Skip to main content
Log in

Polydimethylsiloxane films doped with NdFeB powder: magnetic characterization and potential applications in biomedical engineering and microrobotics

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

This work reports the fabrication, magnetic characterization and controlled navigation of film-shaped microrobots consisting of a polydimethylsiloxane-NdFeB powder composite material. The fabrication process relies on spin-coating deposition, powder orientation and permanent magnetization. Films with different powder concentrations (10 %, 30 %, 50 % and 70 % w/w) were fabricated and characterized in terms of magnetic properties and magnetic navigation performances (by exploiting an electromagnet-based platform). Standardized data are provided, thus enabling the exploitation of these composite materials in a wide range of applications, from MEMS/microrobot development to biomedical systems. Finally, the possibility to microfabricate free-standing polymeric structures and the biocompatibility of the proposed composite materials is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • J.J. Abbott, Z. Nagy, F. Beyeler, B.J. Nelson, Robotics in the small. IEEE Robot. Autom. Mag. 14, 3 (2007)

    Article  Google Scholar 

  • H.L. Bumpers, D.G. Janagama, U. Manne, M.D. Basson, V. Katkoori, Nanomagnetic levitation three-dimensional cultures of breast and colorectal cancers. J Surg Res 194, 2 (2015)

    Article  Google Scholar 

  • G. Chatzipirpiridis, O. Ergeneman, J. Pokki, F. Ullrich, S. Fusco, J.A. Ortega, K.M. Sivaraman, B.J. Nelson, S. Pané, Electroforming of implantable tubular magnetic microrobots for wireless ophthalmologic applications. Adv. Healthc. Mater. 4(2) (2015)

  • T.S. Chin, Permanent magnet films for applications in microelectromechanical systems. J. Magn. Magn. Mater. 209, 1 (2000)

    Article  Google Scholar 

  • O. Cugat, J. Delamare, G. Reyne, Magnetic micro-actuators and systems (MAGMAS). IEEE Trans. Mag. 39, 6 (2003)

    Article  Google Scholar 

  • E. Diller, M. Sitti, Micro-scale mobile robotics. Foundations and Trends in Robotics 2:3, 43–259 (2013)

  • E. Diller, M. Sitti, Three-dimensional programmable assembly by untethered magnetic robotic micro-grippers. Adv. Funct. Mater. 24, 28 (2014)

    Article  Google Scholar 

  • M. Dkhil, A. Bolopion, S. Regnier, M. Gauthier, Modeling and experiments of high speed magnetic micromanipulation at the air/liquid interface (In Proc. IEEE/RSJ Int. Conf. Int, Robot, 2014)

    Book  Google Scholar 

  • S. Floyd, E. Diller, C. Pawashe, M. Sitti, Control methodologies for a heterogeneous group of untethered magnetic micro-robots. Int. J. Robot. Res. 30, 13 (2011)

    Article  Google Scholar 

  • E.P. Furlani, Permanent magnet and electromechanical devices: materials, analysis, and applications (Academic Press, New York, 2001)

  • G.G. Genchi, G. Ciofani, I. Liakos, L. Ricotti, L. Ceseracciu, A. Athanassiou, V. Mattoli, Bio/non-bio interfaces: a straightforward method for obtaining long term PDMS/muscle cell biohybrid constructs. Colloids Surf. B Biointerfaces 105, 144–151 (2013)

    Article  Google Scholar 

  • K.S. Han, S.H Hong, K.I. Kim, J.Y. Cho, K.W. Choi, and H. Lee, Fabrication of 3D nano-structures using reverse imprint lithography. Nanotechnology, 24(4), 045-304. (2013).

  • F.M. Hsu, W. Fang, Development of two-stage solidification technology for implementing micro structures with liquid magnetic polymer and solid magnetic anisotropic polymer. J. Micromech. Microeng. 24, 9 (2014)

    Google Scholar 

  • V. Iacovacci, G. Lucarini, L. Ricotti, P. Dario, P.E. Dupont, A. Menciassi, Untethered magnetic millirobot for targeted drug delivery. Biomed. Microdev. 17, 3 (2015)

    Article  Google Scholar 

  • Y. Jiang, S. Masaoka, M. Uehara, T. Fujita, K. Higuchi, K. Maenaka, Micro-structuring of thick NdFeB films using high-power plasma etching for magnetic MEMS application. J. Micromech. Microeng. 21, 4 (2011)

    Google Scholar 

  • S. Kim, F. Qiu, S. Kim, A. Ghanbari, C. Moon, L. Zhang, B.J. Nelson, H. Choi, Fabrication and characterization of magnetic microrobots for three-dimensional cell culture and targeted transportation. Adv. Mater. 25, 41 (2013)

