Skip to main content

Advertisement

Log in

BBB ON CHIP: microfluidic platform to mechanically and biochemically modulate blood-brain barrier function

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

The blood-brain barrier (BBB) is a unique feature of the human body, preserving brain homeostasis and preventing toxic substances to enter the brain. However, in various neurodegenerative diseases, the function of the BBB is disturbed. Mechanisms of the breakdown of the BBB are incompletely understood and therefore a realistic model of the BBB is essential. We present here the smallest model of the BBB yet, using a microfluidic chip, and the immortalized human brain endothelial cell line hCMEC/D3. Barrier function is modulated both mechanically, by exposure to fluid shear stress, and biochemically, by stimulation with tumor necrosis factor alpha (TNF-α), in one single device. The device has integrated electrodes to analyze barrier tightness by measuring the transendothelial electrical resistance (TEER). We demonstrate that hCMEC/D3 cells could be cultured in the microfluidic device up to 7 days, and that these cultures showed comparable TEER values with the well-established Transwell assay, with an average (± SEM) of 36.9 Ω.cm2 (± 0.9 Ω.cm2) and 28.2 Ω.cm2 (± 1.3 Ω.cm2) respectively. Moreover, hCMEC/D3 cells on chip expressed the tight junction protein Zonula Occludens-1 (ZO-1) at day 4. Furthermore, shear stress positively influenced barrier tightness and increased TEER values with a factor 3, up to 120 Ω.cm2. Subsequent addition of TNF-α decreased the TEER with a factor of 10, down to 12 Ω.cm2. This realistic microfluidic platform of the BBB is very well suited to study barrier function in detail and evaluate drug passage to finally gain more insight into the treatment of neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig 1
Fig 2
Fig 3
Fig 4
Fig 5

Similar content being viewed by others

References

  • A. Avdeef, Eur. J. Pharm. Sci. 43, 109 (2011)

    Article  Google Scholar 

  • M. Bellavance, M. Blanchette, D. Fortin, AAPS J. 10, 166 (2008)

    Article  Google Scholar 

  • R. Booth, H. Kim, Lab Chip 12, 1784 (2012)

    Article  Google Scholar 

  • F.L. Cardoso, D. Brites, M.A. Brito, Brain Res Rev. 64, 328 (2010)

    Article  Google Scholar 

  • B.H. Chueh, D. Huh, C.R. Kyrtsos, T. Houssin, N. Futai, S. Takayama, Anal. Chem. 79, 3504 (2007)

    Article  Google Scholar 

  • L. Cucullo, B. Aumayr, E. Rapp, D. Janigro, Curr. Opin. Drug Discov. Devel. 8, 89 (2005)

    Google Scholar 

  • L. Cucullo, P. Couraud, B. Weksler, I. Romero, M. Hossain, E. Rapp, D. Janigro, J. Cereb. Blood Flow Metab. 28, 312 (2008)

    Article  Google Scholar 

  • P.F. Davies, Nat. Clin. Pract. Cardiovasc. Med. 6, 16 (2009)

    Article  Google Scholar 

  • N.J. Douville, Y. Tung, R. Li, J.D. Wang, M.E.H. El-Sayed, S. Takayama, Anal. Chem. 82, 2505 (2010)

    Article  Google Scholar 

  • K.A. Frankola, N.H. Greig, W. Luo, D. Tweedie, CNS Neurol. Disord. Drug Targets 10, 391 (2011)

    Article  Google Scholar 

  • C. Forster, M. Burek, I.A. Romero, B. Weksler, P. Couraud, D. Drenckhahn, J. Physiol. 586, 1937 (2008)

    Article  Google Scholar 

  • P. Grammas, J. Martinez, B. Miller, Expert Rev. Mol. Med. 13, e19 (2011)

    Article  Google Scholar 

  • K. Hatherell, P. Couraud, I.A. Romeroc, B. Weksler, G.J. Pilkingtona, J. Neurosci. Methods 199, 223 (2011)

    Article  Google Scholar 

  • D. Huh, G.A. Hamilton, D.E. Ingber, Trends Cell Biol. 21, 745 (2011)

    Article  Google Scholar 

  • Y.S. Li, J.H. Haga, S. Chien, J. Biomech. 38, 1949 (2005)

    Article  Google Scholar 

  • E. Markoutsa, G. Pampalakis, A. Niarakis, I.A. Romero, B. Weksler, P. Couraud, S.G. Antimisiaris, Eur. J. Pharm. Biopharm. 77, 265 (2011)

    Article  Google Scholar 

  • C. Mc Guire, R. Beyaert, G. van Loo, Trends Neurosci. 34, 619 (2011)

    Article  Google Scholar 

  • W. Neuhaus, R. Lauer, S. Oelzant, U.P. Fringeli, G.F. Ecker, C.R. Noe, J. Biotechnol. 125, 127 (2006)

    Article  Google Scholar 

  • E. Neuwelt, N.J. Abbott, L. Abrey, W.A. Banks, B. Blakley, T. Davis, B. Engelhardt, P. Grammas, M. Nedergaard, J. Nutt, W. Pardridge, G.A. Rosenberg, Q. Smith, L.R. Drewes, Lancet Neurol. 7, 84 (2008)

    Article  Google Scholar 

  • A.M. Palmer, J. Alzheimer Dis. 24, 643 (2011)

    Google Scholar 

  • R. Paolinelli, M. Coradaa, F. Orsenigoa, E. Dejanaa, Pharmacol. Res. 63, 165 (2011)

    Article  Google Scholar 

  • K.M. Park, W.J. Bowers, Cell. Signal. 22, 977 (2010)

    Article  Google Scholar 

  • A. Patabendige, R.A. Skinner, N. J. Abbott. Brain Res. (2012) doi:10.1016/j.brainres.2012.06.057

  • A.D. van der Meer, A.A. Poot, J. Feijen, I. Vermes, Biomicrofluidics 15, 11103 (2010)

    Article  Google Scholar 

  • A.D. van der Meer, A. van den Berg, Integr. Biol. (2012) doi: 10.1039/C2IB00176D

  • J. Wegener, S. Zink, P. Rösen, H.J. Galls, Eur. J. Physiol. 437, 925 (1999)

    Article  Google Scholar 

  • B.B. Weksler, E.A. Subileau, N. Perrière, P. Charneau, K. Holloway, M. Leveque, H. Tricoire-Leignel, A. Nicotra, S. Bourdoulous, P. Turowski, D.K. Male, F. Roux, J. Greenwood, I.A. Romero, P.O. Couraud, FASEB J. 19, 1872 (2005)

    Google Scholar 

  • J.H. Yeon, D. Na, K. Choi, S.W. Ryu, C. Choi, J.K. Park, Biomed. Microdev. (2012) doi: 10.1007/s10544-012-9680-5

Download references

Acknowledgments

Financial support from NWO - Netherlands Organization for Scientific Research (Nanotox chip, project 11521), and technical assistance of L.J. de Vreede, A.J. Sprenkels, L.I. Segerink, H.L. de Boer and A. Boonstra are gratefully acknowledged. We thank J. Wisniewska-Kruk and I. Klaassen (Ocular Angiogenesis Group at AMC, Amsterdam) for the hCMEC/D3 cell line.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. M. Griep.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Griep, L.M., Wolbers, F., de Wagenaar, B. et al. BBB ON CHIP: microfluidic platform to mechanically and biochemically modulate blood-brain barrier function. Biomed Microdevices 15, 145–150 (2013). https://doi.org/10.1007/s10544-012-9699-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-012-9699-7

Keywords

Navigation