Skip to main content
Log in

Apolipoprotein E deficiency and a mouse model of accelerated liver aging

  • Research Article
  • Published:
Biogerontology Aims and scope Submit manuscript

Abstract

The liver is the central metabolic organ which regulates several key aspects of lipid metabolism. The liver changes with age leading to an impaired ability to respond to hepatic insults and an increased incidence of liver disease in the elderly. Apolipoprotein E (ApoE) null mice have proved to be a very popular model to study spontaneous atherosclerosis, but recently it has been demonstrated that in ApoE−/− mice liver there are enzymatic and structural alterations, normally linked to the age. The purpose of this study was to consider ApoE−/− mice as a model for oxidative stress induced hepatic disease and to clarify how ApoE inactivation accelerates the aging process and causes liver disease.We used ApoE null mice and control mice at different ages (6 weeks and 15 months).Liver morphological damage as well as proteins involved in oxidative stress and liver ageing were all analyzed.Our study showed that ApoE null mice develop important age-related changes including oxidative stress, pseudocapillarization, increased polyploidy, decreased hepatocyte number and increased nuclear size. Our findings provide evidence that hypercholesterolemic ApoE−/− mice are more likely to develop severe liver injury, suggesting that in addition to vascular disease, increased cholesterol products and oxidative stress may also play a role in accelerating the progression of aging in the liver.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ben-Porath I, Weinberg RA (2005) The signals and pathways activating cellular senescence. Int J Biochem Cell Biol 37:961–976

    Article  PubMed  CAS  Google Scholar 

  • Bond J, Haughton M, Blaydes J, Gire V, Wynford-Thomas D, Wyllie F (1996) Evidence that transcriptional activation by p53 plays a direct role in the induction of cellular senescence. Oncogene 13:2097–2104

    PubMed  CAS  Google Scholar 

  • Bonomini F, Filippini F, Hayek T, Aviram M, Keidar S, Rodella LF, Coleman R, Rezzani R (2010) Apolipoprotein E and its role in aging and survival. Exp Gerontol 45:149–157

    Article  PubMed  CAS  Google Scholar 

  • Brown JP, Wei W, Sedivy JM (1997) Bypass of senescence after disruption of p21CIP1/WAF1 gene in normal diploid human fibroblasts. Science 277:831–834

    Article  PubMed  CAS  Google Scholar 

  • Campisi J, d’Adda di Fagagna F (2007) Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol 8(9):729–740

    Article  PubMed  CAS  Google Scholar 

  • Castro Mdel R, Suarez E, Kraiselburd E, Isidro A, Paz J, Ferder L, Ayala-Torres S (2012) Aging increases mitochondrial DNA damage and oxidative stress in liver of rhesus monkeys. Exp Gerontol 47:29–37

    Article  PubMed  Google Scholar 

  • Chen WY, Chen CJ, Liu CH, Mao FC (2010) Chromium attenuates high-fat diet-induced non-alcoholic fatty liver disease in KK/HIJ mice. Biochem Biophys Res Commun 397(3):459–464

    Article  PubMed  CAS  Google Scholar 

  • Erusalimsky JD, Kurz DJ (2006) Endothelial cell senescence. Handb Exp Pharmacol 176:213–248

    Article  PubMed  CAS  Google Scholar 

  • Escames G, López LC, Ortiz F, Ros E, Acuña-Castroviejo D (2006) Age-dependent lipopolysaccharide-induced iNOS expression and multiorgan failure in rats: effects of melatonin treatment. Exp Gerontol 41:1165–1173

    Article  PubMed  CAS  Google Scholar 

  • Folkmann JK, Loft S, Møller P (2007) Oxidatively damaged DNA in aging dyslipidemic ApoE−/− and wild-type mice. Mutagen 22(2):105–110

