Skip to main content
Log in

Calcium Homeostasis Change in CD4+ T Lymphocytes from Human Peripheral Blood during Differentiation in vivo

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Resting naive CD4+CD45R0CD45RA+ T cells are sensitive to ionomycin. In contrast, resting CD4+CD45RACD45R0+ memory T cells show resistance to this Ca2+ ionophore. In the present study, the ability of activated T lymphocytes to respond to ionomycin during the transition from naive precursors into memory T cells has been analyzed. Activated CD4+CD45RA+CD45R0+ T cells are always present both in human peripheral blood (HPB) and in the ionomycin-resistant (IR) fraction. Therefore, some activated T cells are resistant toward the Ca2+ ionophore. CD69 molecules are markers of the very early stage of T cell activation. However, CD4+CD69+ T cells have never been found in the IR fraction. Thus, the majority of CD4+ T lymphocytes at the early stage of activation are ionomycin-sensitive cells. The proportion of CD4+CD25+ T cells did not differ significantly in HPB and in the IR fraction. The presence of CD4+CD25+ T lymphocytes in the IR fraction reflects changes in the Ca2+-signaling pathway at this differentiation step of activated cells. Depending on the expression level of CD25 molecules, the population of CD4+CD25+ cells is divided in T-regulatory (CD25high) and proliferating (CD25low) subpopulations. The action of ionomycin results in a decrease in the portion of the CD4+CD25low T-cells, but it leads to an increase in the proportion of the CD4+CD25high T lymphocytes. Consequently, greater portion of CD4+CD25high T lymphocytes and smaller portion of CD4+CD25low T cells are IR cells. Expression of HLA-DR molecules can be used as the marker for the late activation step. The IR fraction is significantly rich in CD4+HLA-DR+ T lymphocytes in comparison to the blood of the same donor. The link between different differentiation steps of CD4+ T-lymphocytes and alterations in calcium ion homeostasis is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

HPB:

human peripheral blood

IR:

ionomycin-resistant cells

PE:

phycoerythrin

HLA-DR:

class II human major histocompatibility complex antigen

FITC:

fluorescein-isothiocyanate

Cy5PE:

cyanide 5-phycoerythrin complex

mAb:

monoclonal antibodies

PBS:

phosphate-buffered saline

FCS:

fetal calf serum

Con A:

concanavalin A

PHA:

Phaseolus vulgaris agglutinin

PMA:

phorbol 12-myristate 13-acetate

REFERENCES

  1. Ahmed, R., and Gray, D. (1996) Science, 272, 54–60.

    Google Scholar 

  2. Sprent, J. (1994) Cell, 76, 315–322.

    Google Scholar 

  3. Sanders, M. E., Makgoba, M. W., and Shaw, S. (1988) Immunol. Today, 9, 195–199.

    Google Scholar 

  4. Michie, C. A., McLean, A., Alcock, C., and Beverley, P. C. (1992) Nature, 360, 264–265.

    Google Scholar 

  5. Ishida, Y., and Chused, T. M. (1988) J. Exp. Med., 168, 839–852.

    Google Scholar 

  6. Miller, R. A., Flurkey, K., Molloy, M., Luby, T., and Stadecker, M. J. (1991) J. Immunol., 147, 3080–3086.

    Google Scholar 

  7. Sigova, A., Dedkova, E., Zinchenko, V., and Litvinov, I. (1999) FEBS Lett., 447, 34–38.

    Google Scholar 

  8. Haidukov, S. V., Kholodenko, I. V., and Litvinov, I. S. (2003) Tsitologiya, 45, 249–254.

    Google Scholar 

  9. Reimann, K. A., Chernoff, M., Wilkening, C. L., Nickerson, C. E., Landay, A. L., and the ACTG Immunology Advanced Technology Laboratories (2000) Clin. Diag. Lab. Immunol., 7, 352–359.

    Google Scholar 

  10. Gerosa, F., Tommasi, M., Scardoni, M., Accolla, R. S., Pozzan, T., Libonati, M., Tridente, G., and Carra, G. (1991) Mol. Immunol., 28, 159–168.

    Google Scholar 

  11. Mascher, B., Schlenke, P., and Seyfarth, M. (1999) J. Immunol. Meth., 223, 115–121.

    Google Scholar 

  12. Pala, P., Hussell, T., and Openshaw, P. J. M. (2000) J. Immunol. Meth., 243, 107–124.

    Google Scholar 

  13. Jonuleit, H., Schmitt, E., Stassen, M., Tuettenberg, A., Knop, J., and Enk, A. H. (2001) J. Exp. Med., 193, 1285–1294.

    Google Scholar 

  14. Baecher-Allan, C., Brown, J. A., Freeman, G. J., and Hafler, D. A. (2001) J. Immunol., 167, 1245–1253.

    Google Scholar 

  15. Shevach, E. M. (2002) Nat. Rev. Immunol., 2, 389–400.

    Google Scholar 

  16. Larsen, C. S., and Christiansen, N. O. (1989) Scand. J. Immunol., 30, 285–294.

    Google Scholar 

  17. Salgado, F. J., Lojo, J., Fernandez-Alonso, C. M., Vinuela, J., Cordero, O. J., and Nogueira, M. (2002) Immunol. Cell. Biol., 80, 138–147.

