Skip to main content

Advertisement

Log in

Energetic analysis and optimization of a MACCEPA actuator in an ankle prosthesis

Energetic evaluation of the CYBERLEGs alpha-prosthesis variable stiffness actuator during a realistic load cycle

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

The use of active prostheses for lower limb replacement brings new challenges like power optimization, energy efficiency and autonomy. The use of series and parallel elasticity is often explored to reduce the necessary motor power but this does not necessarily have a positive influence on the energy consumption of the prosthesis. This paper presents the experiments performed with the variable compliance actuator used in an active ankle prosthesis and the electromechanical model of this actuator. The results show that the measurements can be matched using the model, and this model can thus be used to optimize the energy efficiency of the actuator. Simulations show that the electrical efficiency can be increased by 10% compared to parameters selected by an optimization method that only takes mechanical properties into account.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Ambrozic, L., Gorsic, M., Geeroms, J., Flynn, L., Molino Lova, R., Kamnik, R., et al. (2014). Cyberlegs: A user-oriented robotic transfemoral prosthesis with whole-body awareness control. IEEE Robotics & Automation Magazine, 21(4), 82–93.

    Article  Google Scholar 

  • Au, S. K., Herr, H., Weber, J., Martinez-Villalpando, E. C. (2007). Powered ankle-foot prosthesis for the improvement of amputee ambulation. In: 29th Annual international conference of the IEEE engineering in medicine and biology society (EMBS), (pp. 3020–3026). IEEE

  • Au, S. K., & Herr, H. (2008). Powered ankle–foot prosthesis. IEEE Robotics & Automation Magazine, 15(3), 52–59.

    Article  Google Scholar 

  • Beckerle, P., Wojtusch, J., Schuy, J., Strah, B., Rinderknecht, S., Stryk, O. (2013). Power-optimized stiffness and nonlinear position control of an actuator with variable torsion stiffness. In: IEEE/ASME international conference on advanced intelligent mechatronics (AIM), (pp. 387–392). IEEE

  • Bellman, R. D., Holgate, M. A., Sugar, T. G. (2008). Sparky 3: Design of an active robotic ankle prosthesis with two actuated degrees of freedom using regenerative kinetics. In: 2nd IEEE RAS & EMBS international conference on biomedical robotics and biomechatronics (BioRob), (pp. 511–516). IEEE

  • Bergelin, B. J., & Voglewede, P. A. (2012). Design of an active ankle–foot prosthesis utilizing a four-bar mechanism. Journal of Mechanical Design, 134(6), 061,004.

    Article  Google Scholar 

  • Dillingham, T. R., Pezzin, L. E., & MacKenzie, E. J. (2002). Limb amputation and limb deficiency: Epidemiology and recent trends in the United States. Southern Medical Journal, 95(8), 875–884.

    Google Scholar 

  • Ephraim, P. L., Dillingham, T. R., Sector, M., Pezzin, L. E., & MacKenzie, E. J. (2003). Epidemiology of limb loss and congenital limb deficiency: A review of the literature. Archives of Physical Medicine and Rehabilitation, 84(5), 747–761.

    Article  Google Scholar 

  • Eslamy, M., Grimmer, M., & Seyfarth, A. (2012). Effects of unidirectional parallel springs on required peak power and energy in powered prosthetic ankles: comparison between different active actuation concepts. In: IEEE international conference on robotics and biomimetics (ROBIO), (pp. 2406–2412). IEEE

  • Everarts, C., Dehez, B., Ronsse, R. (2012). Variable stiffness actuator applied to an active ankle prosthesis: Principle, energy-efficiency, and control. In: IEEE/RSJ international conference on intelligent robots and systems, (pp. 323–328). IEEE

  • Flynn, L., Geeroms, J., Jimenez-Fabian, R., Vanderborght, B., Vitiello, N., & Lefeber, D. (2015). Ankle–knee prosthesis with active ankle and energy transfer: Development of the CYBERLEGs alpha-prosthesis. Robotics and Autonomous Systems, 73, 4–15.

    Article  Google Scholar 

  • Giovacchini, F., Vannetti, F., Fantozzi, M., Cempini, M., Cortese, M., Parri, A., et al. (2015). A light-weight active orthosis for hip movement assistance. Robotics and Autonomous Systems, 73, 123–134.

    Article  Google Scholar 

  • Grimmer, M., & Seyfarth, A. (2011). Stiffness adjustment of a series elastic actuator in an ankle–foot prosthesis for walking and running: The trade-off between energy and peak power optimization. In: 2011 IEEE international conference on robotics and automation (ICRA), (pp. 1439–1444). IEEE

  • Grimmer, M., Eslamy, M., Gliech, S., Seyfarth, A. (2012). A comparison of parallel-and series elastic elements in an actuator for mimicking human ankle joint in walking and running. In: IEEE international conference on robotics and automation (ICRA), (pp. 2463–2470). IEEE

  • Herr, H. M., & Grabowski, A. M. (2012). Bionic ankle–foot prosthesis normalizes walking gait for persons with leg amputation. Proceedings of the Royal Society B: Biological Sciences, 279(1728), 457–464.

