Skip to main content

Advertisement

Log in

Down-regulation of iNOS and TNF-α expression by kaempferol via NF-κB inactivation in aged rat gingival tissues

  • Research Article
  • Published:
Biogerontology Aims and scope Submit manuscript

Abstract

The primary objective of this study was to evaluate the ability and mechanism of action of kaempferol, which is contained in extracts from Nelumbo nucifera, a well-known Oriental herb used in traditional medicine, with regard to the inhibition of iNOS and TNF-α expression in aged rat gingival tissues. We conducted an investigation into the age-related effects of kaempferol on reactive oxygen species (ROS) and GSH oxidative status in samples of aged gingival tissues. Western blotting was conducted in order to determine the expression of iNOS, TNF-α, p38 MAPK, NIK/IKK, p65 and IκBα in the sample tissues. Electrophoretic mobility shift assays (EMSA) were conducted in an effort to characterize the binding activities of NF-κB transcription factors in the aged rat gingival nuclear extracts. Our results indicate that kaempferol reduced ROS levels and augmented GSH levels in a dose-dependent manner in the aged gingival tissues. Kaempferol was shown to effect a significant reduction in iNOS and TNF-α protein levels, as compared to control gingival tissue samples. The results of Western blot analysis revealed that kaempferol treatment effected the reduction of iNOS and TNF-α expression, decreased nuclear p65 and increased cytosolic p65, down-regulation of Erk, p38, JNK and NIK/IKK expression. The EMSA results also indicated that kaempferol, when administered to the rat tissues, attenuated the NF-κB nuclear binding activity. Kaempferol may inhibit ROS generation via the inhibition of iNOS and TNF-α expression in aged gingival tissues, via the modulation of the NF-κB and mitogen-activated protein kinase (MAPK) pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

DCF:

2,7-dichlorofluorescein

DTNB:

5,5-dithiobis-2-nitrobenzoic acid

EMSA:

Electrophoretic mobility shift assays

H2DCFDA:

2,7-dichlorofluorescein diacetate

MAPK:

mitogen-activated protein kinase

ROS:

reactive oxygen species

References

  • Anton R (1988) Flavonoids and traditional medicine. Prog Clin Biol Res 280:423–439

    PubMed  CAS  Google Scholar 

  • Arrigo AP (1999) Gene expression and the thiol redox state. Free Radic Biol Med 27:936–944

    Article  PubMed  CAS  Google Scholar 

  • Baldwin AS Jr (1996) The NF-kappa B and I kappa B proteins: new discoveries and insights. Annu Rev Immunol 14:649–683

    Article  PubMed  CAS  Google Scholar 

  • Blonska M, Bronikowska J, Pietsz G, Czuba ZP, Scheller S, Krol W (2004) Effects of ethanol extract of propolis (EEP) and its flavones on inducible gene expression in J774A.1 macrophages. J Ethnopharmacol 91:25–30

    Article  PubMed  CAS  Google Scholar 

  • Camuesco D, Comalada M, Rodriguez-Cabezas ME, Nieto A, Lorente MD, Concha A, Zarzuelo A, Galvez J (2004) The intestinal anti-inflammatory effect of quercitrin is associated with an inhibition in iNOS expression. Br J Pharmacol 143:908–918

    Article  PubMed  CAS  Google Scholar 

  • Chung HG, Yokozawa T, SoungDY, Kye LS, No JK, Baek BS (1998) Peroxynitrite-scavenging activity of green tea tannin. J Agric Food Chem 46:4484–4486

    Article  CAS  Google Scholar 

  • Chung HY, Kim HJ, Jung KJ, Yoon JS, Yoo MA, Kim KW, Yu BP (2000) The inflammatory process in aging. Rev Clin Gerontol 10:207–222

    Article  Google Scholar 

  • Chung HY, Kim HJ, Kim JW, Yu BP (2001) The inflammation hypothesis of aging: molecular modulation by calorie restriction. Ann NY Acad Sci 928:327–335

    Article  PubMed  CAS  Google Scholar 

  • Delhase M, Hayakawa M Chen Y, Karin M (1999) Positive and negative regulation of IkappaB kinase activity through IKKbeta subunit phosphorylation. Science 284:309–313

