Skip to main content

Advertisement

Log in

Antimicrobial silver: uses, toxicity and potential for resistance

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

This review gives a comprehensive overview of the widespread use and toxicity of silver compounds in many biological applications. Moreover, the bacterial silver resistance mechanisms and their spread in the environment are discussed. This study shows that it is important to understand in detail how silver and silver nanoparticles exert their toxicity and to understand how bacteria acquire silver resistance. Silver ions have shown to possess strong antimicrobial properties but cause no immediate and serious risk for human health, which led to an extensive use of silver-based products in many applications. However, the risk of silver nanoparticles is not yet clarified and their widespread use could increase silver release in the environment, which can have negative impacts on ecosystems. Moreover, it is shown that silver resistance determinants are widely spread among environmental and clinically relevant bacteria. These resistance determinants are often located on mobile genetic elements, facilitating their spread. Therefore, detailed knowledge of the silver toxicity and resistance mechanisms can improve its applications and lead to a better understanding of the impact on human health and ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alexander JW (2009) History of the medical use of silver. Surg Infect (Larchmt) 10:289–292

    Article  Google Scholar 

  • Alonso A, Rojo F, Martinez JL (1999) Environmental and clinical isolates of Pseudomonas aeruginosa show pathogenic and biodegradative properties irrespective of their origin. Environ Microbiol 1:421–430

    Article  PubMed  CAS  Google Scholar 

  • Aminov RI (2011) Horizontal gene exchange in environmental microbiota. Front Microbiol 2:158

    Article  PubMed  Google Scholar 

  • Baker-Austin C, Wright MS, Stepanauskas R, McArthur JV (2006) Co-selection of antibiotic and metal resistance. Trends Microbiol 14:176–182

    Article  PubMed  CAS  Google Scholar 

  • Bragg PD, Rainnie DJ (1974) Effect of silver ions on the respiratory chain of Escherichia coli. Can J Microbiol 20:883–889

    Article  PubMed  CAS  Google Scholar 

  • Bryan GW, Langston WJ (1992) Bioavailability, accumulation and effects of heavy metals in sediments with special reference to United Kingdom estuaries: a review. Environ Pollut 76:89–131

    Article  PubMed  CAS  Google Scholar 

  • Cabiscol E, Tamarit J, Ros J (2000) Oxidative stress in bacteria and protein damage by reactive oxygen species. Int Microbiol 3:3–8

    PubMed  CAS  Google Scholar 

  • Caille O, Rossier C, Perron K (2007) A copper-activated two-component system interacts with zinc and imipenem resistance in Pseudomonas aeruginosa. J Bacteriol 189:4561–4568

    Article  PubMed  CAS  Google Scholar 

  • Chambers C, Proctor C, Kabler P (1962) Bactericidal effect of low concentrations of silver. Am Water Works Assoc 54:208–216

    CAS  Google Scholar 

  • Chopra I (2007) The increasing use of silver-based products as antimicrobial agents: a useful development or a cause for concern? J Antimicrob Chemother 59:587–590

    Article  PubMed  CAS  Google Scholar 

  • Choudhury P, Kumar R (1998) Multidrug- and metal-resistant strains of Klebsiella pneumoniae isolated from Penaeus monodon of the coastal waters of deltaic Sundarban. Can J Microbiol 44:186–189

    PubMed  CAS  Google Scholar 

  • Coenye T, Spilker T, Reik R, Vandamme P, Lipuma JJ (2005) Use of PCR analyses to define the distribution of Ralstonia species recovered from patients with cystic fibrosis. J Clin Microbiol 43:3463–3466

    Article  PubMed  CAS  Google Scholar 

  • Cunningham JH, Lin LS (2010) Fate of amoxicillin in mixed-culture bioreactors and its effects on microbial growth and resistance to silver ions. Environ Sci Technol 44:1827–1832

    Article  PubMed  CAS  Google Scholar 

  • Davis IJ, Richards H, Mullany P (2005) Isolation of silver- and antibiotic-resistant Enterobacter cloacae from teeth. Oral Microbiol Immunol 20:191–194

    Article  PubMed  CAS  Google Scholar 

  • De Gusseme B, Hennebel T, Christiaens E, Saveyn H, Verbeken K, Fitts JP, Boon N, Verstraete W (2011) Virus disinfection in water by biogenic silver immobilized in polyvinylidene fluoride membranes. Water Res 45:1856–1864