    Article  CAS  Google Scholar 

  • Furukawa A, Tada-Oikawa S, Kawanishi S, Oikawa S (2007) H2O2 accelerates cellular senescence by accumulation of acetylated p53 via decrease in the function of SIRT1 by NAD+depletion. Cell Physiol Biochem 20(1-4):2045–2054

    Google Scholar 

  • Gregg SQ, Gutiérrez V, Robinson AR, Woodell T, Nakao A, Ross MA, Michalopoulos GK, Rigatti L, Rothermel CE, Kamileri I, Garinis GA, Stolz DB, Niedernhofer LJ (2012) A mouse model of accelerated liver aging caused by a defect in DNA repair. Hepatology 55:609–621

    Article  PubMed  CAS  Google Scholar 

  • Helmy MM (2012) Potential hepato-protective effect of α-tocopherol or simvastatin in aged rats. Pharmacol Rep 64:698–705

    PubMed  CAS  Google Scholar 

  • Hoare M, Das T, Alexander G (2010) Ageing, telomeres, senescence, and liver injury. J Hepatol 53:950–961

    Article  PubMed  CAS  Google Scholar 

  • Hofker MH, van Vlijmen BJ, Havekes LM (1998) Transgenic mouse models to study the role of ApoE in hyperlipidemia and atherosclerosis. Atherosclerosis 137:1–11

    Article  PubMed  CAS  Google Scholar 

  • Ju Z, Choudhury AR, Rudolph KL (2007) A dual role of p21 in stem cell aging. Ann N Y Acad Sci 1100:333–344

    Article  PubMed  CAS  Google Scholar 

  • Kumar P, Kale RK, Baquer NZ (2011) Estradiol modulates membrane-linked ATPases, antioxidant enzymes, membrane fluidity, lipid peroxidation, and lipofuscin in aged rat liver. J Aging Res 2011:580245

    PubMed  Google Scholar 

  • Langley E, Pearson M, Faretta M, Bauer UM, Frye RA, Minucci S, Pelicci PG, Kouzarides T (2002) Human SIR2 deacetylates p53 and antagonizes PML/p53-induced cellular senescence. EMBO J 21:2383–2396

    Article  PubMed  CAS  Google Scholar 

  • Laurent A, Nicco C, Tran Van Nhieu J, Borderie D, Chéreau C, Conti F, Jaffray P, Soubrane O, Calmus Y, Weill B, Batteux F (2004) Pivotal role of superoxide anion and beneficial effect of antioxidant molecules in murine steatohepatitis. Hepatology 39:1277–1285

    Article  PubMed  CAS  Google Scholar 

  • Luo J, Nikolaev AY, Imai S, Chen D, Su F, Shiloh A, Guarente L, Gu W (2001) Negative control of p53 by Sir2alpha promotes cell survival under stress. Cell 107:137–148

    Article  PubMed  CAS  Google Scholar 

  • Luo J, Li M, Tang Y, Laszkowska M, Roeder RG, Gu W (2004) Acetylation of p53 augments its site-specific DNA binding both in vitro and in vivo. Proc Natl Acad Sci USA 101:2259–2264

    Article  PubMed  CAS  Google Scholar 

  • Mauriz JL, Molpeceres V, García-Mediavilla MV, González P, Barrio JP, González-Gallego J (2007) Melatonin prevents oxidative stress and changes in antioxidant enzyme expression and activity in the liver of aging rats. J Pineal Res 42:222–230

    Article  PubMed  CAS  Google Scholar 

  • McLean AJ, Cogger VC, Chong GC, Warren A, Markus AM, Dahlstrom JE, Le Couteur DG (2003) Age-related pseudocapillarization of the human liver. J Pathol 200:112–117

    Google Scholar 

  • Meir KS, Leitersdorf E (2004) Atherosclerosis in the apolipoprotein-E-deficient mouse: a decade of progress. Arterioscler Thromb Vasc Biol 24:1006–1014

    Article  PubMed  CAS  Google Scholar 

  • Melov S (2002) Animal models of oxidative stress, aging, and therapeutic antioxidant interventions. Int J Biochem Cell Biol 34:1395–1400