    Article  PubMed  CAS  Google Scholar 

  • Fernandez V, Tapia G, Varela P, Romanque P, Cartier-Ugarte D, Videla LA (2006) Thyroid hormone-induced oxidative stress in rodents and humans: a comparative view and relation to redox regulation of gene expression. Comp Biochem Physiol C Toxicol Pharmacol 142:231–239

    Article  PubMed  CAS  Google Scholar 

  • Goossens V, Grooten J, De Vos K, Fiers W (1995) Direct evidence for tumor necrosis factor-induced mitochondrial reactive oxygen intermediates and their involvement in cytotoxicity. Proc Natl Acad Sci USA 92:8115–8119

    Article  PubMed  CAS  Google Scholar 

  • Hattori M, Tugores A, Veloz L, Karin M, Brenner DA (1990) A simplified method for the preparation of transcriptionally active liver nuclear extracts. DNA Cell Biol 9:777–781

    Article  PubMed  CAS  Google Scholar 

  • Haffajee AD, Socransky SS, Lindhe J, Kent RL, Okamoto H, Yoneyama T (1991) Clinical risk indicators for periodontal attachment loss. J Clin Periodontol 118:117–125

    Article  Google Scholar 

  • Helenius M, Hanninen M, Lehtinen SK, Salminen A (1996) Changes associated with aging and replicative senescence in the regulation of transcription factor nuclear factor-kappa B. Biochem J 318:603–608

    PubMed  CAS  Google Scholar 

  • Hendriks JJ, Alblas J, van der Pol SM, van Tol EA, Dijkstra CD, de Vries HE (2004) Flavonoids influence monocytic GTPase activity and are protective in experimental allergic encephalitis. J Exp Med 200:1667–1672

    Article  PubMed  CAS  Google Scholar 

  • Hutter D, Greene JJ (2000) Influence of the cellular redox state on NF-kappaB-regulated gene expression. J Cell Physiol 183:45–52

    Article  PubMed  CAS  Google Scholar 

  • Ismail AI, Morrison EC, Burt BA, Caffesse RG, Kavanagh MH (1990) Natural history of periodontal disease in adults: findings from the Tecumseh periodontal disease study, 1959–87. J Dent Res 24:362–367

    Google Scholar 

  • Karin M, Yamamoto Y, Wang QM (2004) The IKK NF-kappa B system: a treasure trove for drug development. Nat Rev Drug Discov 3:17–26

    Article  PubMed  CAS  Google Scholar 

  • Kawaguchi K, Kikuchi S, Hasunuma R, Maruyama H, Yoshikawa T, Kumazawa Y (2004) A citrus flavonoid hesperidin suppresses infection-induced endotoxin shock in mice. Biol Pharm Bull 27:679–683

    Article  PubMed  CAS  Google Scholar 

  • Kim H, Lee HS, Chang KT, Ko TH, Baek KJ, Kwon NS (1995) Chloromethyl ketones block induction of nitric oxide synthase in murine macrophages by preventing activation of nuclear factor-kappa B. J Immunol 154:4741–4748

    PubMed  CAS  Google Scholar 

  • Kim HK, Cheon BS, Kim YH, Kim SY, Kim HP (1999) Effects of naturally occurring flavonoids on nitric oxide production in the macrophage cell line RAW 264.7 and their structure-activity relationships. Biochem Pharmacol 58:759–765

    Article  PubMed  CAS  Google Scholar 

  • Kim HK, Park HR, Sul KH, Chung HY, Chung J (2006) Induction of RANTES and CCR5 through NF-kB activation via MAPK pathway in aged rat gingival tissues. Biotech Lett 28:17–23

    Article  CAS  Google Scholar 

  • Korhonen P, Helenius M, Salminen A (1997) Age-related changes in the regulation of transcription factor NF-kappa B in rat brain. Neurosci Lett 225:61–64

    Article  PubMed  CAS  Google Scholar 

  • LeBel CP, Ischiropoulos H, Bondy SC (1992) Evaluation of the probe 2,7-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem Res Toxicol 5:227–231

    Article  PubMed  CAS  Google Scholar 

  • Liang YC, Huang YT, Tsai SH, Lin-Shiau SY, Chen CF, Lin JK (1999) Suppression of inducible cyclooxygenase and inducible nitric oxide synthase by apigenin and related flavonoids in mouse macrophages. Carcinogenesis 20:1945–1952

