Skip to main content

Advertisement

Log in

Effects of Fetal Testosterone on Visuospatial Ability

  • Original Paper
  • Published:
Archives of Sexual Behavior Aims and scope Submit manuscript

Abstract

This study investigated whether fetal testosterone (FT) measured from second trimester amniotic fluid was related to specific aspects of visuospatial ability, in children aged 7–10 years (35 boys, 29 girls). A series of tasks were used: the children’s Embedded Figures Test (EFT) (a test of attention to detail), a ball targeting task (measuring hand-eye coordination), and a computerized mental rotation task (measuring rotational ability). FT was a significant predictor for EFT scores in both boys and girls, with boys also showing a clear advantage for this task. No significant sex differences were observed in targeting. Boys scored higher than girls on mental rotation. However, no significant relationships were observed between FT and targeting or mental rotation. Girls’ performance on the mental rotation and targeting tasks was significantly related to age, indicating that these tasks may have been too difficult for the younger children. These results indicate that FT has a significant role in some aspects of cognitive development but that further work is needed to understand its effect on the different aspects of visuospatial ability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. The results excluding the one outlier in FT level did not differ significantly from those obtained with the full dataset. The full results of these analyses are available from the corresponding author upon request.

References

  • Altman, D. G. (1991). Practical statistics for medical research. London: Chapman and Hall.

    Google Scholar 

  • Auyeung, B., Baron-Cohen, S., Ashwin, E., Knickmeyer, R., Taylor, K., Hackett, G., et al. (2009a). Fetal testosterone predicts sexually differentiated childhood behavior in girls and in boys. Psychological Science, 20, 144–148.

    Article  PubMed  Google Scholar 

  • Auyeung, B., Baron-Cohen, S., Chapman, E., Knickmeyer, R., Taylor, K., & Hackett, G. (2006). Foetal testosterone and the child systemizing quotient. European Journal of Endocrinology, 155, S123–S130.

    Article  Google Scholar 

  • Auyeung, B., Baron-Cohen, S., Chapman, E., Knickmeyer, R., Taylor, K., & Hackett, G. (2009b). Fetal testosterone and autistic traits. British Journal of Psychology, 100, 1–22.

    Article  PubMed  Google Scholar 

  • Baker, S. W., & Ehrhardt, A. A. (1974). Prenatal androgen, intelligence and cognitive sex differences. In R. C. Friedman, R. M. Richart, & R. L. Van de Wiele (Eds.), Sex differences in behavior (pp. 53–76). New York: Wiley.

    Google Scholar 

  • Baron-Cohen, S. (2002). The extreme male brain theory of autism. Trends in Cognitive Science, 6, 248–254.

    Article  Google Scholar 

  • Baron-Cohen, S., Knickmeyer, R., & Belmonte, M. K. (2005). Sex differences in the brain: Implications for explaining autism. Science, 310, 819–823.

    Article  PubMed  Google Scholar 

  • Baron-Cohen, S., Lutchmaya, S., & Knickmeyer, R. (2004). Prenatal testosterone in mind. Cambridge, MA: The MIT Press.

    Google Scholar 

  • Beck-Peccoz, P., Padmanabhan, V., Baggiani, A. M., Cortelazzi, D., Buscaglia, M., Medri, G., et al. (1991). Maturation of hypothalamic-pituitary-gonadal function in normal human fetuses: Circulating levels of gonadotropins, their common alpha-subunit and free testosterone, and discrepancy between immunological and biological activities of circulating follicle-stimulating hormone. Journal of Clinical Endocrinology and Metabolism, 73, 525–532.

    Article  PubMed  Google Scholar 

  • Bergman, K., Glover, V., Sarkar, P., Abbott, D. H., & O’Connor, T. G. (2010). In utero cortisol and testosterone exposure and fear reactivity in infancy. Hormones and Behavior, 57, 306–312.

    Article  PubMed  Google Scholar 

  • Bigelow, G. (1971). Field dependence-field independence. Journal of Educational Research, 64, 397–400.

    Google Scholar 

  • Brosnan, M., Daggar, R., & Collomosse, J. (2010). The relationship between systemising and mental rotation and the implications for the extreme male brain theory of autism. Journal of Autism and Developmental Disorders, 40, 1–7.

    Article  PubMed  Google Scholar 

  • Chakrabarti, B., Dudbridge, F., Kent, L., Wheelwright, S., Hill-Cawthorne, G., Allison, C., et al. (2009). Genes related to sex steroids, neural growth, and social-emotional behavior are associated with autistic traits, empathy, and Asperger syndrome. Autism Research, 2, 157–177.

