Skip to main content
Log in

Long term, implantable blood pressure monitoring systems

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

An overview of implantable measurement systems suitable for the long-term, continuous monitoring of blood pressure is presented in this paper. The challenges, design considerations and tradeoffs inherent in these systems are overviewed and implantable sensors from both industrial and research environments are reviewed. The paper is concluded with an outlook of future directions for implantable blood pressure monitoring systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. This calculation assumes a tissue thermal conductivity of 4.2 mW/cm-°C. This value will vary based on the location in the body and the composition of the surrounding tissue.

References

  • D.M. Ackermann, B. Smith, K.L. Kilgore, P.H. Peckham, Design of a high speed transcutaneous optical telemetry link, in Engineering in Medicine and Biology Society, 2006. EMBS ‘06. 28th Annual International Conference of the IEEE, pp. 2932–2935, 2006

  • E.R. Adair, R.C. Petersen, Biological effects of radiofrequency/microwave radiation IEEE Trans. Microwave Theor. Tech. 50, 953–962 (2002)

    Article  Google Scholar 

  • M.G. Allen, Micromachined endovascularly-implantable wireless aneurysm pressure sensors: from concept to clinic Transducers ’05 1, 275–278 (2005)

    Google Scholar 

  • American national standard for safety levels with respect to human exposure to radio frequency electromagnetic fields, 300 kHz to 300 GHz, Tech. Rep. ANSI C95.1 (1982)

  • K. Banister, I.R. Chambers, M.S. Siddique, H.M. Fernandes, A.D. Mendelow, Intracranial pressure and clinical status: assessment of two intracranial pressure transducers Physiol. Meas. 21, 473–479 (2000)

    Article  Google Scholar 

  • T.J. Becker, Heart healthy: CardioMEMS moves closer to commercializing innovative sensors for heart patients. [Online]. 2007(01/23), Available: http://gtresearchnews.gatech.edu/newsrelease/cardiomems.htm, (2006, Jan.)

  • D. Behrend, B. Clasbrumme, D. Etuodt, C. Hierold, H. Kapels, E. Landgraf, K. Oppermann, T. Scheiter, M. Steger, D. Wenzel, Implantable low power integrated pressure sensor system for minimal invasive telemetric patient monitoring, Micro Electro Mechanical Systems, 1998. MEMS 98. Proceedings., the Eleventh Annual International Workshop on

  • J.M. Borky, K.D. Wise, Integrated signal conditioning for silicon pressure sensors IEEE Trans. Electron Devices 26, 1906–1910 (1979)

    Article  Google Scholar 

  • T.A. Bowdle, Complications of invasive monitoring Anesthesiol. Clin. North Am. 20, 333 (2002)

    Google Scholar 

  • F. Braunschweig, B. Kjellstrom, M. Soderhall, N. Clyne, C. Linde, Dynamic changes in right ventricular pressures during haemodialysis recorded with an implantable haemodynamic monitor Nephrol. Dial. Transplant. 21, 176–183 (2006)

    Article  Google Scholar 

  • A.C. Burton, Physiology and Biophysics of the Circulation, 2nd edn. (Year Book Medical Publishers, Chicago (1972)

    Google Scholar 

  • Campus Micro Technologies GmbH. [Online]. 2007(11/18), Available: http://www.campus-micro-technologies.de/index.htm

  • CardioMEMS, CardioMEMS, inc. announces first patient implant of wireless pressure sensor for heart failure monitoring in the united states. [Online]. 2007(04/09), Available: http://www.cardiomems.com/content.asp?display=news&view=7 (2006, Dec.)

  • CardioMEMS, CardioMEMS, inc. announces FDA clearance of the EndoSureä wireless AAA pressure measurement system for measuring intrasac pressure during thoracic aortic aneurysm (TAA) repair. [Online]. 2007(04/09), Available: http://www.cardiomems.com/content.asp?display=news&view=9 (2007a, Mar.)

  • CardioMEMS. [Online]. 2007b(01/23), Available: http://www.cardiomems.com

  • F.W. Casadei, M. Gerold, E. Baldinger, Implantable blood pressure telemetry system IEEE Trans. Biomed. Eng. BME-9, 334–341 (1972)

    Article  Google Scholar 

  • S. Chatzandroulis, D. Tsoukalas, P.A. Neukomm, Miniature pressure system with a capacitive sensor and a passive telemetry link for use in implantable applications J. Microelectromech. Syst. 9, 18–23 (2000)

    Article  Google Scholar 

  • P. Cong, D.J. Young, W.H. Ko, Novel long-term implantable blood pressure monitoring system Proc IEEE Sensors 3, 1359–1362 (2004)

