Skip to main content

Advertisement

Log in

Consumption of green tea epigallocatechin-3-gallate enhances systemic immune response, antioxidative capacity and HPA axis functions in aged male swiss albino mice

  • Research Article
  • Published:
Biogerontology Aims and scope Submit manuscript

Abstract

The present investigation assessed the potential of green tea phytochemical epigallocatechin-3-gallate (EGCG) in alleviating age-associated aberrations in immunity, hypothalamus–pituitary–adrenal (HPA) axis and redox homeostasis using 16 months old male Swiss albino mice. Four groups of animals (n = 6 per group) were supplemented with either aqueous EGCG at 25, 50 and 100 mg/kg/animal or vehicle control for 6 weeks. A concurrent analysis of CD4+ and CD8+ lymphocytes in splenocytes, differential leucocyte population, T cell differentiation markers in peripheral blood mononuclear cells (PBMCs), neutrophil functions, immunoglobulins profile in intestine, circulatory HPA axis hormonal levels as well as inflammatory and oxidative stress in the liver was performed. We observed a remarkable increase in plasma dehydroepiandrosterone (DHEA) levels of 100 mg EGCG fed animals while eosinophils and monocytes counts in blood increased. EGCG consumption increased the fraction of CD3+CD8+ cells in splenocytes and CD28 expression on PBMCs. The immunoglobulins profile revealed decreased production of secretory IgA, IgE and IgG1/IgG2a ratio. Liver extracts showed increase in superoxide dismutase activity and total antioxidant capacity while lipid peroxidation along with inflammatory markers (IL-6 and TNF-α) decreased. Our results collectively show that EGCG consumption during aging strengthens systemic immunity by enhancing cellular immune response and simultaneously attenuating antibody response aided by an increase in adrenal DHEA production. Thus, consumption of green tea may be beneficial in alleviating some of the deleterious aspects of aging and immunosenescence in elderly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

EGCG:

(−)-epigallocatechin-3-gallate

DHEA:

Dehydroepiandrosterone

TAC:

Total antioxidant capacity

SOD:

Superoxide dismutase

MDA:

Malondialdehyde

HPA:

Hypothalamus–pituitary–adrenal axis

PBMC:

Peripheral blood mononuclear cell

References

  • Aiello A, Accardi G, Candore G, Carruba G, Davinelli S, Passarino G, Scapagnini G, Vasto S, Caruso C (2016) Nutrigerontology: a key for achieving successful ageing and longevity. Immun Ageing 13:17

    Article  PubMed  PubMed Central  Google Scholar 

  • Andersen-Ranberg K, HØier-Madsen M, Wiik A, Jeune A, Hegedus L (2004) High prevalence of autoantibodies among Danish centenarians. Clin Exp Immunol 138:158–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bátory G, Jancsó A, Puskás E, Rédei A, Lengyel E (1984) Antibody and immunoglobulin levels in aged humans. Arch Gerontol Geriatr 3:175–188

    Article  PubMed  Google Scholar 

  • Baylis D, Bartlett DB, Patel HP, Roberts HC (2013) Understanding how we age: insights into inflammaging. Longev Healthspan 22(1):8

    Article  Google Scholar 

  • Bellavance MA, Rivest S (2014) The HPA—immune axis and the immunomodulatory actions of glucocorticoids in the brain. Front Immunol 5:136. doi:10.3389/fimmu.2014.00136

    Article  PubMed  PubMed Central  Google Scholar 

  • Boucher N, Dufeu-Duchesne T, Vicaut E, Farge D, Effros RB, Schächter F (1998) CD28 expression in T cell aging and human longevity. Exp Gerontol 33(3):267–282

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Buford TW, Willoughby DS (2008) Impact of DHEA(S) and cortisol on immune function in aging: a brief review. Appl Physiol Nutr Metab 33(3):429–433

