Skip to main content

Advertisement

Log in

Neuroanatomy of Down Syndrome in vivo: A Model of Preclinical Alzheimer’s Disease

  • Published:
Behavior Genetics Aims and scope Submit manuscript

Aging in Down syndrome (DS) is accompanied by neuropathological features of Alzheimer’s disease (AD). Therefore, DS has been proposed as a model to study predementia stages of AD. MRI-based measurement of grey matter atrophy is an in vivo surrogate marker of regional neuronal density. A range of neuroimaging studies have described the macroscopic neuroanatomy of DS. Recent studies using sensitive quantitative measures of region-specific atrophy based on high-resolution MRI suggest that age-related atrophy in DS resembles the pattern of brain atrophy in early stages of AD. The pattern of atrophy determined in predementia DS supports the notion that AD-type pathology leads to neuronal degeneration not only in allocortical, but also in neocortical brain areas before onset of clinical dementia. This has major implications for our understanding of the onset and progression of AD-type pathology both in DS and in sporadic AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  • Alexander G. E., Saunders A. M., Szczepanik J., Strassburger T. L., Pietrini P., Dani A., et al. (1997). Relation of age and apolipoprotein E to cognitive function in Down syndrome adults. Neuroreport 8:1835–1840

    PubMed  CAS  Google Scholar 

  • Ashburner J. and Friston K. J. (2000). Voxel-based morphometry–the methods. Neuroimage. 11:805–821

    Article  PubMed  CAS  Google Scholar 

  • Aylward E. H., Li Q., Honeycutt N. A., Warren A. C., Pulsifer M. B., Barta P. E., et al. (1999). MRI volumes of the hippocampus and amygdala in adults with Down’s syndrome with and without dementia. Am. J. Psychiatry. 156:564–568

    PubMed  CAS  Google Scholar 

  • Becker L., Mito T., Takashima S. and Onodera K. (1991a). Growth and development of the brain in Down syndrome. In: Epstein C., (eds) The Morphogenesis of Down Syndrome. New York, Wiley-Liss, pp. 133–152

    Google Scholar 

  • Becker L., Mito T., Takashima S. and Onodera K. (1991b). Growth and development of the brain in Down syndrome. Prog. Clin. Biol. Res. 373:133–152

    CAS  Google Scholar 

  • Benson D. F. (1988). Classical syndromes of aphasia. In: Foller F., Grafman J., (eds) Handbook of Neuropsychology. Amsterdam, Elsevier

    Google Scholar 

  • Bobinski M., de Leon M. J., Wegiel J., Desanti S., Convit A., Saint Louis L. A., et al. (2000). The histological validation of post mortem magnetic resonance imaging- determined hippocampal volume in Alzheimer’s disease. Neuroscience 95:721–725

    Article  PubMed  CAS  Google Scholar 

  • Bokde A. L., Teipel S. J., Zebuhr Y., Leinsinger G., Gootjes L., Schwarz R., et al. (2002). A new rapid landmark-based regional MRI segmentation method of the brain. J. Neurol. Sci. 194:35–40

    Article  PubMed  CAS  Google Scholar 

  • Bookstein F. L. (2001). “Voxel-based morphometry” should not be used with imperfectly registered images. Neuroimage. 14:1454–1462

    Article  PubMed  CAS  Google Scholar 

  • Braak H., Griffing K. and Braak E. (1997). Neuroanatomy of Alzheimer’s disease. Alzheimer’s Research 3:235–247

    Google Scholar 

  • Cabeza R. and Nyberg L. (2000). Imaging cognition II: An empirical review of 275 PET and fMRI studies. J. Cogn. Neurosci. 12:1–47

    Article  PubMed  CAS  Google Scholar 

  • Chetelat G. and Baron J. C. (2003). Early diagnosis of Alzheimer’s disease: contribution of structural neuroimaging. Neuroimage 18:525–541

    Article  PubMed  Google Scholar 

  • Corbetta M., Shulman G. L., Miezin F. M. and Petersen S. E. (1995). Superior parietal cortex activation during spatial attention shifts and visual feature conjunction. Science 270:802–805

