Skip to main content
Log in

Siderocalins: siderophore-binding proteins of the innate immune system

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Recent studies have revealed that the mammalian immune system directly interferes with siderophore-mediated iron acquisition through siderophore-binding proteins and that the association of certain siderophores, or siderophore modifications, with virulence is a direct response of pathogens to evade these defenses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abergel RJ, Moore EG, Strong RK et al (2006a) Microbial evasion of the immune system: structural modifications of enterobactin impair siderocalin recognition. J Am Chem Soc 128(34):10998–10999. doi:10.1021/ja062476+

    Article  PubMed  CAS  Google Scholar 

  • Abergel RJ, Wilson MK, Arceneaux JE et al (2006b) Anthrax pathogen evades the mammalian immune system through stealth siderophore production. Proc Natl Acad Sci USA 103(49):18499–18503. doi:10.1073/pnas.0607055103

    Article  PubMed  CAS  Google Scholar 

  • Abergel RJ, Clifton MC, Pizarro JC et al (2008) The siderocalin/enterobactin interaction: a link between mammalian immunity and bacterial iron transport. J Am Chem Soc 130(34):11524–11534. doi:10.1021/ja803524w

    Article  PubMed  CAS  Google Scholar 

  • Berger T, Togawa A, Duncan GS et al (2006) Lipocalin 2-deficient mice exhibit increased sensitivity to Escherichia coli infection but not to ischemia-reperfusion injury. Proc Natl Acad Sci USA 103(6):1834–1839. doi:10.1073/pnas.0510847103

    Article  PubMed  CAS  Google Scholar 

  • Breustedt DA, Korndorfer IP, Redl B et al (2005) The 1.8-a crystal structure of human tear lipocalin reveals an extended branched cavity with capacity for multiple ligands. J Biol Chem 280(1):484–493

    PubMed  CAS  Google Scholar 

  • Buchanan SK, Smith BS, Venkatramani L et al (1999) Crystal structure of the outer membrane active transporter FepA from Escherichia coli. Nat Struct Biol 6(1):56–63. doi:10.1038/4931

    Article  PubMed  CAS  Google Scholar 

  • Budzikiewicz H (2001) Siderophore-antibiotic conjugates used as trojan horses against Pseudomonas aeruginosa. Curr Top Med Chem 1(1):73–82. doi:10.2174/1568026013395524

    Article  PubMed  CAS  Google Scholar 

  • Carniel E (2001) The Yersinia high-pathogenicity island: an iron-uptake island. Microbes Infect 3(7):561–569. doi:10.1016/S1286-4579(01)01412-5

    Article  PubMed  CAS  Google Scholar 

  • Crosa JH (1989) Genetics and molecular biology of siderophore-mediated iron transport in bacteria. Microbiol Rev 53(4):517–530

    PubMed  CAS  Google Scholar 

  • Descalzi Cancedda F, Dozin B, Zerega B et al (2000) Ex-FABP: a fatty acid binding lipocalin developmentally regulated in chicken endochondral bone formation and myogenesis. Biochim Biophys Acta 1482(1–2):127–135

    PubMed  CAS  Google Scholar 

  • Devarajan P (2007) Neutrophil gelatinase-associated lipocalin: new paths for an old shuttle. Cancer Ther 5(B):463–470

    PubMed  Google Scholar 

  • Devireddy LR, Teodoro JG, Richard FA et al (2001) Induction of apoptosis by a secreted lipocalin that is transcriptionally regulated by IL-3 deprivation. Science 293(5531):829–834. doi:10.1126/science.1061075

    Article  PubMed  CAS  Google Scholar 

  • Devireddy LR, Gazin C, Zhu X et al (2005) A cell-surface receptor for lipocalin 24p3 selectively mediates apoptosis and iron uptake. Cell 123(7):1293–1305. doi:10.1016/j.cell.2005.10.027

    Article  PubMed  CAS  Google Scholar 

  • Ellison RT (1994) The effects of lactoferrin on gram-negative bacteria. Adv Exp Med Biol 357:71–90