    Article  Google Scholar 

  • P. Cong, K. Olszens, D.J. Young, W.H. Ko, Implantable blood pressure monitoring of small animal for advanced biological research Transducers ’05 2, 2002–2006 (2005)

    Google Scholar 

  • P. Cong, D.J. Young, B. Hoit, W.H. Ko, Novel long-term implantable blood pressure monitoring system with reduced baseline drift, EMBS ‘06, 1854–1857 (2006)

  • R. Cooper, D. Beale, Radio telemetry of intraocular pressure in vitro, Invest. Ophthalmol. Vis. Sci. 16, 168–171 (1977)

    Google Scholar 

  • J. Coosemans, R. Puers, An autonomous bladder pressure monitoring system Sens. Actuators, A. Phys. 123–124, 155–161 (2005)

    Google Scholar 

  • Data Sciences International, Guide to PhysioTel transmitters. [Online]. 2007(01/23), Available HTTP: http://www.datasci.com/pdf/products/DSI_Transmitters.pdf (2005, Dec 5)

  • A.D. DeHennis, Remotely-powered wireless monitoring systems, PhD Dissertation, University of Michigan, Ann Arbor, 2004

  • A.D. DeHennis, K.D. Wise, A wireless microsystem for the remote sensing of pressure, temperature, and relative humidity J. Microelectromech. Syst. 14, 12–22 (2005)

    Article  Google Scholar 

  • A.D. DeHennis, K.D. Wise, A fully integrated multisite pressure sensor for wireless arterial flow characterization J. Microelectromech. Syst. 15, 678–685 (2006)

    Article  Google Scholar 

  • T. Eggers, C. Marschner, U. Marschner, B. Clasbrummel, R. Laur, J. Binder, Advanced hybrid integrated low-power telemetric pressure monitoring system for biomedical applications, Proceedings of the IEEE Micro Electro Mechanical Systems (MEMS), pp. 329–334 (2000)

  • S.H. Ellozy, First experience in human beings with a permanently implantable intrasac pressure transducer for monitoring endovascular repair of abdominal aortic aneurysms J. Vasc. Surg. 40, 405–411 (2004)

    Article  Google Scholar 

  • R.H. Epstein, S. Huffnagle, R.R. Bartkowski, Comparative accuracies of a finger blood-pressure monitor and an oscillometric blood-pressure monitor J. Clin. Monit. 7, 161–167 (1991)

    Article  Google Scholar 

  • B.J. Feder, A remote heart monitor fails to impress F.D.A. panel. [Online]. 2007(11/18), Available: http://www.nytimes.com/2007/03/02/business/02device.html (2007, March 2)

  • B.B. Flick, R. Orglmeister, A portable microsystem-based telemetric pressure and temperature measurement unit IEEE Trans. Biomed. Eng. 47, 12–16 (2000)

    Article  Google Scholar 

  • M.A. Fonseca, M.G. Allen, J. Kroh, J. White, Flexible wireless passive pressure sensors for biomedical applications, Technical Digest of the Solid-State Sensor, Actuator, and Microsystems Workshop (Hilton Head 2006), pp. 38–42, 2006.

  • E.E. Frezza, H. Mezghebe, Indications and complications of arterial catheter use in surgical or medical intensive care units: analysis of 4932 patients Am. Surg. 64, 127–131 (1998)

    Google Scholar 

  • M. Frischholz, Wireless pressure monitoring systems Med. Device Technol. 17, 24–27 (2006)

    Google Scholar 

  • G. Harsanvi, Sensors in Biomedical Applications: Fundamentals, Technology, and Applications (CRC Press, Boca Raton, FL (2000)

    Google Scholar 

  • IEEE standard for safety levels with respect to human exposure to radio frequency electromagnetic fields, 3 kHz to 300 GHz, Tech. Rep. IEEE C95.1–1991 (1992)

  • Integrated Sensing Systems, Medical products overview. [Online]. 2007(01/23), Available: http://www.mems-issys.com/html/medfamily.html (2002)

  • K. Kramer, H. Voss, J.A. Grimbergen, P.A. Mills, D. Huetteman, L. Zwiers, B. Brockway, Telemetric monitoring of blood pressure in freely moving mice: a preliminary study Lab. Anim. 34, 272–280 (2000)

    Article  Google Scholar 

  • O. Kemmotsu, M. Ueda, H. Otsuka, T. Yamamura, D.C. Winter, J.S. Eckerle, Arterial tonometry for noninvasive, continuous blood-pressure monitoring during anesthesia Anesthesiology 75, 333–340 (1991)

    Article  Google Scholar 

  • J.L. Kermode, N.J. Davis, W.R. Thompson, Comparison of the Finapres blood-pressure monitor with intra-arterial manometry during induction of anesthesia Anaesth. Intensive Care 17, 470–475 (1989)