    PubMed  ADS  CAS  Google Scholar 

  • Coyle J. T., Oster-Granite M. L. and Gearhart J. D. (1986). The neurobiologic consequences of Down syndrome. Brain Res. Bull. 16:773–787

    Article  PubMed  CAS  Google Scholar 

  • De La Torre R., Casado A., Lopez-Fernandez E., Carrascosa D., Ramirez V. and Saez J. (1996). Overexpression of copper-zinc superoxide dismutase in trisomy 21. Experientia 52:871–873

    Article  PubMed  CAS  Google Scholar 

  • De Lacoste M. C., Kirkpatrick J. B. and Ross E. D. (1985). Topography of the human corpus callosum. J. Neuropath. Exper. Neurol. 44:578–591

    CAS  Google Scholar 

  • Engidawork E. and Lubec G. (2001). Protein expression in Down syndrome brain. Amino Acids 21:331–361

    Article  PubMed  CAS  Google Scholar 

  • Evenhuis H. M. (1990). The natural history of dementia in Down’s syndrome. Arch. Neurol. 47:263–267

    PubMed  CAS  Google Scholar 

  • Fox N. C., Crum W. R., Scahill R. I., Stevens J. M., Janssen J. C. and Rossor M. N. (2001). Imaging of onset and progression of Alzheimer’s disease with voxel-compression mapping of serial magnetic resonance images. Lancet 358:201–205

    Article  PubMed  CAS  Google Scholar 

  • Frangou S., Aylward E., Warren A., Sharma T., Barta P. and Pearlson G. (1997). Small planum temporale volume in Down’s syndrome: a volumetric MRI study. Am. J. Psychiatry. 154:1424–1429

    PubMed  CAS  Google Scholar 

  • Frisoni G. B., Scheltens P., Galluzzi S., Nobili F. M., Fox N. C., Robert P. H., et al. (2003). Neuroimaging tools to rate regional atrophy, subcortical cerebrovascular disease, and regional cerebral blood flow and metabolism: consensus paper of the EADC. J. Neurol. Neurosurg. Psychiat. 74:1371–1381

    Article  PubMed  CAS  Google Scholar 

  • Good C. D., Johnsrude I. S., Ashburner J., Henson R. N., Friston K. J. and Frackowiak R. S. (2001). A voxel-based morphometric study of ageing in 465 normal adult human brains. Neuroimage 14:21–36

    Article  PubMed  CAS  Google Scholar 

  • Greicius M. D., Krasnow B., Boyett-Anderson J. M., Eliez S., Schatzberg A. F., Reiss A. L., et al. (2003). Regional analysis of hippocampal activation during memory encoding and retrieval: fMRI study. Hippocampus 13:164–174

    Article  PubMed  Google Scholar 

  • Hampel H., Teipel S. J., Alexander G. E., Horwitz B., Teichberg D., Schapiro M. B., et al. (1998). Corpus callosum atrophy is a possible indicator of region- and cell type-specific neuronal degeneration in Alzheimer disease: a magnetic resonance imaging analysis. Arch. Neurol. 55:193–198

    Article  PubMed  CAS  Google Scholar 

  • Hampel H., Teipel S. J., Alexander G. E., Pogarell O., Rapoport S. I. and Moller H. J. (2002a). In vivo imaging of region and cell type specific neocortical neurodegeneration in Alzheimer’s disease Perspectives of MRI derived corpus callosum measurement for mapping disease progression and effects of therapy. Evidence from studies with MRI, EEG and PET. J. Neural. Transm. 109:837–855

    Article  CAS  Google Scholar 

  • Hampel H., Teipel S. J., Bayer W., Alexander G. E., Schwarz R., Schapiro M. B., et al. (2002b). Age transformation of combined hippocampus and amygdala volume improves diagnostic accuracy in Alzheimer’s disease. J. Neurol. Sci. 194:15–19