    Article  PubMed  Google Scholar 

  • Deshpande LM, Chopade BA (1994) Plasmid mediated silver resistance in Acinetobacter baumannii. Biometals 7:49–56

    Article  PubMed  CAS  Google Scholar 

  • Dibrov P, Dzioba J, Gosink KK, Hase CC (2002) Chemiosmotic mechanism of antimicrobial activity of Ag+ in Vibrio cholerae. Antimicrob Agents Chemother 46:2668–2670

    Article  PubMed  CAS  Google Scholar 

  • Dieppois G, Ducret V, Caille O, Perron K (2012) The transcriptional regulator CzcR modulates antibiotic resistance and quorum sensing in Pseudomonas aeruginosa. PLoS One 7:e38148

    Article  PubMed  CAS  Google Scholar 

  • Drake PL, Hazelwood KJ (2005) Exposure-related health effects of silver and silver compounds: a review. Ann Occup Hyg 49:575–585

    Article  PubMed  CAS  Google Scholar 

  • Edwards-Jones V (2009) The benefits of silver in hygiene, personal care and healthcare. Lett Appl Microbiol 49:147–152

    Article  PubMed  CAS  Google Scholar 

  • El Badawy AM, Luxton TP, Silva RG, Scheckel KG, Suidan MT, Tolaymat TM (2010) Impact of environmental conditions (pH, ionic strength, and electrolyte type) on the surface charge and aggregation of silver nanoparticles suspensions. Environ Sci Technol 44:1260–1266

    Article  PubMed  Google Scholar 

  • El Badawy AM, Silva RG, Morris B, Scheckel KG, Suidan MT, Tolaymat TM (2011) Surface charge-dependent toxicity of silver nanoparticles. Environ Sci Technol 45:283–287

    Article  PubMed  Google Scholar 

  • Elechiguerra JL, Burt JL, Morones JR, Camacho-Bragado A, Gao X, Lara HH, Yacaman MJ (2005) Interaction of silver nanoparticles with HIV-1. J Nanobiotechnology 3:6

    Article  PubMed  Google Scholar 

  • Fabrega J, Luoma SN, Tyler CR, Galloway TS, Lead JR (2011) Silver nanoparticles: behaviour and effects in the aquatic environment. Environ Int 37:517–531

    Article  PubMed  CAS  Google Scholar 

  • Flegal AR, Brown CL, Squire S, Ross JR, Scelfo GM, Hibdon S (2007) Spatial and temporal variations in silver contamination and toxicity in San Francisco Bay. Environ Res 105:34–52

    Article  PubMed  CAS  Google Scholar 

  • Franke S (2007) Microbiology of the toxic noble metal silver. In: Nies D, Silver S (eds) Molecular biology of heavy metals. Microbiology monographs. Springer, Berlin

    Google Scholar 

  • Franke S, Grass G, Nies DH (2001) The product of the ybdE gene of the Escherichia coli chromosome is involved in detoxification of silver ions. Microbiology 147:965–972

    PubMed  CAS  Google Scholar 

  • Franke S, Grass G, Rensing C, Nies DH (2003) Molecular analysis of the copper-transporting efflux system CusCFBA of Escherichia coli. J Bacteriol 185:3804–3812

    Article  PubMed  Google Scholar 

  • Gordon O, Vig Slenters T, Brunetto PS, Villaruz AE, Sturdevant DE, Otto M, Landmann R, Fromm KM (2010) Silver coordination polymers for prevention of implant infection: thiol interaction, impact on respiratory chain enzymes, and hydroxyl radical induction. Antimicrob Agents Chemother 54:4208–4218

    Article  PubMed  CAS  Google Scholar 

  • Goris J, De Vos P, Coenye T, Hoste B, Janssens D, Brim H, Diels L, Mergeay M, Kersters K, Vandamme P (2001) Classification of metal-resistant bacteria from industrial biotopes as Ralstonia campinensis sp. nov., Ralstonia metallidurans sp. nov. and Ralstonia basilensis Steinle et al. 1998 emend. Int J Syst Evol Microbiol 51:1773–1782

    Article  PubMed  CAS  Google Scholar 

  • Gudipaty SA, Larsen AS, Rensing C, McEvoy MM (2012) Regulation of Cu(I)/Ag(I) efflux genes in Escherichia coli by the sensor kinase CusS. FEMS Microbiol Lett 330:30–37