    Google Scholar 

  • W.H. Ko, Power sources for implant telemetry and stimulation systems A Handbook on Biotelemetry and Radio Tracking C.J. Amlaner, D. MacDonald (Pergamon Press, INc., Elmsford, NY (1980), 225–245

    Google Scholar 

  • N. Kudo, K. Shimizu, G. Matsumoto, Fundamental study on transcutaneous biotelemetry using diffused light. Front. Med. Biol. Eng. 1, 19–28 (1988)

    Google Scholar 

  • Y.S. Lee, K.D. Wise, A batch-fabricated silicon capacitive pressure transducer with low temperature sensitivity IEEE Trans. Electron Devices 29, 42–48 (1982)

    Article  Google Scholar 

  • B.E. Lewandowski, K.L. Kilgore, K.J. Gustafson, Design considerations for an implantable, muscle powered piezoelectric system for generating electrical power Ann. Biomed. Eng. 35, 631–641 (2007)

    Article  Google Scholar 

  • J.C. Lin, Safety standards for human exposure to radio frequency radiation and their biological rationale IEEE Microw. Mag. 4, 22–26 (2003)

    Google Scholar 

  • Mayo Clinic Staff, High blood pressure: Get the most out of home monitoring. [Online]. 2007(01/25), Available: http://www.mayoclinic.com/health/high-blood-pressure/HI00016 (2006, May)

  • P.A. Mills, D.A. Huetteman, B.P. Brockway, L.M. Zwiers, A.J.M. Gelsema, R.S. Schwartz, K. Kramer, A new method for measurement of blood pressure, heart rate, and activity in the mouse by radiotelemetry J. Appl. Physiol. 88, 1537–1544 May 1(2000)

    Google Scholar 

  • N. Najafi, A. Ludomirsky, Initial animal studies of a wireless, batteryless, MEMS implant for cardiovascular applications Biomed. Microdevices 6, 61–65 (2004)

    Article  Google Scholar 

  • E. O’Brien, R. Asmar, L. Beilin, Y. Imai, G. Mancia, T. Mengden, M. Myers, P. Padfield, P. Palatini, G. Parati, T. Pickering, J. Redon, J. Staessen, G. Stergiou, P. Verdecchia, European society of hypertension recommendations for conventional, ambulatory and home blood pressure measurement J. Hypertens 21, 821–848 (2003)

    Article  Google Scholar 

  • E.R. Olsen, C.C. Collins, W.F. Loughborough, V. Richards, J.E. Adams, D.W. Pinto, Intracranial pressure measurement with a miniature passive implanted pressure transensor, Am. J. Surg. 113(6), 727–729 (1967)

    Google Scholar 

  • J.A. Paradiso, T. Starner, Energy scavenging for mobile and wireless electronics Pervasive Computing, IEEE 4, 18–27 (2005)

    Article  Google Scholar 

  • E. Park, J. Yoon, E. Yoon, Hermetically sealed inductor-capacitor (LC) resonator for remote pressure monitoring Jpn. J. Appl. Phys. 37, 7124–7128 (1998)

    Article  Google Scholar 

  • K.E. Petersen, Silicon as a mechanical material Proc. IEEE 70, 420–457 (1982)

    Article  Google Scholar 

  • T.G. Pickering, J.E. Hall, L.J. Appel, B.E. Falkner, J. Graves, M.N. Hill, D.W. Jones, T. Kurtz, S.G. Sheps, E.J. Roccella, Recommendations for blood pressure measurement in humans and experimental animals: part 1: Blood pressure measurement in humans: a statement for professionals from the subcommittee of Professional and Public Education of the American Heart Association Council on High Blood Pressure Research, Hypertension 45, 142–161, January 1 (2005)

  • B.D. Ratner, A.S. Hoffman, F.J. Schoen, J.E. Lemons, Biomaterials Science: An Introduction to Materials in Medicine, 2nd edn. (Elsevier Academic Press, 2004), p. 864

  • R. Receveur, Microsystem technologies for implantable applications J. Micromech. Microeng. 17, R50–R80 (2007)

    Article  Google Scholar 

  • Remon Medical Technologies Inc. [Online]. 2007(11/18),Available: http://www.remonmedical.com/

  • Safety level of electromagnetic radiation with respect to personnel, Tech. Rep. USASI Standard C95.1–1966 (1966)

  • B. Scheer, A. Perel, U. Pfeiffer, Clinical review: complications and risk factors of peripheral arterial catheters used for haemodynamic monitoring in anaesthesia and intensive care medicine Crit. Care 6, 199–204 (2002)

    Article  Google Scholar 

  • U. Schnakenberg, P. Walter, G. vom Bogel, C. Kruger, H. Ludtke-Handjery, H.A. Richter, W. Specht, P. Ruokonen, W. Mokwa, Initial investigations on systems for measuring intraocular pressure Sens. Actuators, A, Phys. 85, 287–291 (2000)

    Article  Google Scholar 

  • E. Siwapornsathain, A. Lal, J. Binard, A telemetry and sensor platform for ambulatory urodynamics, in Microtechnologies in Medicine & Biology 2nd Annual International IEEE-EMB Special Topic Conference on, 2002, pp. 283–287.