    Article  Google Scholar 

  • Hof P. R., Bouras C., Perl D. P., Sparks D. L., Mehta N. and Morrison J. H. (1995). Age-related distribution of neuropathologic changes in the cerebral cortex of patients with Down’s syndrome. Quantitative regional analysis and comparison with Alzheimer’s disease. Arch. Neurol. 52:379–391

    PubMed  CAS  Google Scholar 

  • Hyman B. T., West H. L., Rebeck G. W., Lai F. and Mann D. M. (1995). Neuropathological changes in Down’s syndrome hippocampal formation. Effect of age and apolipoprotein E genotype. Arch. Neurol. 52:373–378

    PubMed  CAS  Google Scholar 

  • Ikeda M. and Arai Y. (2002). Longitudinal changes in brain CT scans and development of dementia in Down’s syndrome. Eur. Neurol. 47:205–208

    Article  PubMed  Google Scholar 

  • Ikeda S., Yanagisawa N., Allsop D. and Glenner G. G. (1989). Evidence of amyloid beta-protein immunoreactive early plaque lesions in Down’s syndrome brains. Lab. Invest. 61:133–137

    PubMed  CAS  Google Scholar 

  • Innocenti G. M. (1986). General organization of callosal connections in the cerebral cortex. In: Jones E. G., Peters A., (eds) Cerebral Cortex: Sensory Motor Areas and Aspects of Cortical Connectivity. New York NY, Plenum Publishing Corp., pp. 291–353

    Google Scholar 

  • Jack C. R., Jr., Dickson D. W., Parisi J. E., Xu Y. C., Cha R. H., O’Brien P. C., et al. (2002). Antemortem MRI findings correlate with hippocampal neuropathology in typical aging and dementia. Neurology 58:750–757

    PubMed  Google Scholar 

  • Janowsky J. S., Kaye J. A. and Carper R. A. (1996). Atrophy of the corpus callosum in Alzheimer’s disease versus healthy aging. J. Am. Ger. Soc. 44:798–803

    CAS  Google Scholar 

  • Jellinger K. A. and Bancher C. (1998). Neuropathology of Alzheimer’s disease: a critical update. J Neural. Transm. Suppl. 54:77–95

    PubMed  CAS  Google Scholar 

  • Jernigan T. L., Bellugi U., Sowell E., Doherty S. and Hesselink J. R. (1993). Cerebral morphologic distinctions between Williams and Down syndromes. Arch. Neurol. 50:186–191

    PubMed  CAS  Google Scholar 

  • Karas G. B., Scheltens P., Rombouts S. A., Visser P. J., van Schijndel R. A., Fox N. C., et al. (2004). Global and local gray matter loss in mild cognitive impairment and Alzheimer’s disease. Neuroimage 23:708–716

    Article  PubMed  CAS  Google Scholar 

  • Kesslak J. P., Nagata S. F., Lott I. and Nalcioglu O. (1994). Magnetic resonance imaging analysis of age-related changes in the brains of individuals with Down’s syndrome. Neurology 44:1039–1045

    PubMed  CAS  Google Scholar 

  • Krasuski J.S., Alexander G.E., Horwitz B., Rapoport S.I. and Schapiro M.B. (2002). Relation of medial temporal lobe volumes to age and memory function in nondemented adults with Down’s syndrome: implications for the prodromal phase of Alzheimer’s disease. Am. J. Psychiatry 159:74–81

    Article  PubMed  Google Scholar 

  • Lawlor B. A., McCarron M., Wilson G. and McLoughlin M. (2001). Temporal lobe-oriented CT scanning and dementia in Down’s syndrome. Int. J. Geriatr. Psychiatry 16:427–429

    PubMed  CAS  Google Scholar 

  • Lawlor B. A., McCarron M., Wilson G. and McLoughlin M. (2001). Temporal lobe-oriented CT scanning and dementia in Down’s syndrome. Int. J. Geriatr. Psychiatry 16:427–429

    Article  PubMed  CAS  Google Scholar 

  • Lee A. C., Robbins T. W. and Owen A. M. (2000). Episodic memory meets working memory in the frontal lobe: functional neuroimaging studies of encoding and retrieval. Crit. Rev. Neurobiol. 14:165–197