    Article  PubMed  CAS  Google Scholar 

  • Mercer JR, Yu E, Figg N, Cheng KK, Prime TA, Griffin JL, Masoodi M, Vidal-Puig A, Murphy MP, Bennett MR (2012) The mitochondria-targeted antioxidant MitoQ decreases features of the metabolic syndrome in ATM±/ApoE−/− mice. Free Radic Biol Med 52(5):841–849

    Article  PubMed  CAS  Google Scholar 

  • Miyoshi N, Oubrahim H, Chock PB (2006) Stadtman ER (2006) Age-dependent cell death and the role of ATP in hydrogen peroxide-induced apoptosis and necrosis. Proc Natl Acad Sci USA 103:1727–1731

    Article  PubMed  CAS  Google Scholar 

  • Mocali A, Giovannelli L, Dolara P, Paoletti F (2005) The comet assay approach to senescent human diploid fibroblasts identifies different phenotypes and clarifies relationships among nuclear size, DNA content, and DNA damage. J Gerontol A Biol Sci Med Sci 60:695–701

    Article  PubMed  Google Scholar 

  • Moghadasian MH, Pritchard HP, McManus BM, Frohlich JJ (1997) “Tall-oil” derived phytosterol mixture reduces atherosclerosis in ApoE-deficient mice. Arterioscler Thromb Vasc Biol 17:119–126

    Article  PubMed  CAS  Google Scholar 

  • Müller AM, Skrzynski C, Nesslinger M, Skipka G, Müller KM (2002) Correlation of age with in vivo expression of endothelial markers. Exp Gerontol 37:713–719

    Article  PubMed  Google Scholar 

  • Nakajima T, Nakashima T, Okada Y, Jo M, Nishikawa T, Mitsumoto Y, Katagishi T, Kimura H, Itoh Y, Kagawa K, Yoshikawa T (2010) Nuclear size measurement is a simple method for the assessment of hepatocellular aging in non-alcoholic fatty liver disease: comparison with telomere-specific quantitative FISH and p21 immunohistochemistry. Pathol Int 60:175–183

    Article  PubMed  Google Scholar 

  • Noda A, Ning Y, Venable SF, Pereira-Smith OM, Smith JR (1994) Cloning of senescent cell-derived inhibitors of DNA synthesis using an expression screen. Exp Cell Res 211:90–98

    Article  PubMed  CAS  Google Scholar 

  • Osada J, Joven J, Maeda N (2000) The value of apolipoproteine E knockout mice for studying the effects of dietary fat and cholesterol on atherogenesis. Curr Opin Lipidol 11:25–29

    Article  PubMed  CAS  Google Scholar 

  • Pacana T, Fuchs M (2012) The cardiovascular link to nonalcoholic fatty liver disease: a critical analysis. Clin Liver Dis 16:599–613

    Article  PubMed  Google Scholar 

  • Plump AS, Smith JD, Hayek T, Aalto-Setälä K, Walsh A, Verstuyft JG, Rubin EM, Breslow JL (1992) Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells. Cell 71:343–353

    Article  PubMed  CAS  Google Scholar 

  • Rizzoni D, Paiardi S, Rodella L, Porteri E, De Ciuceis C, Rezzani R, Boari GE, Zani F, Miclini M, Tiberio GA, Giulini SM, Rosei CA, Bianchi R, Rosei EA (2006) Changes in extracellular matrix in subcutaneous small resistance arteries of patients with primary aldosteronism. J Clin Endocrinol Metab 91:2638–2642

    Article  PubMed  CAS  Google Scholar 

  • Sasaki T, Maier B, Bartke A, Scrable H (2006) Progressive loss of SIRT1 with cell cycle withdrawal. Aging Cell 5:413–422