    Article  CAS  PubMed  Google Scholar 

  • Chacko SM, Thambi PT, Kuttan R, Nishigaki I (2010) Beneficial effects of green tea: a literature review. Chin Med 6:5–13

    Google Scholar 

  • Comar JF, Babeto de Sá-Nakanishi A, de Oliveira AL, Marques Nogueira Wendt M, Bersani Amado CA, Ishii Iwamoto EL, Peralta RM, Bracht A (2013) Oxidative state of the liver of rats with adjuvant-induced arthritis. Free Radic Biol Med 58:144–153

    Article  CAS  PubMed  Google Scholar 

  • Compston JE (2002) Bone marrow and bone: a functional unit. J Endocrinol 173:387–394

    Article  CAS  PubMed  Google Scholar 

  • De la Fuente M, Baeza I, Guayerbas N, Puerto M, Castillo C, Salazar V, Ariznavarreta C, F-Tresguerres JA (2004) Changes with ageing in several leukocyte functions of male and female rats. Biogerontology 5(6):389–400

    Article  PubMed  Google Scholar 

  • Del Pozo V, De Andrés B, Martín E, Cárdaba B, Fernández JC, Gallardo S, Tramón P, Leyva-Cobian F, Palomino P, Lahoz C (1992) Eosinophil as antigen-presenting cell: activation of T cell clones and T cell hybridoma by eosinophils after antigen processing. Eur J Immunol 22:1919–1925

    Article  PubMed  Google Scholar 

  • Du GJ, Zhang Z, Wen XD, Yu C, Calway T, Yuan CS, Wang CZ (2012) Epigallocatechin Gallate (EGCG) Is the Most Effective Cancer Chemopreventive Polyphenol in Green Tea. Nutrients 4(11):1679–1691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Effros RB (2005) Roy Walford and the immunologic theory of aging. Immun Ageing 2:7

    Article  PubMed  PubMed Central  Google Scholar 

  • Effros RB, Walford RL (1983) The immune response of aged mice to influenza: diminished T-cell proliferation, interleukin 2 production and cytotoxicity. Cell Immunol 81:298–305

    Article  CAS  PubMed  Google Scholar 

  • Gu JW, Makey KL, Tucker KB, Chinchar E, Mao X, Pei I, Thomas EY, Miele L (2013) EGCG, a major green tea catechin suppresses breast tumor angiogenesis and growth via inhibiting the activation of HIF-1α and NFκB, and VEGF expression. Vasc Cell 5(1):9. doi:10.1186/2045-824X-5-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta C, Prakash D (2014) Nutraceuticals for geriatrics. J Tradit Complement Med 5(1):5–14

    Article  PubMed  PubMed Central  Google Scholar 

  • Harrison DE, Strong R, Allison DB, Ames BN, Astle CM, Atamna H, Fernandez E, Flurkey K, Javors MA, Nadon NL, Nelson JF, Pletcher S, Simpkins JW, Smith D, Wilkinson JE, Miller RA (2014) Acarbose, 17-α-estradiol, and nordihydroguaiaretic acid extend mouse lifespan preferentially in males. Aging Cell 13(2):273–282

    Article  CAS  PubMed  Google Scholar 

  • Jacobsen EA, Taranova AG, Lee NA, Lee JJ (2007) Eosinophils: singularly destructive effector cells or purveyors of immunoregulation? J Allergy Clin Immunol 119(6):1313–1320

    Article  CAS  PubMed  Google Scholar 

  • John CM, Sandrasaigaran P, Tong CK, Adam A, Ramasamy R (2011) Immunomodulatory activity of polyphenols derived from Cassia auriculata flowers in aged rats. Cell Immunol 271(2):474–479

    Article  CAS  PubMed  Google Scholar 

  • Joshi R, Rana A, Gulati A (2015) Studies on quality of orthodox teas made from anthocyanin-rich tea clones growing in Kangra valley, India. Food Chem 176:357–366