    PubMed  CAS  Google Scholar 

  • Fang WK, Xu LY, Lu XF et al (2007) A novel alternative spliced variant of neutrophil gelatinase-associated lipocalin receptor in oesophageal carcinoma cells. Biochem J 403(2):297–303. doi:10.1042/BJ20060836

    Article  PubMed  CAS  Google Scholar 

  • Fischbach MA, Lin H, Liu DR et al (2004) In vitro characterization of IroB, a pathogen-associated C-glycosyltransferase. Proc Natl Acad Sci USA 102(3):571–576

    Article  PubMed  Google Scholar 

  • Fischbach MA, Lin H, Zhou L et al (2006) The pathogen-associated IroA gene cluster mediates bacterial evasion of lipocalin 2. Proc Natl Acad Sci U S A. 103(44):16502–16507

    Article  PubMed  CAS  Google Scholar 

  • Flo TH, Smith KD, Sato S et al (2004) Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron. Nature 432(7019):917–921. doi:10.1038/nature03104

    Article  PubMed  CAS  Google Scholar 

  • Flower DR (2000) Beyond the superfamily: the lipocalin receptors. Biochim Biophys Acta 1482(1–2):327–336

    PubMed  CAS  Google Scholar 

  • Fluckinger M, Haas H, Merschak P et al (2004) Human tear lipocalin exhibits antimicrobial activity by scavenging microbial siderophores. Antimicrob Agents Chemother 48(9):3367–3372. doi:10.1128/AAC.48.9.3367-3372.2004

    Article  PubMed  CAS  Google Scholar 

  • Goetz DH, Willie ST, Armen RS et al (2000) Ligand preference inferred from the structure of neutrophil gelatinase associated lipocalin. Biochemistry 39(8):1935–1941. doi:10.1021/bi992215v

    Article  PubMed  CAS  Google Scholar 

  • Goetz DH, Holmes MA, Borregaard N et al (2002) The neutrophil lipocalin NGAL is a bacteriostatic agent that interferes with siderophore-mediated iron acquisition. Mol Cell 10(5):1033–1043. doi:10.1016/S1097-2765(02)00708-6

    Article  PubMed  CAS  Google Scholar 

  • Hartl M, Matt T, Schuler W et al (2003) Cell transformation by the v-myc oncogene abrogates c-Myc/Max-mediated suppression of a C/EBP beta-dependent lipocalin gene. J Mol Biol 333(1):33–46. doi:10.1016/j.jmb.2003.08.018

    Article  PubMed  CAS  Google Scholar 

  • Holmes MA, Paulsene W, Jide X et al (2005) Siderocalin (Lcn 2) also binds carboxymycobactins, potentially defending against mycobacterial infections through iron sequestration. Struct Camb 13(1):29–41

    CAS  Google Scholar 

  • Horwitz LD, Sherman NA, Kong Y et al (1998) Lipophilic siderophores of Mycobacterium tuberculosis prevent cardiac reperfusion injury. Proc Natl Acad Sci USA 95(9):5263–5268. doi:10.1073/pnas.95.9.5263

    Article  PubMed  CAS  Google Scholar 

  • Hunter HN, Fulton DB, Ganz T et al (2002) The solution structure of human hepcidin, a peptide hormone with antimicrobial activity that is involved in iron uptake and hereditary hemochromatosis. J Biol Chem 277(40):37597–37603. doi:10.1074/jbc.M205305200

    Article  PubMed  CAS  Google Scholar 

  • Hvidberg V, Jacobsen C, Strong RK et al (2005) The endocytic receptor megalin binds the iron transporting neutrophil-gelatinase-associated lipocalin with high affinity and mediates its cellular uptake. FEBS Lett 579(3):773–777. doi:10.1016/j.febslet.2004.12.031

    Article  PubMed  CAS  Google Scholar 

  • Jurado RL (1997) Iron, infections, and anemia of inflammation. Clin Infect Dis 25(4):888–895. doi:10.1086/515549

    Article  PubMed  CAS  Google Scholar 

  • Kamezaki K, Shimoda K, Numata A et al (2003) The lipocalin 24p3, which is an essential molecule in IL-3 withdrawal-induced apoptosis, is not involved in the G-CSF withdrawal-induced apoptosis. Eur J Haematol 71(6):412–417. doi:10.1046/j.0902-4441.2003.00160.x