    Google Scholar 

  • M.P. Kummer, J.J. Abbott, B.E. Kratochvil, R. Borer, A. Sengul, B.J. Nelson, OctoMag: an electromagnetic system for 5-DOF wireless micromanipulation. IEEE Trans. Rob. 26, 6 (2010)

    Article  Google Scholar 

  • S. Laurent, A.A. Saei, S. Behzadi, A. Panahifar, M. Mahmoudi, Superparamagnetic iron oxide nanoparticles for delivery of therapeutic agents: opportunities and challenges. Expert Opin. Drug Deliv. 11, 9 (2014)

    Article  Google Scholar 

  • H. Li, T.J. Flynn, J.C. Nation, J. Kershaw, L.S. Stephens, C.A. Trinkle, Photopatternable NdFeB polymer micromagnets for microfluidics and microrobotics applications. J. Micromech. Microeng. 23(6) (2013)

  • G. Lucarini, S. Palagi, A. Levi, B. Mazzolai, P. Dario, A. Menciassi, L. Beccai, Navigation of magnetic microrobots with different user interaction levels. IEEE Trans. Autom. Sci. Eng. 11, 3 (2014)

    Article  Google Scholar 

  • G. Lucarini, V. Iacovacci, L. Ricotti, N. Comisso, P. Dario, and A. Menciassi, Magnetically driven microrobotic system for cancer cell manipulation, in Proc. IEEE Conf. Eng. Med. Biol. Soc. (2015a). Accepted.

  • G. Lucarini, M. Mura, G. Ciuti, R. Rizzo, A. Menciassi, Electromagnetic Control System for Capsule Navigation: Novel Concept for Magnetic Capsule Maneuvering and Preliminary Study. J. Med. Biol. Eng. 35, 1–9 (2015b)

    Article  Google Scholar 

  • S. Martel, Magnetic nanoparticles in medical nanorobotics. J. Nanoparticle Res. 17, 2 (2015)

    Article  MathSciNet  Google Scholar 

  • A. Mata, A.J. Fleischman, S. Roy, Characterization of polydimethylsiloxane (PDMS) properties for biomedical micro/nanosystems. Biomed. Microdev. 7, 4 (2005)

    Article  Google Scholar 

  • T. Mazzocchi, L. Ricotti, N. Pinzi, A. Menciassi, Parametric design, fabrication and validation of one-way polymeric valves for artificial sphincters. Sensor Actuat. A-Phys. 233, 184–194 (2015)

    Article  Google Scholar 

  • B.J. Nelson, I.K. Kaliakatsos, J.J. Abbott, Microrobots for minimally invasive medicine. Annu. Rev. Biomed. Eng. 12, 55–85 (2010)

    Article  Google Scholar 

  • S. Palagi, G. Lucarini, V. Pensabene, A. Levi, B. Mazzolai, A. Menciassi, L. Beccai, Wireless swimming microrobots: design and development of a 2 DoF magnetic-based system (In Proc. IEEE Conf. Robot, Autom, 2012)

    Google Scholar 

  • B. Pawlowski, J. Töpfer, Permanent magnetic NdFeB thick films. J. Mater. Sci. 39, 4 (2004)

    Article  Google Scholar 

  • B. Pawlowski, S. Schwarzer, A. Rahmig, J. Töpfer, NdFeB thick films prepared by tape casting. J. Magn. Magn. Mater. 265, 3 (2003)

    Article  Google Scholar 

  • C. Peters, V. Costanza, S. Pane, B.J. Nelson, C. Hierold, Superparamagnetic hydrogels for two-photon polymerization and their application for the fabrication of swimming microrobots (In Proc, IEEE Transducers, 2015)

    Book  Google Scholar 

  • R. Pieters, H.W. Tung, S. Charreyron, D.F. Sargent, B.J. Nelson, RodBot: a rolling microrobot for micromanipulation (In Proc. IEEE Conf. Robot, Autom, 2015)

    Google Scholar 

  • F.N. Pirmoradi, L. Cheng, M. Chiao, A magnetic poly (dimethylesiloxane) composite membrane incorporated with uniformly dispersed, coated iron oxide nanoparticles. J. Micromech. Microeng. 20, 1 (2010)

    Article  Google Scholar 

  • F. Qiu, L. Zhang, K.E. Peyer, M. Casarosa, A. Franco-Obregón, H. Choi, B.J. Nelson, Noncytotoxic artificial bacterial flagella fabricated from biocompatible ORMOCOMP and iron coating. J. Mater. Chem. B. 2(4) (2014a)

  • T. Qiu, T. Lee, A.G. Mark, K.I. Morozov, R. Münster, O. Mierka, A.M.L. St. Turek, P. Fischer, Swimming by reciprocal motion at low Reynolds number. Nature communications. 5, 5119 (2014b)