    Article  CAS  PubMed  Google Scholar 

  • Khorram O, Vu L, Yen SS (1997) Activation of immune function by dehydroepiandrosterone (DHEA) in age-advanced men. J Gerontol A Biol Sci Med Sci 52(1):M1–M7

    Article  CAS  PubMed  Google Scholar 

  • Kitani K, Osawa T, Yokozawa T (2007) The effects of tetrahydrocurcumin and green tea polyphenol on the survival of male C57BL/6 mice. Biogerontology 8(5):567–573

    Article  CAS  PubMed  Google Scholar 

  • Larbi A, Fulop T (2014) From “truly naïve” to “exhausted senescent” T cells: when markers predict functionality. Cytometry A 85(1):25–35

    Article  PubMed  Google Scholar 

  • Legeay S, Rodier M, Fillon L, Faure S, Clere N (2015) Epigallocatechin gallate: a review of its beneficial properties to prevent metabolic syndrome. Nutrients 7:5443–5468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Linehan E, Fitzgerald DC (2015) Ageing and the immune system: focus on macrophages. Eur J Microbiol Immunol (Bp) 5(1):14–24

    Article  CAS  Google Scholar 

  • Linton PJ, Thoman ML (2014) Immunosenescence in monocytes, macrophages, and dendritic cells: lessons learned from the lung and heart. Immunol Lett 162:290–297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Listí F, Candore G, Modica MA, Russo M, Di Lorenzo G, Esposito-Pellitteri M, Colonna-Romano G, Aquino A, Bulati M, Lio D, Franceschi C, Caruso C (2006) A study of serum immunoglobulin levels in elderly persons that provides new insights into B cell immunosenescence. Ann N Y Acad Sci 1089:487–495

    Article  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lock RJ, Unsworth DJ (2003) Immunoglobulins and immunoglobulin subclasses in the elderly. Ann Clin Biochem 40:143–148

    Article  CAS  PubMed  Google Scholar 

  • Madrigal-Santillán E, Bautista M, Gayosso-De-Lucio JA, Reyes-Rosales Y, Posadas-Mondragón A, Morales-González Á, Soriano-Ursúa MA, García-Machorro J, Madrigal-Bujaidar E, Álvarez-González I, Morales-González JA (2015) Hepatoprotective effect of Geranium schiedeanum against ethanol toxicity during liver regeneration. World J Gastroenterol 21(25):7718–7729

    Article  PubMed  PubMed Central  Google Scholar 

  • Mahnke YD, Roederer M (2007) Optimizing a multicolor immunophenotyping assay. Clin Lab Med 27(3):469–485

    Article  PubMed  PubMed Central  Google Scholar 

  • Mathur SK, Schwantes EA, Jarjour NN, Busse WW (2008) Age-related changes in eosinophil function in human subjects. Chest 133(2):412–419

    Article  PubMed  PubMed Central  Google Scholar 

  • McElhaney JE (2003) Overcoming the challenges of immunosenescence in the prevention of acute respiratory illness in older people. Conn Med 67:469–474

    PubMed  Google Scholar 

  • Miller RA, Harrison DE, Astle CM, Fernandez E, Flurkey K, Han M, Javors MA, Li X, Nadon NL, Nelson JF, Pletcher S, Salmon AB, Sharp ZD, Van Roekel S, Winkleman L, Strong R (2014) Rapamycin-mediated lifespan increase in mice is dose and sex dependent and metabolically distinct from dietary restriction. Aging Cell 13(3):468–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nair AB, Jacob S (2016) A simple practice guide for dose conversion between animals and human. J Basic Clin Pharm 7(2):27–31

    Article  PubMed  PubMed Central  Google Scholar 

  • Namazi MR (2009) The Th1-promoting effects of dehydroepiandrosterone can provide an explanation for the stronger Th1-immune response of women. Iran J Allergy Asthma Immunol 8(1):65–69