    Article  PubMed  CAS  Google Scholar 

  • Gupta A, Maynes M, Silver S (1998) Effects of halides on plasmid-mediated silver resistance in Escherichia coli. Appl Environ Microbiol 64:5042–5045

    PubMed  CAS  Google Scholar 

  • Gupta A, Matsui K, Lo JF, Silver S (1999) Molecular basis for resistance to silver cations in Salmonella. Nat Med 5:183–188

    Article  PubMed  CAS  Google Scholar 

  • Gupta A, Phung LT, Taylor DE, Silver S (2001) Diversity of silver resistance genes in IncH incompatibility group plasmids. Microbiology 147:3393–3402

    PubMed  CAS  Google Scholar 

  • Haefeli C, Franklin C, Hardy K (1984) Plasmid-determined silver resistance in Pseudomonas stutzeri isolated from a silver mine. J Bacteriol 158:389–392

    PubMed  CAS  Google Scholar 

  • Hayashi M, Miyoshi T, Sato M, Unemoto T (1992) Properties of respiratory chain-linked Na+-independent NADH-quinone reductase in a marine Vibrio alginolyticus. Biochim Biophys Acta 1099:145–151

    Article  PubMed  CAS  Google Scholar 

  • Heuer H, Kopmann C, Binh CT, Top EM, Smalla K (2009) Spreading antibiotic resistance through spread manure: characteristics of a novel plasmid type with low %G+C content. Environ Microbiol 11:937–949

    Article  PubMed  CAS  Google Scholar 

  • Holland SL, Dyer PS, Bond CJ, James SA, Roberts IN, Avery SV (2011) Candida argentea sp. nov., a copper and silver resistant yeast species. Fungal Biol 115:909–918

    Article  PubMed  CAS  Google Scholar 

  • Jain PK, Huang XH, El-Sayed IH, El-Sayed MA (2008) Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc Chem Res 41:1578–1586

    Article  PubMed  CAS  Google Scholar 

  • Janssen PJ, Van Houdt R, Moors H, Monsieurs P, Morin N, Michaux A, Benotmane MA, Leys N, Vallaeys T, Lapidus A, Monchy S, Medigue C, Taghavi S, McCorkle S, Dunn J, van der Lelie D, Mergeay M (2010) The complete genome sequence of Cupriavidus metallidurans strain CH34, a master survivalist in harsh and anthropogenic environments. PLoS One 5:e10433

    Article  PubMed  Google Scholar 

  • Jelenko C 3rd (1969) Silver nitrate resistant E. coli: report of case. Ann Surg 170:296–299

    Article  PubMed  Google Scholar 

  • Jung WK, Kim SH, Koo HC, Shin S, Kim JM, Park YK, Hwang SY, Yang H, Park YH (2007) Antifungal activity of the silver ion against contaminated fabric. Mycoses 50:265–269

    Article  PubMed  CAS  Google Scholar 

  • Kaegi R, Voegelin A, Ort C, Sinnet B, Thalmann B, Krismer J, Hagendorfer H, Elumelu M, Mueller E (2013) Fate and transformation of silver nanoparticles in urban wastewater systems. Water Res. doi:10.1016/j.watres.2012.11.060

    Google Scholar 

  • Kim JY, Lee C, Cho M, Yoon J (2008) Enhanced inactivation of E. coli and MS-2 phage by silver ions combined with UV-A and visible light irradiation. Water Res 42:356–362

    Article  PubMed  Google Scholar 

  • Klasen HJ (2000) Historical review of the use of silver in the treatment of burns. I. Early uses. Burns 26:117–130

    Article  PubMed  CAS  Google Scholar 

  • Klaus T, Joerger R, Olsson E, Granqvist CG (1999) Silver-based crystalline nanoparticles, microbially fabricated. Proc Natl Acad Sci U S A 96:13611–13614

    Article  PubMed  CAS  Google Scholar 

  • Kremer AN, Hoffmann H (2012) Subtractive hybridization yields a silver resistance determinant unique to nosocomial pathogens in the Enterobacter cloacae complex. J Clin Microbiol 50:3249–3257

    Article  PubMed  CAS  Google Scholar 

  • Kumar CG, Mamidyala SK (2011) Extracellular synthesis of silver nanoparticles using culture supernatant of Pseudomonas aeruginosa. Colloids Surf B Biointerfaces 84:462–466