    Article  PubMed  Google Scholar 

  • Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Cohen-Bendahan, C. C., van de Beek, C., & Berenbaum, S. A. (2005). Prenatal sex hormone effects on child and adult sex-typed behavior: Methods and findings. Neuroscience and Biobehavioral Reviews, 29, 353–384.

    Article  PubMed  Google Scholar 

  • Collaer, M. L., & Hines, M. (1995). Human behavioural sex differences: A role for gonadal hormones during early development? Psychological Bulletin, 118, 55–107.

    Article  PubMed  Google Scholar 

  • d’Ercole, C., Shojai, R., Desbriere, R., Chau, C., Bretelle, F., Piechon, L., et al. (2003). Prenatal screening: Invasive diagnostic approaches. Child’s Nervous System, 19, 444–447.

    Article  PubMed  Google Scholar 

  • Falter, C. M., Arroyo, M., & Davis, G. J. (2006). Testosterone: Activation or organization of spatial cognition? Biological Psychology, 73, 132–140.

    Article  PubMed  Google Scholar 

  • Falter, C. M., Plaisted, K. C., & Davis, G. (2008). Visuo-spatial processing in autism—testing the predictions of extreme male brain theory. Journal of Autism and Developmental Disorders, 38, 507–515.

    Article  PubMed  Google Scholar 

  • Fausto-Sterling, A. (1992). Myths of gender. New York: Basic Books.

    Google Scholar 

  • Feng, J., Spence, I., & Pratt, J. (2007). Playing an action video game reduces gender differences in spatial cognition. Psychological Science, 18, 850–855.

    Article  PubMed  Google Scholar 

  • Finegan, J., Bartleman, B., & Wong, P. Y. (1989). A window for the study of prenatal sex hormone influences on postnatal development. Journal of Genetic Psychology, 150, 101–112.

    Article  PubMed  Google Scholar 

  • Finegan, J. K., Niccols, G. A., & Sitarenios, G. (1992). Relations between prenatal testosterone levels and cognitive abilities at 4 years. Developmental Psychology, 28, 1075–1089.

    Article  Google Scholar 

  • Galis, F., Ten Broek, C. M., Van Dongen, S., & Wijnaendts, L. C. (2010). Sexual dimorphism in the prenatal digit ratio (2D:4D). Archives of Sexual Behavior, 39, 57–62.

    Article  PubMed  Google Scholar 

  • Goy, R. W., Bercovitch, F. B., & McBrair, M. C. (1988). Behavioral masculinization is independent of genital masculinization in prenatally androgenized female rhesus macaques. Hormones and Behavior, 22, 552–571.

    Article  PubMed  Google Scholar 

  • Grimshaw, G. M., Sitarenios, G., & Finegan, J. K. (1995). Mental rotation at 7 years: Relations with prenatal testosterone levels and spatial play experiences. Brain and Cognition, 29, 85–100.

    Article  PubMed  Google Scholar 

  • Halpern, D. F. (2000). Sex differences in cognitive abilities (3rd ed.). Mahwah, NJ: Erlbaum.

    Google Scholar 

  • Hampson, E., Ellis, C. L., & Tenk, C. M. (2008). On the relation between 2D:4D and sex- dimorphic personality traits. Archives of Sexual Behavior, 37, 133–144.

    Article  PubMed  Google Scholar 

  • Hampson, E., Rovet, J. F., & Altmann, D. (1998). Spatial reasoning in children with congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Developmental Neuropsychology, 14, 299–320.

    Article  Google Scholar 

  • Hines, M. (2004). Brain gender. New York: Oxford University Press.

    Google Scholar 

  • Hines, M., Fane, B. A., Pasterski, V. L., Matthews, G. A., Conway, G. S., & Brook, C. (2003). Spatial abilities following prenatal androgen abnormality: Targeting and mental rotations performance in individuals with congenital adrenal hyperplasia. Psychoneuroendocrinology, 28, 1010–1026.

    Article  PubMed  Google Scholar 

  • Hooven, C. K., Chabris, C. F., Ellison, P. T., & Kosslyn, S. M. (2004). The relationship of male testosterone to components of mental rotation. Neuropsychologia, 42, 782–790.

    Article  PubMed  Google Scholar 

  • Johnson, E. S., & Meade, A. C. (1987). Developmental patterns of spatial ability: An early sex difference. Child Development, 58, 725–740.

    Article  PubMed  Google Scholar 

  • Karp, S. A., & Konstadt, N. L. (1963). Manual for the Children’s Embedded Figures Test. Brookland, NY: Cognitive Tests.