    PubMed  CAS  Google Scholar 

  • Mann D. M. (1988). The pathological association between Down syndrome and Alzheimer disease. Mech. Ageing Dev. 43:99–136

    Article  PubMed  CAS  Google Scholar 

  • Mann D. M. and Esiri M. M. (1989). The pattern of acquisition of plaques and tangles in the brains of patients under 50 years of age with Down’s syndrome. J. Neurol. Sci. 89:169–179

    Article  PubMed  CAS  Google Scholar 

  • Mann D. M., Prinja D., Davies C. A., Ihara Y., Delacourte A., Defossez A., et al. (1989). Immunocytochemical profile of neurofibrillary tangles in Down’s syndrome patients of different ages. J. Neurol. Sci. 92:247–260

    Article  PubMed  CAS  Google Scholar 

  • Mann D. M. A., Yates P. O. and Marcyniuk B. (1984). Alzheimer’s presenile dementia, senile dementia of Alzheimer type and Down’s syndrome in middle age form an age related continuum of pathological changes. Neuropath. Appl. Neurobiol. 10:185–207

    CAS  Google Scholar 

  • Mesulam M. (2004). The cholinergic lesion of Alzheimer’s disease: pivotal factor or side show? Learn. Mem. 11:43–49

    Article  PubMed  Google Scholar 

  • Morrison J. H., Scherr S., Lewis D. A., Campbell M. J. and Bloom F. E. (1986). The laminar and regional distribution of neocortical somatostatin and neuritic plaques: implications for Alzheimer’s disease as a global neocortical disconnection syndrome. In: Scheibel A. B., Weschler A. F., (eds) The Biological Substrates of Alzheimer’s Disease. New York, NY, Academic Press, pp. 115–131

    Google Scholar 

  • Nagy Z., Hindley N. J., Braak H., Braak E., Yilmazer-Hanke D. M., Schultz C., et al. (1999). The progression of Alzheimer’s disease from limbic regions to the neocortex: clinical, radiological and pathological relationships. Dement. Geriatr. Cogn. Disord. 10:115–120

    Article  PubMed  CAS  Google Scholar 

  • Nagy Z., Jobst K. A., Esiri M. M., Morris J. H., King E. M.-F., MacDonald B., et al. (1996). Hippocampal pathology reflects memory deficit and brain imaging measurements in Alzheimer’s disease: clinicopathological correlations using three sets of pathologic diagnostic criteria. Dementia 7:76–81

    PubMed  CAS  Google Scholar 

  • Pearlson G. D., Breiter S. N., Aylward E. H., Warren A. C., Grygorcewicz M., Frangou S., et al. (1998). MRI brain changes in subjects with Down syndrome with and without dementia. Dev. Med. Child Neurol. 40:326–334

    PubMed  CAS  Google Scholar 

  • Pearson R. C. A., Esiri M. M., Hiorns R. W., Wilcock G. K. and Powell T. P. S. (1985). Anatomical correlates of the distribution of the pathological changes in the neocortex in Alzheimer’s disease. Proc. Natl. Acad. Sci. USA. 82:4531–4534

    Article  PubMed  ADS  CAS  Google Scholar 

  • Pennanen C., Testa C., Laakso M. P., Hallikainen M., Helkala E. L., Hanninen T., et al. (2005). A voxel based morphometry study on mild cognitive impairment. J. Neurol. Neurosurg. Psychiatry. 76:11–14

    Article  PubMed  CAS  Google Scholar 

  • Pinter J. D., Brown W. E., Eliez S., Schmitt J. E., Capone G. T. and Reiss A. L. (2001a). Amygdala and hippocampal volumes in children with Down syndrome: a high-resolution MRI study. Neurology 56:972–974

    CAS  Google Scholar 

  • Pinter J. D., Eliez S., Schmitt J. E., Capone G. T. and Reiss A. L. (2001b). Neuroanatomy of Down’s syndrome: a high-resolution MRI study. Am. J. Psychiatry 158:1659–1665