    Article  PubMed  CAS  Google Scholar 

  • La Duc MT, Nicholson W, Kern R, Venkateswaran K (2003) Microbial characterization of the Mars Odyssey spacecraft and its encapsulation facility. Environ Microbiol 5:977–985

    Article  PubMed  Google Scholar 

  • Langevin S, Vincelette J, Bekal S, Gaudreau C (2011) First case of invasive human infection caused by Cupriavidus metallidurans. J Clin Microbiol 49:744–745

    Article  PubMed  Google Scholar 

  • Lansdown AB (2010) A pharmacological and toxicological profile of silver as an antimicrobial agent in medical devices. Adv Pharmacol Sci 2010:910686

    PubMed  Google Scholar 

  • Li XZ, Nikaido H, Williams KE (1997) Silver-resistant mutants of Escherichia coli display active efflux of Ag+ and are deficient in porins. J Bacteriol 179:6127–6132

    PubMed  CAS  Google Scholar 

  • Liau SY, Read DC, Pugh WJ, Furr JR, Russell AD (1997) Interaction of silver nitrate with readily identifiable groups: relationship to the antibacterial action of silver ions. Lett Appl Microbiol 25:279–283

    Article  PubMed  CAS  Google Scholar 

  • Lok CN, Ho CM, Chen R, Tam PK, Chiu JF, Che CM (2008) Proteomic identification of the Cus system as a major determinant of constitutive Escherichia coli silver resistance of chromosomal origin. J Proteome Res 7:2351–2356

    Article  PubMed  Google Scholar 

  • Long F, Su CC, Zimmermann MT, Boyken SE, Rajashankar KR, Jernigan RL, Yu EW (2010) Crystal structures of the CusA efflux pump suggest methionine-mediated metal transport. Nature 467:484–488

    Article  PubMed  CAS  Google Scholar 

  • Matsumura Y, Yoshikata K, Kunisaki S, Tsuchido T (2003) Mode of bactericidal action of silver zeolite and its comparison with that of silver nitrate. Appl Environ Microbiol 69:4278–4281

    Article  PubMed  CAS  Google Scholar 

  • McHugh GL, Moellering RC, Hopkins CC, Swartz MN (1975) Salmonella typhimurium resistant to silver nitrate, chloramphenicol, and ampicillin. Lancet 1:235–240

    Article  PubMed  CAS  Google Scholar 

  • Mijnendonckx K, Provoost A, Ott CM, Venkateswaran K, Mahillon J, Leys N, Van Houdt R (2013) Characterization of the survival ability of Cupriavidus metallidurans and Ralstonia pickettii from space-related environments. Microb Ecol 56:347–360

    Article  Google Scholar 

  • Monchy S, Benotmane MA, Janssen P, Vallaeys T, Taghavi S, van der Lelie D, Mergeay M (2007) Plasmids pMOL28 and pMOL30 of Cupriavidus metallidurans are specialized in the maximal viable response to heavy metals. J Bacteriol 189:7417–7425

    Article  PubMed  CAS  Google Scholar 

  • Monsieurs P, Moors H, Van Houdt R, Janssen PJ, Janssen A, Coninx I, Mergeay M, Leys N (2011) Heavy metal resistance in Cupriavidus metallidurans CH34 is governed by an intricate transcriptional network. Biometals 24:1133–1151

    Article  PubMed  CAS  Google Scholar 

  • Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346–2353

    Article  PubMed  CAS  Google Scholar 

  • Munson GP, Lam DL, Outten FW, O’Halloran TV (2000) Identification of a copper-responsive two-component system on the chromosome of Escherichia coli K-12. J Bacteriol 182:5864–5871

    Article  PubMed  CAS  Google Scholar 

  • Nanda A, Saravanan M (2009) Biosynthesis of silver nanoparticles from Staphylococcus aureus and its antimicrobial activity against MRSA and MRSE. Nanomedicine Nanotechnol Biol Med 5:452–456

    Article  CAS  Google Scholar 

  • Ott CM, Bruce RJ, Pierson DL (2004) Microbial characterization of free floating condensate aboard the Mir space station. Microb Ecol 47:133–136

    Article  PubMed  CAS  Google Scholar 

  • Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73:1712–1720

    Article  PubMed  CAS  Google Scholar 

  • Panacek A, Kvitek L, Prucek R, Kolar M, Vecerova R, Pizurova N, Sharma VK, Nevecna T, Zboril R (2006) Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J Phys Chem B 110:16248–16253