    CAS  PubMed  Google Scholar 

  • Niu Y, Na L, Feng R, Gong L, Zhao Y, Li Q, Li Y, Sun C (2013) The phytochemical, EGCG, extends lifespan by reducing liver and kidney function damage and improving age-associated inflammation and oxidative stress in healthy rats. Aging Cell 12(6):1041–1049

    Article  CAS  PubMed  Google Scholar 

  • Ouyang Q, Wagner WM, Voehringer D, Wikby A, Klatt T, Walter S, Müller CA, Pircher H, Pawelec G (2003) Age-associated accumulation of CMV-specific CD8 T cells expressing the inhibitory killer cell lectinlike receptor G1 (KLRG1). Exp Gerontol 38:911–920

    Article  CAS  PubMed  Google Scholar 

  • Pae M, Ren Z, Meydani M, Shang F, Smith D, Meydani SN, Wu D (2012) Dietary supplementation with high dose of epigallocatechin-3-gallate promotes inflammatory response in mice. J Nutr Biochem 23(6):526–531

    Article  CAS  PubMed  Google Scholar 

  • Park JH, Bae JH, Im SS, Song DK (2014) Green tea and type 2 diabetes. Int Med Res 3(1):4–10

    Article  CAS  Google Scholar 

  • Patwardhan B, Mashelkar RA (2009) Traditional medicine-inspired approaches to drug discovery: can Ayurveda show the way forward? Drug Discov Today 14:804–811

    Article  PubMed  Google Scholar 

  • Rawat R, Gulati A (2008) Seasonal and clonal variations in some major glycosidic bound flavour volatiles in Kangra tea [Camellia sinensis (L.) O. Kuntze]. Eur Food Res Technol 226:1241–1249

    Article  CAS  Google Scholar 

  • Rawat R, Gulati A, Babu GDK, Acharya R, Kaul VK, Singh B (2007) Characterization of volatile components of Kangra orthodox black tea by gas chromatography–mass spectrometry. Food Chem 105:229–235

    Article  CAS  Google Scholar 

  • Rowley MJ, Buchanan H, Mackay I (1968) Reciprocal change with age in antibody to extrinsic and intrinsic antigens. Lancet 2:24–26

    Article  CAS  PubMed  Google Scholar 

  • Sakagami H, Asano K, Hara Y, Shimamura T (1992) Stimulation of human monocyte and polymorphonuclear cell iodination and interleukin-1 production by epigallocatechin gallate. J Leukoc Biol 51(5):478–483

    CAS  PubMed  Google Scholar 

  • Sharma R, Kapila R, Haq MR, Salingati V, Kapasiya M, Kapila S (2014a) Age-associated aberrations in mouse cellular and humoral immune responses. Aging Clin Exp Res 26(4):353–362

    Article  PubMed  Google Scholar 

  • Sharma R, Kapila R, Dass G, Kapila S (2014b) Improvement in Th1/Th2 immune homeostasis, antioxidative status and resistance to pathogenic E. coli on consumption of probiotic Lactobacillus rhamnosus fermented milk in aging mice. Age (Dordr) 36(4):9686

    Article  Google Scholar 

  • Sheng R, Gu ZL, Xie ML, Zhou WX, Guo CY (2007) EGCG inhibits cardiomyocyte apoptosis in pressure overload-induced cardiac hypertrophy and protects cardiomyocytes from oxidative stress in rats. Acta Pharmacol Sin 28(2):191–201

    Article  CAS  PubMed  Google Scholar 

  • Singh BN, Shankar S, Srivastava RK (2011) Green tea catechin, epigallocatechin-3-gallate (EGCG): mechanisms, perspectives and clinical applications. Biochem Pharmacol 82(12):1807–1821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sorwell KG, Urbanski HF (2010) Dehydroepiandrosterone and age-related cognitive decline. Age (Dordr) 32(1):61–67

    Article  CAS  Google Scholar 

  • Ulrich-Merzenich G, Panek D, Zeitler H, Vetter H, Wagner H (2010) Drug development from natural products: exploiting synergistic effects. Indian J Exp Biol 48:208–219