    Article  Google Scholar 

  • Holgate, M. A., Hitt, J. K., Bellman, R. D., Sugar, T. G., Hollander, K. W. (2008). The sparky (spring ankle with regenerative kinetics) project: Choosing a dc motor based actuation method. In: 2nd IEEE RAS & EMBS international conference on biomedical robotics and biomechatronics (BioRob), (pp. 163–168). IEEE

  • Hollander, K. W., Sugar, T. G., Herring, D. E. (2005). Adjustable robotic tendon using a’jack spring’. In: 9th international conference on rehabilitation robotics (ICORR), (pp. 113–118). IEEE

  • Jafari, A., Tsagarakis, N. G., Sardellitti, I., Caldwell, D. G. (2012). How design can affect the energy required to regulate the stiffness in variable stiffness actuators. In: IEEE international conference on robotics and automation (ICRA), (pp. 2792–2797). IEEE

  • Jimenez-Fabian, R., Flynn, L., Geeroms, J., Vitiello, N., Vanderborght, B., & Lefeber, D. (2015). Sliding-bar maccepa for a powered ankle prosthesis. Journal of Mechanisms and Robotics, 7(4), 041,011.

    Article  Google Scholar 

  • Malcolm, P., Quesada, R. E., Caputo, J. M., & Collins, S. H. (2015). The influence of push-off timing in a robotic ankle–foot prosthesis on the energetics and mechanics of walking. Journal of Neuroengineering and Rehabilitation, 12(1), 1.

    Article  Google Scholar 

  • Paluska, D., & Herr, H. (2006). The effect of series elasticity on actuator power and work output: Implications for robotic and prosthetic joint design. Robotics and Autonomous Systems, 54(8), 667–673. Morphology, Control and Passive Dynamics.

    Article  Google Scholar 

  • Realmuto, J., Klute, G., & Devasia, S. (2015). Nonlinear passive cam-based springs for powered ankle prostheses. Journal of Medical Devices, 9(1), 011,007.

    Article  Google Scholar 

  • Rouse, E. J., Mooney, L. M., Martinez-Villalpando, E. C., Herr, H.M. (2013). Clutchable series-elastic actuator: Design of a robotic knee prosthesis for minimum energy consumption. In: IEEE international conference on rehabilitation robotics (ICORR), (pp. 1–6). IEEE

  • Sup, F., Bohara, A., & Goldfarb, M. (2008). Design and control of a powered transfemoral prosthesis. The International Journal of Robotics Research, 27(2), 263–273.

    Article  Google Scholar 

  • Tropea, P., Vitiello, N., Martelli, D., Aprigliano, F., Micera, S., Monaco, V. (2014). Detecting slipping-like perturbations by using adaptive oscillators. Annals of Biomedical Engineering, 43, 416–426.

  • Van Ham, R., Vanderborght, B., van Damme, M., Verrelst, B., & Lefeber, D. (2007). MACCEPA, the mechanically adjustable compliance and controllable equilibrium position actuator: Design and implementation in a biped robot. Robotics and Autonomous Systems, 55(10), 761–768.

    Article  Google Scholar 

  • Vanderborght, B., Van Ham, R., Lefeber, D., Sugar, T. G., & Hollander, K. W. (2009). Comparison of mechanical design and energy consumption of adaptable, passive-compliant actuators. The International Journal of Robotics Research, 28(1), 90–103.

    Article  Google Scholar 

  • Velasco A, Gasparri GM, Garabini M, Malagia L, Salaris P, Bicchi A (2013) Soft-actuators in cyclic motion: Analytical optimization of stiffness and pre-load. In: IEEE-RAS international conference on humanoid robots. Atlanta, Georgia, USA

  • Verstraten, T., Beckerle, P., Furnmont, R., Mathijssen, G., Vanderborght, B., & Lefeber, D. (2016). Series and parallel elastic actuation: Impact of natural dynamics on power and energy consumption. Mechanism and Machine Theory, 102, 232–246.

    Article  Google Scholar 

  • Verstraten, T., Mathijssen, G., Furnémont, R., Vanderborght, B., & Lefeber, D. (2015). Modeling and design of geared dc motors for energy efficiency: Comparison between theory and experiments. Mechatronics, 30, 198–213.

    Article  Google Scholar 

  • Winter, D. A. (2005). Biomechanics and motor control of human movement. United States of America: John Wiley and Sons.

    Google Scholar 

  • Zhu, J., Wang, Q., & Wang, L. (2014). On the design of a powered transtibial prosthesis with stiffness adaptable ankle and toe joints. IEEE Transactions on Industrial Electronics, 61(9), 4797–4807.

    Article  Google Scholar 

Download references

Acknowledgements

The first author is funded by a Ph.D. grant from Flanders Innovation & Entrepreneurship (VLAIO). This work has been partially funded by the European Commissions 7th Framework Program as part of the CYBERLEGs project under Grant No. 287894, CYBERLEGs PlusPlus (H2020-ICT-2016-1 Grant Agreement #731931) and by the Research Foundation-Flanders (FWO) under Grant Number G.0262.14N.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joost Geeroms.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geeroms, J., Flynn, L., Jimenez-Fabian, R. et al. Energetic analysis and optimization of a MACCEPA actuator in an ankle prosthesis. Auton Robot 42, 147–158 (2018). https://doi.org/10.1007/s10514-017-9641-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-017-9641-1

Keywords

Navigation