    Article  PubMed  CAS  Google Scholar 

  • Locksley RM, Killeen N, Lenardo MJ (2001) The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 23:487–501

    Article  Google Scholar 

  • Malecki A, Garrido R, Mattson MP, Hennig B, Toborek M (2000) 4-Hydroxynonenal induces oxidative stress and death of cultured spinal cord neurons. J Neurochem 74:2278–2287

    Article  PubMed  CAS  Google Scholar 

  • Manna SK, Kuo MT, Aggarwal BB (1999) Overexpression of γ-glutamylcysteine synthetase suppresses tumor necrosis factor-induced apoptosis and activation of nuclear transcription factor-kappa B and activator protein-1. Oncogene 18:4371–4382

    Article  PubMed  CAS  Google Scholar 

  • Mehlen P, Kretz-Remy C, Preville X, Arrigo AP (1996) Human hsp27, Drosophila hsp27 and human alphaB-crystallin expression-mediated increase in glutathione is essential for the protective activity of these proteins against TNFalpha-induced cell death. EMBO J 15:2695–2706

    PubMed  CAS  Google Scholar 

  • Middleton Jr E, Kandaswami C, Theoharides TC (2000) The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacol Rev 52:673–751

    PubMed  CAS  Google Scholar 

  • Papapanou PN, Lindhe J, Sterrett JD, Eneroth L (1991) Considerations on the contributing of aging to loss of periodontal tissue support. J Clin Periodontol 18:611–615

    Article  PubMed  CAS  Google Scholar 

  • Prabhu A, Michalowicz BS, Mathur A (1996) Detection of local and systemic cytokines in adult periodontitis. J Periodontol 67:515–522

    PubMed  CAS  Google Scholar 

  • Saccani A, Saccani S, Orlando S, Sironi M, Bernasconi S, Ghezzi P, Mantovani A, Sicca A (2000) Redox regulation of chemokine receptor expression. Proc Natl Acad Sci USA 97:2761–2766

    Article  PubMed  CAS  Google Scholar 

  • Samhan-Arias AK, Martin-Romero FJ, Gutierrez-Marino C (2004) Kaempferol blocks oxidative stress in cerebellar granule cells and reveals a key role for reactive oxygen species production at the plasma membrane in the commitment to apoptosis. Free Radic Biol Med 37:48–61

    Article  PubMed  CAS  Google Scholar 

  • Schreck R, Rieber P, Baeuerle PA (1991) Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-kappa B transcription factor and HIV-1. EMBO J 10:2247–2258

    PubMed  CAS  Google Scholar 

  • Seldak J, Lindsay RH (1968) Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal Biochem 25:192–205

    Article  Google Scholar 

  • Stavric B (1994) Quercetin in our diet: from potent mutagen to probable anticarcinogen. Clin Biochem 27:245–248

    Article  PubMed  CAS  Google Scholar 

  • Szabo C (1995) Alterations in nitric oxide production in various forms of circulatory shock. New Horiz 3:2–32

    PubMed  CAS  Google Scholar 

  • Uchida K, Kumagai T (2003) 4-Hydroxy-2-nonenal as a COX-2 inducer. Mol Aspects Med 24:213–218

    Article  PubMed  CAS  Google Scholar 

  • Woronicz JD, Gao X, Cao X, Rothe M, Goeddel DV (1997) IkappaB kinase-beta: NF-kappaB activation and complex formation with IkappaB kinase-alpha and NIK. Science 278:866–869

    Article  PubMed  CAS  Google Scholar 

  • Yamazaki K, Nakajima T, Kubota Y, Gemmell E, Seymour GJ, Hara K (1997) Cytokine messenger RNA expression in chronic inflammatory periodontal disease. Oral Microbiol Immunol 12:281–287

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are thankful to the Aging Tissue Bank (R21-2000-000-00021-0) funded by Korea Science and Engineering Foundation for supplying aged tissue.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Chung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, H.K., Park, H.R., Lee, J.S. et al. Down-regulation of iNOS and TNF-α expression by kaempferol via NF-κB inactivation in aged rat gingival tissues. Biogerontology 8, 399–408 (2007). https://doi.org/10.1007/s10522-007-9083-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10522-007-9083-9

Keywords

Navigation