    Article  Google Scholar 

  • L. Ricotti, A. Menciassi, Nanotechnology in biorobotics: opportunities and challenges. J. Nanoparticle Res. 17, 2 (2015)

    Article  Google Scholar 

  • L. Ricotti, T. Ranzani, V. Calarota, A. Menciassi, Thin and flexible pressure/deformation sensors based on piezoelectric nanocomposites (In Proc, IEEE Sensors, 2014)

    Book  Google Scholar 

  • L. Ricotti, A. Cafarelli, V. Iacovacci, L. Vannozzi, A. Menciassi, Advanced micro-nano-bio systems for future targeted therapies. Curr. Nanosci. 11, 2 (2015)

    Article  Google Scholar 

  • M.M. Said, J. Yunas, B.Y. Majlis, B. Bais, and A.A. Hamzah, Design and optimization of magnetic particles embedded in PDMS membrane. In IEEE Micro and Nanoelectronics (RSM) (2013).

  • M. Sitti, Microscale and nanoscale robotics systems [grand challenges of robotics]. IEEE Robot. Autom. Mag. 14, 1 (2007)

    Article  Google Scholar 

  • B. Ślusarek, I. Dudzikowski, Application of permanent magnets made from NdFeB powder and from mixtures of powders in DC motors. J. Magn. Magn. Mater. 239, 1 (2002)

    Article  Google Scholar 

  • M. Suter, L. Zhang, E.C. Siringil, C. Peters, T. Luehmann, O. Ergeneman, C. Hierold, Superparamagnetic microrobots: fabrication by two-photon polymerization and biocompatibility. Biomed. Microdev. 15, 6 (2013)

    Article  Google Scholar 

  • F. Ullrich, C. Bergeles, J. Pokki, O. Ergeneman, S. Erni, G. Chatzipirpiridis, B.J. Nelson, Mobility experiments with microrobots for minimally invasive intraocular SurgeryMicrorobot experiments for intraocular surgery. Invest. Ophthalmol. Vis. Sci. 54, 4 (2013)

    Article  Google Scholar 

  • V. Valdiglesias, G. Kiliç, C. Costa, N. Fernández-Bertólez, E. Pásaro, J.P. Teixeira, B. Laffon, Effects of iron oxide nanoparticles: cytotoxicity, genotoxicity, developmental toxicity, and neurotoxicity. Environ. Mol. Mutagen. 56, 2 (2015)

    Article  Google Scholar 

  • L. Vannozzi, L. Ricotti, M. Cianchetti, C. Bearzi, C. Gargioli, R. Rizzi, P. Dario, A. Menciassi, Self-assembly of polydimethylsiloxane structures from 2D to 3D for bio-hybrid actuation. Bioinspir. Biomim. 10, 5 (2015)

    Article  Google Scholar 

  • K. Vollmers, D.R. Frutiger, B.E. Kratochvil, B.J. Nelson, Wireless resonant magnetic microactuator for untethered mobile microrobots. Appl. Phys. Lett. 92, 14 (2008)

    Article  Google Scholar 

  • H. Wörn, J. Seyfried, A. Buerkle, and F. Schmoeckel, Flexible microrobots for micro assembly tasks, In Proc. IEEE Int. Symp. Micromech..Human Sci. (2000).

  • S. Yim, M. Sitti, Design and rolling locomotion of a magnetically actuated soft capsule endoscope. IEEE Trans. Robot. 28, 1 (2012)

    Article  Google Scholar 

  • L. Zhang, J.J. Abbott, L. Dong, B.E. Kratochvil, D. Bell, B.J. Nelson, Artificial bacterial flagella: fabrication and magnetic control. Appl. Phys. Lett. 94, 6 (2009)

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Francesca Pignatelli for her support in sample magnetization. This work was supported in part by the GeT Small project (TarGeted Therapy at Small Scale), funded by the Scuola Superiore di Studi Universitari e di Perfezionamento Sant’Anna (Pisa, Italy) and by the Italian MIUR FIRB project “RINAME” (RBAP114AMK). The authors would also like to thank the Fondazione Cassa di Risparmio di Lucca (Lucca, Italy), for providing financial support for this study, in the framework of the SUAVES project (Artificial Urinary System based on bladder and sphincter endoprostheses).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Ricotti.

Additional information

V. Iacovacci and G. Lucarini equally contributed to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iacovacci, V., Lucarini, G., Innocenti, C. et al. Polydimethylsiloxane films doped with NdFeB powder: magnetic characterization and potential applications in biomedical engineering and microrobotics . Biomed Microdevices 17, 112 (2015). https://doi.org/10.1007/s10544-015-0024-0

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-015-0024-0

Keywords

Navigation