenile Chinese mitten crab Eriocheir sinensis . Aquacult Int 19, 283–299 (2011). https://doi.org/10.1007/s10499-010-9390-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10499-010-9390-z

Keywords

Navigation