    Google Scholar 

  18. Johannisson, A., and Festin, R. (1995) Cytometry, 19, 343–352.

    Google Scholar 

  19. Neidhart, M., Pataki, F., Schonbachler, J., and Bruhlmann, P. (1996) Rheumatol. Int., 16, 77–87.

    Google Scholar 

  20. Raju, B., Tung, C. F., Cheng, D., Yousefzadeh, N., Condos, R., Rom, W. N., and Tse, D. B. (2001) Infect. Immun., 69, 4790–4798.

    Google Scholar 

  21. Kern, F., Docke, W. D., Reinke, P., and Volk, H. D. (1994) Int. Arch. Allergy Immunol., 104, 17–26.

    Google Scholar 

  22. Jones, D., Dang, N. H., Duvic, M., Washington, L. T., and Huh, Y. O. (2001) Am. J. Clin. Pathol., 115, 885–892.

    Google Scholar 

  23. Burnet, F. M. (1957) Australian J. Sci., 20, 67–69.

    Google Scholar 

  24. Whitney, R. B., and Sutherland, R. M. (1972) J. Cell. Physiol., 80, 329–337.

    Google Scholar 

  25. Nusslein, H. G., Frosch, K. H., Woith, W., Lane, P., Kalden, J. R., and Manger, B. (1996) Eur. J. Immunol., 26, 846–850.

    Google Scholar 

  26. Gelfand, E. W., Cheung, R. K., Mills, G. B., and Grinstein, S. (1988) Eur. J. Immunol., 18, 917–922.

    Google Scholar 

  27. Song, S., Goodwin, J., Zhang, J., Babbitt, B., and Lathey, J. L. (2002) Clin. Diagn. Lab. Immunol., 9, 708–712.

    Google Scholar 

  28. Kaiser, N., and Edelman, I. S. (1978) Cancer Res., 38, 3599–3603.

    Google Scholar 

  29. Kay, J. E. (1971) Exp. Cell. Res., 68, 11–16.

    Google Scholar 

  30. Bard, E., Colwill, R., L’Anglais, R., and Kaplan, J. G. (1978) Can. J. Biochem., 56, 900–904.

    Google Scholar 

  31. Greene, W. C., Parker, C. M., and Parker, C. W. (1976) Cell. Immunol., 25, 74–89.

    Google Scholar 

  32. Vandenberghe, P., Verwilghen, J., van Vaeck, F., and Ceuppens, J. L. (1993) Immunology, 78, 210–217.

    Google Scholar 

  33. Komada, H., Nakabayashi, H., Hara, M., and Izutsu, K. (1996) Cell. Immunol., 173, 215–220.

    Google Scholar 

  34. Mills, G. B., Cheung, R. K., Grinstein, S., and Gelfand, E. W. (1985) J. Immunol., 134, 1640–1643.

    Google Scholar 

  35. Larsen, C. S., Christiansen, N. O., and Esmann, V. (1988) Scand. J. Immunol., 28, 167–175.

    Google Scholar 

  36. Kanner, S. B., Grosmaire, L. S., Blake, J., Schieven, G. L., Masewicz, S., Odum, N., and Ledbetter, J. A. (1995) Tissue Antigens, 46, 145–54.

    Google Scholar 

  37. Mackay, C. R. (1991) Immunol. Today, 12, 189–192.

    Google Scholar 

  38. McCloskey, T. W., Bakshi, S., Than, S., Arman, P., and Pahwa, S. (1999) Blood, 94, 1829–1833.

    Google Scholar 

  39. Sallusto, F., Mackay, C. R., and Lanzavecchia, A. (2000) Annu. Rev. Immunol., 18, 593–620.

    Google Scholar 

  40. Haidukov, S. V., and Litvinov, I. S. (2003) Biol. Membr. (Moscow), 20, 333–340.

    Google Scholar 

  41. Miller, R. A., Philosophe, B., Ginis, I., Weil, G., and Jacobson, B. (1989) J. Cell. Physiol., 138, 175–182.

    Google Scholar 

  42. Grossmann, A., Ledbetter, J. A., and Rabinovitch, P. S. (1990) J. Gerontol., 45, 81–86.

    Google Scholar 

  43. Bocharova, I. V., Mezhlutova, M. B., Haidukov, S. V., Litvinov, I. S., Yakhin, R. T., and Nikonenko, B. V. (1997) Byul. Eksp. Biol. Med., 123, 553–555.

    Google Scholar 

  44. Nikonenko, B. V., Haidukov, S. V., Litvinov, I. S., Bocharova, I. V., and Apt, A. S. (2001) Byul. Eksp. Biol. Med., 131, 548–549.

    Google Scholar 

  45. Agafonova, S. A., Khaidukov, S. V., Kotel’nikova, O. V., and Litvinov, I. S. (1997) Abst. Fourth Int. Symp. Clinical Immunology, Amsterdam, 19–22 June, p. 55.

  46. Schwinzer, R., and Siefken, R. (1996) Transpl. Immunol., 4, 61–63.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Litvinov.

Additional information

__________

Translated from Biokhimiya, Vol. 70, No. 6, 2005, pp. 838–849.

Original Russian Text Copyright © 2005 by Khaidukov, Litvinov.

Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM04-154, October 24, 2004.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khaidukov, S.V., Litvinov, I.S. Calcium Homeostasis Change in CD4+ T Lymphocytes from Human Peripheral Blood during Differentiation in vivo . Biochemistry (Moscow) 70, 692–702 (2005). https://doi.org/10.1007/s10541-005-0170-8

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10541-005-0170-8

Key words

Navigation