  • J.A. Staessen, E.T. O’Brien, L. Thijs, R.H. Fagard, Modern approaches to blood pressure measurement Occup. Environ. Med. 57, 510–520 (2000)

    Article  Google Scholar 

  • T. Starner, J.A. Paradiso, Human generated power for mobile electronics, in Low-Power Electronics Design, ed. C. Piguet (CRC Press, 2004), pp. 44.1–44.35

  • D. Steinhaus, D.W. Reynolds, F. Gadler, G.N. Kay, M.F. Hess, T. Bennett, Implant experience with an implantable hemodynamic monitor for the management of symptomatic heart failure Pacing Clin. Electrophysiol. 28, 747–753 (2005)

    Article  Google Scholar 

  • K. Takahata, A. DeHennis, K.D. Wise, Y.B. Gianchandani, Stentenna: a micromachined antenna stent for wireless monitoring of implantable microsensors Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 4, 3360–3363 (2003)

    Google Scholar 

  • K. Takahata, A. DeHennis, K.D. Wise, Y.B. Gianchandani, A wireless microsensor for monitoring flow and pressure in a blood vessel utilizing A dual-inductor antenna stent and two pressure sensors, Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS), pp. 216–219 (2004)

  • F.E. Terman, Radio Engineer’s Handbook (McGraw Hill, New York (1943)

    Google Scholar 

  • N. Tesla, Electrical transformer, US Patent No. 593,138, Issued: 1897

  • N. Tesla, System of transmission of electrical energy, US Patent No. 645,576, Issued: 1900

  • The National Spinal Cord Injury Association, Autonomic dysreflexia. [Online]. 2007(01/25), Available: http://www.spinalcord.org/html/factsheets/aut_dysreflexia.php (2006)

  • J.K. Triedman, J.P. Saul, Comparison of intraarterial with continuous noninvasive blood-pressure measurement in postoperative pediatric patients J. Clin. Monit. 10, 11–20 (1994)

    Article  Google Scholar 

  • U.S. Department of Health and Human Services, Blood pressure measurement devices (sphygmomanometers)—accuracy. Report # CPG 7124.23 (2005, Feb. 18)

  • R.L. Van Citters, W.S. Kemper, D.L. Franklin, Blood pressure responses of wild giraffes studied by radio telemetry, Science 152(3720), 384–386 (1966)

    Google Scholar 

  • T. Vo-Dinh, Biomedical Photonics Handbook (CRC Press, Boca Raton, FL (2003)

    Google Scholar 

  • J.G. Webster, Medical Instrumentation: Applicaiton and Design, 3rd edn. (John Wiley & Sons, 1997), p. 720

  • S.E. Whitesall, J.B. Hoff, A.P. Vollmer, L.G. D’Alecy, Comparison of simultaneous measurement of mouse systolic arterial blood pressure by radiotelemetry and tail-cuff methods Am. J. Physiol. Heart Circ. Physiol. 286, H2408–H2415 (2004)

    Article  Google Scholar 

  • R.G. Wilkins, Radial artery cannulation and ischemic damage - a review Anaesthesia 40, 896–899 (1985)

    Article  Google Scholar 

  • K.D. Wise, S.K. Clark, Diaphragm formation and pressure sensitivity in batch-fabricated silicon pressure sensors, in Electron Devices Meeting, 1978 International, 1978, pp. 96–99

  • H. Yu, A wireless microsystem for multichannel neural recording microprobes, PhD Dissertation, University of Michigan, Ann Arbor, 2004

  • Y. Zhang, S. Massoud-Ansari, G. Meng, W. Kim, N. Najafi, An ultra-sensitive, high-vacuum absolute capacitive pressure sensor, in Micro Electro Mechanical Systems, 2001. MEMS 2001. the 14th IEEE International Conference on, 2001, pp. 166–169

  • B. Ziaie, K. Najafi, An implantable microsystem for tonometric blood pressure measurement Biomed. Microdevices 3, 285–292 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph A. Potkay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Potkay, J.A. Long term, implantable blood pressure monitoring systems. Biomed Microdevices 10, 379–392 (2008). https://doi.org/10.1007/s10544-007-9146-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-007-9146-3

Keywords

Navigation