    Google Scholar 

  • Kerns, K. A., & Berenbaum, S. A. (1991). Sex differences in spatial ability in children. Behavior Genetics, 21, 383–396.

    Article  PubMed  Google Scholar 

  • Kimura, D. (1999). Sex and cognition. Cambridge, MA: The MIT Press.

    Google Scholar 

  • Knickmeyer, R., Baron-Cohen, S., Fane, B. A., Wheelwright, S., Mathews, G. A., Conway, G. S., et al. (2006). Androgens and autistic traits: A study of individuals with congenital adrenal hyperplasia. Hormones and Behavior, 50, 148–153.

    Article  PubMed  Google Scholar 

  • Levine, S. C., Huttenlocher, J., Taylor, A., & Langrock, A. (1999). Early sex differences in spatial skill. Developmental Psychology, 35, 940–949.

    Article  PubMed  Google Scholar 

  • Linn, M. C., & Petersen, A. C. (1986). Gender differences in spatial ability: Implications for mathematics and science achievement. In J. S. Hyde & M. C. Linn (Eds.), The psychology of gender: Advances through meta-analysis (pp. 67–101). Baltimore: Johns Hopkins University Press.

    Google Scholar 

  • Lutchmaya, S., Baron-Cohen, S., Raggatt, P., Knickmeyer, R., & Manning, J. T. (2004). 2nd to 4th digit ratios, fetal testosterone and estradiol. Early Human Development, 77, 23–28.

    Article  PubMed  Google Scholar 

  • Malas, M. A., Dogan, S., Evcil, E. H., & Desdicioglu, K. (2006). Fetal development of the hand, digits and digit ratio (2D:4D). Early Human Development, 82, 469–475.

    Article  PubMed  Google Scholar 

  • Malouf, M. A., Migeon, C. J., Carson, K. A., Petrucci, L., & Wisniewski, A. B. (2006). Cognitive outcome in adult women affected by congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Hormone Research, 65, 142–150.

    Article  PubMed  Google Scholar 

  • Manning, J. T. (2002). Digit ratio: A pointer to fertility, behavior and health. New Brunswick, NJ: Rutgers University Press.

    Google Scholar 

  • Manning, J. T., & Taylor, R. P. (2001). Second to fourth digit ratio and male ability in sport: Implications for sexual selection in humans. Evolution and Human Behavior, 22, 61–69.

    Article  PubMed  Google Scholar 

  • Nebot, T. K. (1988). Sex differences among children on embedded tasks. Perceptual and Motor Skills, 67, 972–974.

    Article  PubMed  Google Scholar 

  • New, M. I. (1998). Diagnosis and management of congenital adrenal hyperplasia. Annual Review of Medicine, 49, 311–328.

    Article  PubMed  Google Scholar 

  • Nordenstrom, A., Servin, A., Bohlin, G., Larsson, A., & Wedell, A. (2002). Sex-typed toy play behavior correlates with the degree of prenatal androgen exposure assessed by the CYP21 genotype in girls with congenital adrenal hyperplasia. Journal of Clinical Endocrinology & Metabolism, 87, 5119–5124.

    Article  Google Scholar 

  • Parlee, M. B., & Rajagopal, J. (1974). Sex differences on the Embedded-Figures Test: A cross-cultural comparison of college students in India and in the United States. Perceptual and Motor Skills, 39, 1311–1314.

    Article  Google Scholar 

  • Pasterski, V. L., Geffner, M. E., Brain, C., Hindmarsh, P., Brook, C., & Hines, M. (2005). Prenatal hormones and postnatal socialization by parents as determinants of male-typical toy play in girls with congenital adrenal hyperplasia. Child Development, 76, 264–278.

    Article  PubMed  Google Scholar 

  • Perlman, S. M. (1973). Cognitive abilities of children with hormone abnormalities: Screening by psychoeducational tests. Journal of Learning Disabilities, 6, 26–34.

    Article  Google Scholar 

  • Puts, D. A., McDaniel, M. A., Jordan, C. L., & Breedlove, S. M. (2008). Spatial ability and prenatal androgens: meta-analyses of congenital adrenal hyperplasia and digit ratio (2D:4D) studies. Archives of Sexual Behavior, 37, 100–111.

    Article  PubMed  Google Scholar 

  • Quadagno, D. M., Briscoe, R., & Quadagno, J. S. (1977). Effects of perinatal gonadal hormones on selected nonsexual behavior patterns: A critical assessment of the nonhuman and human literature. Psychological Bulletin, 84, 62–80.

