Skip to main content
Log in

Microfluidic self-assembly of tumor spheroids for anticancer drug discovery

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Creating multicellular tumor spheroids is critical for characterizing anticancer treatments since it may provide a better model than monolayer culture of in vivo tumors. Moreover, continuous dynamic perfusion allows the establishment of physiologically relevant drug profiles to exposed spheroids. Here we present a physiologically inspired design allowing microfluidic self-assembly of spheroids, formation of uniform spheroid arrays, and characterizations of spheroid dynamics all in one platform. Our microfluidic device is based on hydrodynamic trapping of cancer cells in controlled geometries and the formation of spheroids is enhanced by maintaining compact groups of the trapped cells due to continuous perfusion. It was found that spheroid formation speed (average of 7 h) and size uniformity increased with increased flow rate (up to 10 μl min−1). A large amount of tumor spheroids (7,500 spheroids per square centimeter) with a narrow size distribution (10 ± 1 cells per spheroid) can be formed in the device to provide a good platform for anticancer drug assays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • H. Acker, J. Theor, Med. 1, 193–207 (1998)

    Google Scholar 

  • R.C. Bates, N.S. Edwards, J.D. Yates, Crit. Rev. Oncol. Hematol. 36, 61–74 (2000)

    Article  Google Scholar 

  • V.I. Chin, P. Taupin, S. Sanga, J. Scheel, F.H. Gage, S.N. Bhatia1, Biotechnol. Bioeng. 88, 399–415 (2004)

    Article  Google Scholar 

  • B. Desoize, Crit. Rev. Oncol. Hematol. 36, 59– 60 (2000)

    Article  Google Scholar 

  • B. Desoize, D. Gimonet, J.C. Jardiller, Anticancer Res. 18, 4147–4158 (1998)

    Google Scholar 

  • M. Deutsch, A. Deutsch, O. Shirihai, I. Hurevich, E. Afrimzon, Y. Shafrana, N. Zurgil, Lab. Chip. 6, 995–1000 (2006)

    Article  Google Scholar 

  • D. Di Carlo, N. Aghdam, L.P. Lee, Anal. Chem. 78, 4925–4930 (2006a)

    Article  Google Scholar 

  • D. Di Carlo, L.Y. Wu, L.P. Lee, Lab. Chip. 6, 1445–1449 (2006b)

    Article  Google Scholar 

  • M.A. Faute, L. Laurent, D. Ploton, M.F. Poupon, J.C. Jardillier, H. Bobichon, Clin. Exp. Metastasis. 19, 161–168 (2002)

    Article  Google Scholar 

  • M. Haji-Karim, J. Carlsson, Cancer Res. 38, 1457–1464 (1978)

    Google Scholar 

  • P.J. Hung, P. Lee, L.P. Lee, Biotechnol. Bioeng. 89, 1–8 (2005a)

    Article  Google Scholar 

  • P.J. Hung, P. Lee, P. Sabounchi, N. Aghdam, R. Lin, L.P. Lee, Lab. Chip. 5, 44–48 (2005b)

    Article  Google Scholar 

  • G.M. Keller, Curr. Opin. Cell. Biol. 7, 862–869 (1995)

    Article  Google Scholar 

  • J.M. Kelm, N.E. Timmins, C.J. Brown, M. Fussenegger, L.K. Nielsen, Biotechnol. Bioeng. 83, 173–180 (2003)

    Article  Google Scholar 

  • L. Kim, M.D. Vahey, H. Lee, J. Voldman, Lab. Chip. 6, 394–406 (2006)

    Article  Google Scholar 

  • R. Knuechel, R.M. Sutherland, Cancer J. 3, 234–243 (1990)

    Google Scholar 

  • L.A. Kunz-Schughart, M. Kreutz, R. Knuechel, Int. J. Exp. Pathol. 79, 1–23 (1998)

    Article  Google Scholar 

  • W. Mueller-Klieser, Am. J. Physiol. 273, C1109–C1123 (1997)

    Google Scholar 

  • W. Mueller-Klieser, Crit. Rev. Oncol. Hematol. 36, 124–139 (2000)

    Article  Google Scholar 

  • K.M. Nicholson, M.C. Bibby, R.M. Philips, Eur. J. Cancer 33, 1291–1298 (1997)

    Article  Google Scholar 

  • P.L. Olive, R.E. Durand, Cancer Metastasis Rev. 13(2), 121–138 (1994)

    Article  Google Scholar 

  • R.M. Sutherland, Science 240, 177–184 (1988)

    Article  Google Scholar 

  • R.M. Sutherland, J.A. McCredie, W.R. Inch, J. Natl. Cancer Inst. 46, 113–120 (1971)

    Google Scholar 

  • D.M. Thompson, K.R. King, K.J. Wieder, M. Toner, M.L. Yarmush, A. Jayaraman, Anal. Chem. 76, 4098–4103 (2004)

    Article  Google Scholar 

  • Y. Torisawa, A. Takagi, Y. Nashimoto, T. Yasukawa, H. Shiku, T. Matsue, Biomaterials 28, 559–566 (2006)

    Article  Google Scholar 

  • A. Tourovskaia, X. Figueroa-Masot, A. Folch, Lab. Chip. 5, 14–19 (2005)

    Article  Google Scholar 

  • J.M. Yuhas, A.P. Li, A.O. Martinez, A.J. Ladman, Cancer Res. 37, 3639–3643 (1977)

    Google Scholar 

Download references

Acknowledgement

This research was supported by Intel Research Fund, GSK, Taiwan Merit Scholarship TMS-094-2-A-008 (L.W.) and a Whitaker Foundation graduate fellowship (D. D.). All master copies for PDMS molding were fabricated in the UC Berkeley microfabrication facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luke P. Lee.

Additional information

Liz Y. Wu and Dino Di Carlo contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(AVI 2.72 mb)

(MPG 12.8 mb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, L.Y., Di Carlo, D. & Lee, L.P. Microfluidic self-assembly of tumor spheroids for anticancer drug discovery. Biomed Microdevices 10, 197–202 (2008). https://doi.org/10.1007/s10544-007-9125-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-007-9125-8

Keywords

Navigation