    Article  PubMed  CAS  Google Scholar 

  • Sekoguchi S, Nakajima T, Moriguchi M, Jo M, Nishikawa T, Katagishi T, Kimura H, Minami M, Itoh Y, Kagawa K, Tani Y, Okanoue T (2007) Role of cell-cycle turnover and oxidative stress in telomere shortening and cellular senescence in patients with chronic hepatitis C. J Gastroenterol Hepatol 22:182–190

    Article  PubMed  CAS  Google Scholar 

  • Semsei I (2000) On the nature of aging. Mech Ageing Dev 117:93–108

    Article  PubMed  CAS  Google Scholar 

  • Sersté T, Bourgeois N (2006) Ageing and the liver. Acta Gastroenterol Belg 69:296–298

    PubMed  Google Scholar 

  • Smith J (2002) Human Sir2 and the ‘silencing’ of p53 activity. Trends Cell Biol 12:404–406

    Article  PubMed  CAS  Google Scholar 

  • Stachowicz A, Suski M, Olszanecki R, Madej J, Okoń K, Korbut R (2012) Proteomic analysis of liver mitochondria of apolipoprotein E knockout mice treated with metformin. J Proteomics 77:167–175

    Article  PubMed  CAS  Google Scholar 

  • Tonini CL, Campagnaro BP, Louro LP, Pereira TM, Vasquez EC, Meyrelles SS (2013) Effects of aging and hypercholesterolemia on oxidative stress and DNA damage in bone marrow mononuclear cells in apolipoprotein E-deficient mice. Int J Mol Sci 14:3325–3342

    Article  PubMed  CAS  Google Scholar 

  • Tous M, Ferré N, Camps J, Riu F, Joven J (2005) Feeding apolipoprotein E-knockout mice with cholesterol and fat enriched diets may be a model of non-alcoholic steatohepatitis. Mol Cell Biochem 268:53–58

    Article  PubMed  CAS  Google Scholar 

  • van den Berghe G (1991) The role of the liver in metabolic homeostasis: implications for inborn errors of metabolism. J Inherit Metab Dis 14:407–420

    Article  PubMed  Google Scholar 

  • Videla LA, Rodrigo R, Orellana M, Fernandez V, Tapia G, Quiñones L, Varela N, Contreras J, Lazarte R, Csendes A, Rojas J, Maluenda F, Burdiles P, Diaz JC, Smok G, Thielemann L, Poniachik J (2004) Oxidative stress-related parameters in the liver of non-alcoholic fatty liver disease patients. Clin Sci (Lond) 106:261–268

    Article  CAS  Google Scholar 

  • Wang Y, Meng A, Zhou D (2004) Inhibition of phosphatidylinostol 3-kinase uncouples H2O2-induced senescent phenotype and cell cycle arrest in normal human diploid fibroblasts. Exp Cell Res 298:188–196

    Article  PubMed  CAS  Google Scholar 

  • Yang LJ, Chen Y, He J, Yi S, Wen L, Zhao S, Cui GH (2012) Effects of gambogic acid on the activation of caspase-3 and downregulation of SIRT1 in RPMI-8226 multiple myeloma cells via the accumulation of ROS. Oncol Lett 3:1159–1165

    PubMed  CAS  Google Scholar 

  • Zhang DY, Wang HJ, Tan YZ (2011) Wnt/β-catenin signaling induces the aging of mesenchymal stem cells through the DNA damage response and the p53/p21 pathway. PLoS ONE 6:e21397

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Miss. Stefania Castrezzati for her excellent technical assistance. This work was supported by local institutional grants (Ex 60 % 2011). This work was also corrected for language mistakes by Dott. R. Coates (medical writer), Bocconi University Centro Linguistico.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Bonomini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonomini, F., Rodella, L.F., Moghadasian, M. et al. Apolipoprotein E deficiency and a mouse model of accelerated liver aging. Biogerontology 14, 209–220 (2013). https://doi.org/10.1007/s10522-013-9424-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10522-013-9424-9

Keywords

Navigation