    Article  PubMed  CAS  Google Scholar 

  • Kjeldsen L, Bainton DF, Sengelov H et al (1994) Identification of neutrophil gelatinase-associated lipocalin as a novel matrix protein of specific granules in human neutrophils. Blood 83(3):799–807

    PubMed  CAS  Google Scholar 

  • Kjeldsen L, Cowland JB, Borregaard N (2000) Human neutrophil gelatinase-associated lipocalin and homologous proteins in rat and mouse. Biochim Biophys Acta 1482(1–2):272–283

    PubMed  CAS  Google Scholar 

  • Klee SR, Nassif X, Kusecek B et al (2000) Molecular and biological analysis of eight genetic islands that distinguish Neisseria meningitidis from the closely related pathogen Neisseria gonorrhoeae. Infect Immun 68(4):2082–2095. doi:10.1128/IAI.68.4.2082-2095.2000

    Article  PubMed  CAS  Google Scholar 

  • Lin H, Monaco G, Sun T et al (2005) Bcr-Abl-mediated suppression of normal hematopoiesis in leukemia. Oncogene 24(20):3246–3256. doi:10.1038/sj.onc.1208500

    Article  PubMed  CAS  Google Scholar 

  • Lovelace LL, Chiswell B, Slade DJ et al (2008) Crystal structure of complement protein C8gamma in complex with a peptide containing the C8gamma binding site on C8alpha: implications for C8gamma ligand binding. Mol Immunol 45(3):750–756. doi:10.1016/j.molimm.2007.06.359

    Article  PubMed  CAS  Google Scholar 

  • McGrath H Jr, Rigby PG (2004) Hepcidin: inflammation’s iron curtain. Rheumatology (Oxford) 43(11):1323–1325. doi:10.1093/rheumatology/keh345

    Article  CAS  Google Scholar 

  • Meilinger M, Haumer M, Szakmary KA et al (1995) Removal of lactoferrin from plasma is mediated by binding to low density lipoprotein receptor-related protein/alpha 2-macroglobulin receptor and transport to endosomes. FEBS Lett 360(1):70–74. doi:10.1016/0014-5793(95)00082-K

    Article  PubMed  CAS  Google Scholar 

  • Moss JE, Cardozo TJ, Zychlinsky A et al (1999) The selC-associated SHI-2 pathogenicity island of Shigella flexneri. Mol Microbiol 33(1):74–83. doi:10.1046/j.1365-2958.1999.01449.x

    Article  PubMed  CAS  Google Scholar 

  • Muller A, Wilkinson AJ, Wilson KS et al (2006) An [{Fe(mecam)}2]6- bridge in the crystal structure of a ferric enterobactin binding protein. Angew Chem Int Ed Engl 45(31):5132–5136. doi:10.1002/anie.200601198

    Article  PubMed  Google Scholar 

  • Neilands JB (1981) Microbial iron compounds. Annu Rev Biochem 50:715–731. doi:10.1146/annurev.bi.50.070181.003435

    Article  PubMed  CAS  Google Scholar 

  • Neilands JB (1995) Siderophores: structure and function of microbial iron transport compounds. J Biol Chem 270(45):26723–26726

    PubMed  CAS  Google Scholar 

  • Nemeth E, Tuttle MS, Powelson J et al (2004) Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 306(5704):2090–2093. doi:10.1126/science.1104742

    Article  PubMed  CAS  Google Scholar 

  • Ortlund E, Parker CL, Schreck SF et al (2002) Crystal structure of human complement protein C8gamma at 1.2 A resolution reveals a lipocalin fold and a distinct ligand binding site. Biochemistry 41(22):7030–7037. doi:10.1021/bi025696i

    Article  PubMed  CAS  Google Scholar 

  • Ratledge C, Dover LG (2000) Iron metabolism in pathogenic bacteria. Annu Rev Microbiol 54:881–941. doi:10.1146/annurev.micro.54.1.881

    Article  PubMed  CAS  Google Scholar 

  • Raymond KN, Müller G, Matzanke BF (1984) Complexation of iron by siderophores. a review of their solution and structural chemistry and biological function. In: Boschke FL (ed) Topics in current chemistry, vol 123. Springer, Berlin, pp 50–102