    Article  PubMed  Google Scholar 

  • Resnick, S. M., Berenbaum, S. A., Gottesman, I. I., & Bouchard, T. J. (1986). Early hormonal influences on cognitive functioning in congenital adrenal hyperplasia. Developmental Psychology, 22, 191–198.

    Article  Google Scholar 

  • Sangalli, M., Langdana, F., & Thurlow, C. (2004). Pregnancy loss rate following routine genetic amniocentesis at Wellington Hospital. New Zealand Medical Journal, 117, U818.

    PubMed  Google Scholar 

  • Sarkar, P., Bergman, K., Fisk, N. M., O’Connor, T. G., & Glover, V. (2007). Amniotic fluid testosterone: Relationship with cortisol and gestational age. Clinical Endocrinology, 67, 743–747.

    Article  PubMed  Google Scholar 

  • Shah, A., & Frith, C. (1993). Why do autistic individuals show superior performance on the block design task? Journal of Child Psychology and Psychiatry, 34, 1351–1364.

    Article  PubMed  Google Scholar 

  • Shah, A., & Frith, U. (1983). An islet of ability in autistic children: A research note. Journal of Child Psychology and Psychiatry, 24, 613–620.

    Article  PubMed  Google Scholar 

  • Smail, P. J., Reyes, F. I., Winter, J. S. D., & Faiman, C. (1981). The fetal hormonal environment and its effect on the morphogenesis of the genital system. In S. J. Kogan & E. S. E. Hafez (Eds.), Pediatric andrology (pp. 9–19). Boston: Martinus Nijhoff.

    Chapter  Google Scholar 

  • Terlecki, M. S., Newcombe, N. S., & Little, M. (2008). Durable and generalized effects of spatial experience on mental rotation: Gender differences in growth patterns. Applied Cognitive Psychology, 22, 996–1013.

    Article  Google Scholar 

  • Thomas, J. R., & French, K. E. (1985). Gender differences across age in motor performance a meta-analysis. Psychological Bulletin, 98, 260–282.

    Article  PubMed  Google Scholar 

  • van de Beek, C., Thijssen, J. H. H., Cohen-Kettenis, P. T., van Goozen, S. H., & Buitelaar, J. K. (2004). Relationships between sex hormones assessed in amniotic fluid, and maternal and umbilical cord blood: What is the best source of information to investigate the effects of fetal hormonal exposure? Hormones and Behavior, 46, 663–669.

    Article  PubMed  Google Scholar 

  • van de Beek, C., van Goozen, S. H. M., Buitelaar, J. K., & Cohen-Kettenis, P. T. (2008). Prenatal sex hormones (maternal and amniotic fluid) and gender-related play behavior in 13-month-old infants. Archives of Sexual Behavior, 38, 6–15.

    Article  Google Scholar 

  • Voyer, D., Voyer, S., & Bryden, M. P. (1995). Magnitude of sex differences in spatial abilities: A meta-analysis and consideration of critical variables. Psychological Bulletin, 117, 250–270.

    Article  PubMed  Google Scholar 

  • Watson, N. V., & Kimura, D. (1991). Nontrivial sex differences in throwing and intercepting: Relation to psychometrically-defined spatial functions. Personality and Individual Differences, 12, 375–385.

    Article  Google Scholar 

  • Williams, C. L., Barnett, A. M., & Meck, W. H. (1990). Organizational effects of early gonadal secretions on sexual differentiation in spatial memory. Behavioral Neuroscience, 104, 84–97.

    Article  PubMed  Google Scholar 

  • Williams, C. L., & Meck, W. H. (1991). The organizational effects of gonadal steroids on sexually dimorphic spatial ability. Psychoneuroendocrinology, 16, 155–176.

    Article  PubMed  Google Scholar 

  • Witkin, H. A., Oltman, P. K., Raskin, E., & Karp, S. (1971). A Manual for the Embedded Figures Test. Palo Alto, CA: Consulting Psychology Press.

    Google Scholar 

Download references

Acknowledgments

This work was supported by grants to SBC from the MRC and the Nancy Lurie-Marks Family Foundation. BA was supported by a scholarship from Trinity College, Cambridge. We are grateful to the families who have taken part in this longitudinal study over many years, and to Melissa Hines, Greg Davis, and Ieuan Hughes for valuable discussions. This study was conducted in association with the NIHR CLAHRC for Cambridgeshire and Peterborough NHS Foundation Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bonnie Auyeung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Auyeung, B., Knickmeyer, R., Ashwin, E. et al. Effects of Fetal Testosterone on Visuospatial Ability. Arch Sex Behav 41, 571–581 (2012). https://doi.org/10.1007/s10508-011-9864-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10508-011-9864-8

Keywords

Navigation