    Article  PubMed  CAS  Google Scholar 

  • Park HJ, Kim JY, Kim J, Lee JH, Hahn JS, Gu MB, Yoon J (2009) Silver-ion-mediated reactive oxygen species generation affecting bactericidal activity. Water Res 43:1027–1032

    Article  PubMed  CAS  Google Scholar 

  • Perelaer J, Hendriks CE, de Laat AW, Schubert US (2009) One-step inkjet printing of conductive silver tracks on polymer substrates. Nanotechnology 20:165303

    Article  PubMed  Google Scholar 

  • Perron K, Caille O, Rossier C, Van Delden C, Dumas JL, Kohler T (2004) CzcR-CzcS, a two-component system involved in heavy metal and carbapenem resistance in Pseudomonas aeruginosa. J Biol Chem 279:8761–8768

    Article  PubMed  CAS  Google Scholar 

  • Pokhrel LR, Dubey B (2012) Potential impact of low-concentration silver nanoparticles on predator-prey interactions between predatory dragonfly nymphs and Daphnia magna as a prey. Environ Sci Technol 46:7755–7762

    Article  PubMed  CAS  Google Scholar 

  • Rai MK, Deshmukh SD, Ingle AP, Gade AK (2012) Silver nanoparticles: the powerful nanoweapon against multidrug-resistant bacteria. J Appl Microbiol 112:841–852

    Article  PubMed  CAS  Google Scholar 

  • Rogers JV, Parkinson CV, Choi YW, Speshock JL, Hussain SM (2008) A preliminary assessment of silver nanoparticle inhibition of monkeypox virus plaque formation. Nanoscale Res Lett 3:129–133

    Article  Google Scholar 

  • Rosenfeld M, Ramsey BW, Gibson RL (2003) Pseudomonas acquisition in young patients with cystic fibrosis: pathophysiology, diagnosis, and management. Curr Opin Pulm Med 9:492–497

    Article  PubMed  Google Scholar 

  • Russell AD, Hugo WB (1994) Antimicrobial activity and action of silver. Prog Med Chem 31:351–370

    Article  PubMed  CAS  Google Scholar 

  • Saravanan M, Vemu AK, Bank SK (2011) Rapid biosynthesis of silver nanoparticles from Bacillus megaterium (NCIM 2326) and their antibacterial activity on multi drug resistant clinical pathogens. Colloids Surf B Biointerfaces 88:325–331

    Article  PubMed  CAS  Google Scholar 

  • Schacht VJ, Neumann LV, Sandhi SK, Chen L, Henning T, Klar PJ, Theophel K, Schnell S, Bunge M (2013) Effects of silver nanoparticles on microbial growth dynamics. J Appl Microbiol 114:25–35

    Article  PubMed  CAS  Google Scholar 

  • Schreurs WJ, Rosenberg H (1982) Effect of silver ions on transport and retention of phosphate by Escherichia coli. J Bacteriol 152:7–13

    PubMed  CAS  Google Scholar 

  • Sedlak RH, Hnilova M, Grosh C, Fong H, Baneyx F, Schwartz D, Sarikaya M, Tamerler C, Traxler B (2012) Engineered Escherichia coli silver-binding periplasmic protein that promotes silver tolerance. Appl Environ Microbiol 78:2289–2296

    Article  PubMed  CAS  Google Scholar 

  • Semeykina AL, Skulachev VP (1990) Submicromolar Ag+ increases passive Na+ permeability and inhibits the respiration-supported formation of Na+ gradient in Bacillus FTU vesicles. FEBS Lett 269:69–72

    Article  PubMed  CAS  Google Scholar 

  • Shahverdi AR, Fakhimi A, Shahverdi HR, Minaian S (2007) Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomedicine Nanotechnol Biol Med 3:168–171

    Article  CAS  Google Scholar 

  • Silver S (2003) Bacterial silver resistance: molecular biology and uses and misuses of silver compounds. FEMS Microbiol Rev 27:341–353

    Article  PubMed  CAS  Google Scholar 

  • Silver S, Gupta A, Matsui K, Lo JF (1999) Resistance to Ag+ cations in bacteria: environments, genes and proteins. Met Based Drugs 6:315–320

    Article  PubMed  CAS  Google Scholar 

  • Silver S, le Phung T, Silver G (2006) Silver as biocides in burn and wound dressings and bacterial resistance to silver compounds. J Ind Microbiol Biotechnol 33:627–634