    Article  CAS  Google Scholar 

  • Raz N., Torres I. J., Briggs S. D., Spencer W. D., Thornton A. E., Loken W. J., et al. (1995). Selective neuroanatomic abnormalities in Down’s syndrome and their cognitive correlates: evidence from MRI morphometry. Neurology 45:356–366

    PubMed  CAS  Google Scholar 

  • Rugg M. D., Otten L. J. and Henson R. N. (2002). The neural basis of episodic memory: evidence from functional neuroimaging. Philos. Trans. R. Soc. Lond. B Biol. Sci. 357:1097–1110

    Article  PubMed  Google Scholar 

  • Rumble B., Retallack R., Hilbich C., Simms G., Multhaup G., Martins R., et al. (1989). Amyloid A4 protein and its precursor in Down’s syndrome and Alzheimer’s disease. N. Engl. J. Med. 320:1446–1452

    Article  PubMed  CAS  Google Scholar 

  • Sadowski M., Wisniewski H. M., Tarnawski M., Kozlowski P. B., Lach B. and Wegiel J. (1999). Entorhinal cortex of aged subjects with Down’s syndrome shows severe neuronal loss caused by neurofibrillary pathology. Acta Neuropathol. 97:156–164

    Article  PubMed  CAS  Google Scholar 

  • Schapiro M. B., Haxby J. V. and Grady C. L. (1992). Nature of mental retardation and dementia in Down syndrome: study with PET, CT, and neuropsychology. Neurobiol. Aging 13:723–734

    Article  PubMed  CAS  Google Scholar 

  • Schapiro M. B., Luxenberg J. S., Kaye J. A., Haxby J. V., Friedland R. P. and Rapoport S. I. (1989). Serial quantitative CT analysis of brain morphometrics in adult Down’s syndrome at different ages. Neurology 39:1349–1353

    PubMed  CAS  Google Scholar 

  • Schmidt-Sidor B., Wisniewski K. E., Shepard T. H. and Sersen E. A. (1990). Brain growth in Down syndrome subjects 15 to 22 weeks of gestational age and birth to 60 months. Clin. Neuropathol. 9:181–190

    PubMed  CAS  Google Scholar 

  • Smith A. D. (2002). Commentary: Imaging the progression of Alzheimer pathology through the brain. PNAS 99:4135–4137

    Article  PubMed  CAS  ADS  Google Scholar 

  • Squire L.R. and Zola-Morgan S. (1991). The medial temporal lobe memory system. Science 253:1380–1386

    PubMed  ADS  CAS  Google Scholar 

  • Talairach J. and Tournoux P. (1988). Co-Planar Stereotaxic Atlas of the Human Brain. New York, Thieme

    Google Scholar 

  • Teipel S. J., Alexander G. E., Schapiro M. B., Moller H. J., Rapoport S. I. and Hampel H. (2004). Age-related cortical grey matter reductions in non-demented Down’s syndrome adults determined by MRI with voxel-based morphometry. Brain 127:811–824

    Article  PubMed  Google Scholar 

  • Teipel S. J., Bayer W., Alexander G. E., Zebuhr Y., Teichberg D., Kulic L., et al. (2002a). Progression of corpus callosum atrophy in Alzheimer disease. Arch. Neurol. 59:243–248

    Article  Google Scholar 

  • Teipel S. J., Bayer W., Alexander G. E., Zebuhr Y., Teichberg D., Kulic L., et al. (2002b). Progression of Corpus Callosum Atrophy in Alzheimer’s disease. Arch. Neurol. 59:243–248

    Article  Google Scholar 

  • Teipel S. J., Flatz W. H., Heinsen H., Bokde A. L. W., Schoenberg S. O., Stöckel S., et al. (2005). Measurement of basal forebrain atrophy in AD using MRI. Brain 128:2626–2644

    Article  PubMed  Google Scholar 

  • Teipel S. J., Hampel H., Alexander G. E., Schapiro M. B., Horwitz B., Teichberg D., et al. (1998). Dissociation between white matter pathology and corpus callosum atrophy in Alzheimer’s disease. Neurology 51:1381–1385