    Google Scholar 

  • Richardson DR (2005) Molecular mechanisms of iron uptake by cells and the use of iron chelators for the treatment of cancer. Curr Med Chem 12(23):2711–2729. doi:10.2174/092986705774462996

    Article  PubMed  CAS  Google Scholar 

  • Roosenberg JM II, Lin YM, Lu Y et al (2000) Studies and syntheses of siderophores, microbial iron chelators, and analogs as potential drug delivery agents. Curr Med Chem 7(2):159–197

    PubMed  CAS  Google Scholar 

  • Saito A, Pietromonaco S, Loo AK et al (1994) Complete cloning and sequencing of rat gp330/“megalin”, a distinctive member of the low density lipoprotein receptor gene family. Proc Natl Acad Sci USA 91(21):9725–9729. doi:10.1073/pnas.91.21.9725

    Article  PubMed  CAS  Google Scholar 

  • Strausberg RL, Feingold EA, Grouse LH et al (2002) Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. Proc Natl Acad Sci USA 99(26):16899–16903. doi:10.1073/pnas.242603899

    Article  PubMed  Google Scholar 

  • Suzuki K, Lareyre JJ, Sanchez D et al (2004) Molecular evolution of epididymal lipocalin genes localized on mouse chromosome 2. Gene 339:49–59. doi:10.1016/j.gene.2004.06.027

    Article  PubMed  CAS  Google Scholar 

  • Triebel S, Bläser J, Reinke H et al (1992) A 25 kDa a2-microglobulin-related protein is a component of the 125 kDa form of human gelatinase. FEBS Lett 3:386–388. doi:10.1016/0014-5793(92)81511-J

    Article  Google Scholar 

  • Vokes SA, Reeves SA, Torres AG et al (1999) The aerobactin iron transport system genes in Shigella flexneri are present within a pathogenicity island. Mol Microbiol 33(1):63–73. doi:10.1046/j.1365-2958.1999.01448.x

    Article  PubMed  CAS  Google Scholar 

  • Warner PJ, Williams PH, Bindereif A et al (1981) ColV plasmid-specific aerobactin synthesis by invasive strains of Escherichia coli. Infect Immun 33(2):540–545

    PubMed  CAS  Google Scholar 

  • Weinberg ED (1984) Iron withholding: a defense against infection and neoplasia. Physiol Rev 64(1):65–102

    PubMed  CAS  Google Scholar 

  • Willnow TE, Goldstein JL, Orth K et al (1992) Low density lipoprotein receptor-related protein and gp330 bind similar ligands, including plasminogen activator-inhibitor complexes and lactoferrin, an inhibitor of chylomicron remnant clearance. J Biol Chem 267(36):26172–26180

    PubMed  CAS  Google Scholar 

  • Winkelmann G (2002) Microbial siderophore-mediated transport. Biochem Soc Trans 30(4):691–696. doi:10.1042/BST0300691

    Article  PubMed  CAS  Google Scholar 

  • Xu S, Venge P (2000) Lipocalins as biochemical markers of disease. Biochim Biophys Acta 1482(1–2):298–307

    PubMed  CAS  Google Scholar 

  • Yang J, Goetz D, Li JY et al (2002) An iron delivery pathway mediated by a lipocalin. Mol Cell 10(5):1045–1056. doi:10.1016/S1097-2765(02)00710-4

    Article  PubMed  CAS  Google Scholar 

  • Yang J, Mori K, Li JY et al (2003) Iron, lipocalin, and kidney epithelia. Am J Physiol Renal Physiol 285(1):F9–F18

    PubMed  CAS  Google Scholar 

  • Zhou D, Hardt WD, Galan JE (1999) Salmonella typhimurium encodes a putative iron transport system within the centisome 63 pathogenicity island. Infect Immun 67(4):1974–1981

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland K. Strong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clifton, M.C., Corrent, C. & Strong, R.K. Siderocalins: siderophore-binding proteins of the innate immune system. Biometals 22, 557–564 (2009). https://doi.org/10.1007/s10534-009-9207-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-009-9207-6

Keywords

Navigation