    Article  PubMed  CAS  Google Scholar 

  • Sotiriou GA, Pratsinis SE (2010) Antibacterial activity of nanosilver ions and particles. Environ Sci Technol 44:5649–5654

    Article  PubMed  CAS  Google Scholar 

  • Starodub ME, Trevors JT (1989) Silver resistance in Escherichia coli R1. J Med Microbiol 29:101–110

    Article  PubMed  CAS  Google Scholar 

  • Tappin AD, Barriada JL, Braungardt CB, Evans EH, Patey MD, Achterberg EP (2010) Dissolved silver in European estuarine and coastal waters. Water Res 44:4204–4216

    Article  PubMed  CAS  Google Scholar 

  • Thompson R, Elliott V, Mondry A (2009) Argyria: permanent skin discoloration following protracted colloid silver ingestion. BMJ Case Rep 2009:1

    Google Scholar 

  • Van Houdt R, Mergeay M (2012) Plasmids as secondary chromosomes. In: Bell E, Bond PJS, Klinman PJP, Masters DBSS, Wells PRD (eds) Molecular life sciences: an encyclopedic reference. Springer, Berlin

    Google Scholar 

  • Van Houdt R, Toussaint A, Ryan M, Pembroke J, Mergeay M, Adley CC (2011) The Tn4371 ICE family of bacterial mobile genetic elements. In: Roberts AP, Mullany P (eds) Bacterial integrative mobile genetic elements. Landes Bioscience, Austin

    Google Scholar 

  • Van Houdt R, Monsieurs P, Mijnendonckx K, Provoost A, Janssen A, Mergeay M, Leys N (2012) Variation in genomic islands contribute to genome plasticity in Cupriavidus metallidurans. BMC Genomics 13:111

    Article  PubMed  Google Scholar 

  • Wolfgang MC, Kulasekara BR, Liang X, Boyd D, Wu K, Yang Q, Miyada CG, Lory S (2003) Conservation of genome content and virulence determinants among clinical and environmental isolates of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 100:8484–8489

    Article  PubMed  CAS  Google Scholar 

  • World Health Organization (1996) Silver in drinking water: background document for the development of WHO Guidelines for drinking water quality. WHO, Geneva, WHO/SDE/WSH/03.04/14

  • Wu HP, Liu JF, Wu XJ, Ge MY, Wang YW, Zhang GQ, Jiang JZ (2006) High conductivity of isotropic conductive adhesives filled with silver nanowires. Int J Adhes Adhes 26:617–621

    Article  Google Scholar 

  • Xiu ZM, Ma J, Alvarez PJ (2011) Differential effect of common ligands and molecular oxygen on antimicrobial activity of silver nanoparticles versus silver ions. Environ Sci Technol 45:9003–9008

    Article  PubMed  CAS  Google Scholar 

  • Xiu ZM, Zhang QB, Puppala HL, Colvin VL, Alvarez PJ (2012) Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett 12:4271–4275

    Article  PubMed  CAS  Google Scholar 

  • Yahya MT, Landeen LK, Messina MC, Kutz SM, Schulze R, Gerba CP (1990) Disinfection of bacteria in water systems by using electrolytically generated copper:silver and reduced levels of free chlorine. Can J Microbiol 36:109–116

    Article  PubMed  CAS  Google Scholar 

  • Yudkins J (1937) The effect of silver ions on some enzymes of Bacterium coli. Enzymologia 2:161–170

    Google Scholar 

  • Zimmermann M, Udagedara SR, Sze CM, Ryan TM, Howlett GJ, Xiao Z, Wedd AG (2012) PcoE—A metal sponge expressed to the periplasm of copper resistance Escherichia coli. Implication of its function role in copper resistance. J Inorg Biochem 115:186–197

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the European Space Agency (ESA-PRODEX) and the Belgian Science Policy (Belspo) through the COMICS project (C90356). Kristel Mijnendonckx is a Ph.D student at the Laboratory of Food and Environmental Microbiology (Université catholique de Louvain, Belgium), and at the Unit of Microbiology (SCK•CEN, Belgium). KM is financed through the COMICS project and an AWM Ph.D Grant from SCK•CEN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rob Van Houdt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mijnendonckx, K., Leys, N., Mahillon, J. et al. Antimicrobial silver: uses, toxicity and potential for resistance. Biometals 26, 609–621 (2013). https://doi.org/10.1007/s10534-013-9645-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-013-9645-z

Keywords

Navigation