    PubMed  CAS  Google Scholar 

  • Teipel S. J., Hampel H., Pietrini P., Alexander G. E., Horwitz B., Daley E., et al. (1999). Region specific corpus callosum atrophy correlates with regional pattern of cortical glucose metabolism in Alzheimer’s disease. Arch. Neurol. 56:467–473

    Article  PubMed  CAS  Google Scholar 

  • Teipel S. J., Schapiro M. B., Alexander G. E., Krasuski J. S., Horwitz B., Hoehne C., et al. (2003). Relation of corpus callosum and hippocampal size to age in nondemented adults with Down’s syndrome. Am. J. Psychiatry 160:1870–1878

    Article  PubMed  Google Scholar 

  • Vassar R. (2005). beta-Secretase, APP and Abeta in Alzheimer’s disease. Subcell. Biochem. 38:79–103

    Article  PubMed  CAS  Google Scholar 

  • Wang P. P., Doherty S., Hesselink J. R. and Bellugi U. (1992). Callosal morphology concurs with neurobehavioral and neuropathological findings in two neurodevelopmental disorders. Arch. Neurol. 49:407–411

    PubMed  CAS  Google Scholar 

  • Weis S., Jellinger K. and Wenger E. (1991a). Morphometry of the corpus callosum in normal aging and Alzheimer’s disease. J. Neural. Transm. 33[Suppl]: 35–38

    CAS  Google Scholar 

  • Weis S., Weber G., Neuhold A. and Rett A. (1991b). Down Syndrome: MR quantification of brain structures and comparison with normal control subjects. AJNR 12:1207–1211

    CAS  Google Scholar 

  • White N. S., Alkire M. T. and Haier R. J. (2003). A voxel-based morphometric study of nondemented adults with Down Syndrome. Neuroimage 20:393–403

    Article  PubMed  Google Scholar 

  • Wisniewski K. E. (1990). Down syndrome children often have brain with maturation delay, retardation of growth, and cortical dysgenesis. Am. J. Med. Genet. Suppl. 7:274–281

    Article  PubMed  CAS  Google Scholar 

  • Wisniewski K. E., Dalton A. J., McLachlan C., Wen G. Y. and Wisniewski H. M. (1985a). Alzheimer’s disease in Down’s syndrome: clinicopathologic studies. Neurology 35: 957–961

    CAS  Google Scholar 

  • Wisniewski K. E., Wisniewski H. M. and Wen G. Y. (1985b). Occurrence of neuropathological changes and dementia of Alzheimer’s disease in Down’s syndrome. Ann. Neurol. 17:278–282

    Article  CAS  Google Scholar 

  • Yamauchi H., Fukuyama H., Harada K., Nabatame H., Ogawa M., Ouchi Y., et al. (1993). Callosal atrophy parallels decreased cortical oxygen metabolism and neuropsychological impairment in Alzheimer’s disease. Arch. Neurol. 50:1070–1074

    PubMed  CAS  Google Scholar 

  • Yoshimura N., Kubota S., Fukushima Y., Kudo H., Ishigaki H. and Yoshida Y. (1990). Down’s syndrome in middle age. Topographical distribution and immunoreactivity of brain lesions in an autopsied patient. Acta Pathol. Jpn. 40:735–743

    CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Michael Ewers (LMU Munich) for critical reading of the manuscript. Part of this work was supported by grants of the Medical Faculty of the Ludwig–Maximilian University (Munich, Germany) to S.J.T., of the Hirnliga e. V. (Nürmbrecht, Germany) to S.J.T. and H.H., and by the German Competency Network on Dementias (Kompetenznetz Demenzen) funded by the Bundesministerium für Bildung und Forschung (BMBF), Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan J. Teipel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teipel, S.J., Hampel, H. Neuroanatomy of Down Syndrome in vivo: A Model of Preclinical Alzheimer’s Disease. Behav Genet 36, 405–415 (2006). https://doi.org/10.1007/s10519-006-9047-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10519-006-9047-x

Key words

Navigation