    CAS  PubMed  Google Scholar 

  • Verburgh K (2015) Nutrigerontology: why we need a new scientific discipline to develop diets and guidelines to reduce the risk of aging-related diseases. Aging Cell 14(1):17–24

    Article  CAS  PubMed  Google Scholar 

  • Voehringer D, Blaser C, Brawand P, Raulet DH, Hanke T, Pircher H (2001) Viral infections induce abundant numbers of senescent CD8 T cells. J Immunol 167:4838–4843

    Article  CAS  PubMed  Google Scholar 

  • Voehringer D, Koschella M, Pircher H (2002) Lack of proliferative capacity of human effector and memory T cells expressing killer cell lectin like receptor G1 (KLRG1). Blood 100:3698–3702

    Article  CAS  PubMed  Google Scholar 

  • Wang HD, Shi YM, Li L, Guo JD, Zhang YP, Hou SX (2013) Treatment with resveratrol attenuates sublesional bone loss in spinal cord-injured rats. Br J Pharmacol 170(4):796–806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weng NP, Akbar AN, Goronzy J (2009) CD28(-) T cells: their role in the age-associated decline of immune function. Trends Immunol 30(7):306–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolfram S (2007) Effects of green tea and EGCG on cardiovascular and metabolic health. J Am Coll Nutr 26(4):373S–388S

    Article  CAS  PubMed  Google Scholar 

  • Wu D, Guo Z, Ren Z, Guo W, Meydani SN (2009) Green tea EGCG suppresses T cell proliferation through impairment of IL-2/IL-2 receptor signaling. Free Radic Biol Med 47(5):636–643

    Article  CAS  PubMed  Google Scholar 

  • Yager EJ, Ahmed M, Lanzer K, Randall TD, Woodland DL, Blackman MA (2008) Age-associated decline in T cell repertoire diversity leads to holes in the repertoire and impaired immunity to influenza virus. J Exp Med 17:711–723

    Article  Google Scholar 

  • Ye JH, Li NN, Lu JL (2014) Bulk preparation of (−)-epigallocatechin gallate-rich extract from green tea. Food Bioprod Process 92:275–281

    Article  CAS  Google Scholar 

  • Ye T, Zhen J, Du Y, Zhou JK, Peng A, Vaziri ND, Mohan C, Xu Y, Zhou XJ (2015) Green tea polyphenol (-)-epigallocatechin-3-gallate restores nrf2 activity and ameliorates crescentic glomerulonephritis. PLoS ONE 10(3):e0119543

    Article  PubMed  PubMed Central  Google Scholar 

  • Yuan J, Lu L, Zhang Z, Zhang S (2012) Dietary intake of resveratrol enhances the adaptive immunity of aged rats. Rejuvenation Res 15(5):507–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Shao WF, Yuan LF, Tu PF, Ma ZZ (2012) Decreasing pro-inflammatory cytokine and reversing the immunosenescence with extracts of Pu-erh tea in senescence accelerated mouse (SAM). Food Chem 135(4):2222–2228

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Wang B, Cao S, Wang Y (2015) Epigallocatechin-3-gallate (EGCG) attenuates traumatic brain injury by inhibition of edema formation and oxidative stress. Korean J Physiol Pharmacol 19(6):491–497

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Science and Engineering Research Board, Government of India, through the Young Scientist Scheme (YSS/2015/000758). The authors are grateful to the Director, CSIR-Institute of Himalayan Bioresource Technology, Palampur for providing the necessary laboratory facilities for this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rohit Sharma or Yogendra S. Padwad.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, R., Sharma, A., Kumari, A. et al. Consumption of green tea epigallocatechin-3-gallate enhances systemic immune response, antioxidative capacity and HPA axis functions in aged male swiss albino mice. Biogerontology 18, 367–382 (2017). https://doi.org/10.1007/s10522-017-9696-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10522-017-9696-6

Keywords

Navigation