Skip to main content
Erschienen in: Brain Topography 3-4/2009

01.05.2009 | Original Paper

Time-Window-of-Integration (TWIN) Model for Saccadic Reaction Time: Effect of Auditory Masker Level on Visual–Auditory Spatial Interaction in Elevation

verfasst von: Hans Colonius, Adele Diederich, Rike Steenken

Erschienen in: Brain Topography | Ausgabe 3-4/2009

Einloggen, um Zugang zu erhalten

Abstract

Saccadic reaction time (SRT) to a visual target tends to be shorter when auditory stimuli are presented in close temporal and spatial proximity, even when subjects are instructed to ignore the auditory non-target (focused attention paradigm). Previous studies using pairs of visual and auditory stimuli differing in both azimuth and vertical position suggest that the amount of SRT facilitation decreases not with the physical but with the perceivable distance between visual target and auditory non-target. Steenken et al. (Brain Res 1220:150–156, 2008) presented an additional white-noise masker background of three seconds duration. Increasing the masker level had a diametrical effect on SRTs in spatially coincident versus disparate stimulus configurations: saccadic responses to coincident visual–auditory stimuli are slowed down, whereas saccadic responses to disparate stimuli are speeded up. Here we show that the time-window-of-integration model accounts for this observation by variation of a perceivable-distance parameter in the second stage of the model whose value does not depend on stimulus onset asynchrony between target and non-target.
Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
For a statistical treatment of this issue (confidence intervals), a non-parametric bootstrap method seems indicated and is planned in future work.
 
Literatur
Zurück zum Zitat Bell AH, Corneil BD, Meredith MA, Munoz DP (2001) The influence of stimulus properties on multisensory processing in the awake primate superior colliculus. Can J Exp Psychol 55:123–132PubMed Bell AH, Corneil BD, Meredith MA, Munoz DP (2001) The influence of stimulus properties on multisensory processing in the awake primate superior colliculus. Can J Exp Psychol 55:123–132PubMed
Zurück zum Zitat Bell AH, Meredith A, Van Opstal AJ, Munoz DP (2005) Crossmodal integration in the primate superior colliculus underlying the preparation and initiation of saccadic eye movements. J Neurophysiol 93:3659–3673PubMedCrossRef Bell AH, Meredith A, Van Opstal AJ, Munoz DP (2005) Crossmodal integration in the primate superior colliculus underlying the preparation and initiation of saccadic eye movements. J Neurophysiol 93:3659–3673PubMedCrossRef
Zurück zum Zitat Bell AH, Meredith MA, Van Opstal AJ, Munoz DP (2006) Stimulus intensity modifies saccadic reaction time and visual response latency in the superior colliculus. Exp Brain Res 174(1):53–9PubMedCrossRef Bell AH, Meredith MA, Van Opstal AJ, Munoz DP (2006) Stimulus intensity modifies saccadic reaction time and visual response latency in the superior colliculus. Exp Brain Res 174(1):53–9PubMedCrossRef
Zurück zum Zitat Blauert J (1997) The psychophysics of human sound localization 2nd edn. MIT Press, Cambridge Blauert J (1997) The psychophysics of human sound localization 2nd edn. MIT Press, Cambridge
Zurück zum Zitat Colonius H, Arndt P (2001) A two-stage model for visual–auditory interaction in saccadic latencies. Percept Psychophys 63:126–147PubMed Colonius H, Arndt P (2001) A two-stage model for visual–auditory interaction in saccadic latencies. Percept Psychophys 63:126–147PubMed
Zurück zum Zitat Colonius H, Diederich A (2004) Multisensory interaction in saccadic reaction time: a time-window-of-integration model. J Cogn Neurosci 16:1000–1009PubMedCrossRef Colonius H, Diederich A (2004) Multisensory interaction in saccadic reaction time: a time-window-of-integration model. J Cogn Neurosci 16:1000–1009PubMedCrossRef
Zurück zum Zitat Corneil BD, Munoz DP (1996) The influence of auditory and visual distractors on human orienting gaze shifts. J Neurosci 16:8193–8207PubMed Corneil BD, Munoz DP (1996) The influence of auditory and visual distractors on human orienting gaze shifts. J Neurosci 16:8193–8207PubMed
Zurück zum Zitat Diederich A, Colonius H (2004) Modeling the time course of multisensory interaction in manual and saccadic responses. In: Calvert G, Spence C, Stein BE (eds) Handbook of multisensory processes. MIT Press, Cambridge Diederich A, Colonius H (2004) Modeling the time course of multisensory interaction in manual and saccadic responses. In: Calvert G, Spence C, Stein BE (eds) Handbook of multisensory processes. MIT Press, Cambridge
Zurück zum Zitat Diederich A, Colonius H (2007a) Why two “distractors” are better than one: modeling the effect of nontarget auditory and tactile stimuli on visual saccadic reaction time. Exp Brain Res 179:43–54PubMedCrossRef Diederich A, Colonius H (2007a) Why two “distractors” are better than one: modeling the effect of nontarget auditory and tactile stimuli on visual saccadic reaction time. Exp Brain Res 179:43–54PubMedCrossRef
Zurück zum Zitat Diederich A, Colonius H (2007b) Modeling spatial effects in visual-tactile saccadic reaction time. Percept Psychophys 69(1):56–67PubMed Diederich A, Colonius H (2007b) Modeling spatial effects in visual-tactile saccadic reaction time. Percept Psychophys 69(1):56–67PubMed
Zurück zum Zitat Diederich A, Colonius H (2008a) Crossmodal interaction in saccadic reaction time: separating multisensory from warning effects in the time window of integration model. Exp Brain Res 186:1-22PubMedCrossRef Diederich A, Colonius H (2008a) Crossmodal interaction in saccadic reaction time: separating multisensory from warning effects in the time window of integration model. Exp Brain Res 186:1-22PubMedCrossRef
Zurück zum Zitat Diederich A, Colonius H (2008b). When a high-intensity “distractor” is better then a low-intensity one: modeling the effect of an auditory or tactile nontarget stimulus on visual saccadic reaction time. Brain Res 1242:219–230PubMedCrossRef Diederich A, Colonius H (2008b). When a high-intensity “distractor” is better then a low-intensity one: modeling the effect of an auditory or tactile nontarget stimulus on visual saccadic reaction time. Brain Res 1242:219–230PubMedCrossRef
Zurück zum Zitat Diederich A, Colonius H, Schomburg A (2008) Assessing age-related multisensory enhancement with the time-window-of-integration model. Neuropsychologia 46:2556–2562PubMedCrossRef Diederich A, Colonius H, Schomburg A (2008) Assessing age-related multisensory enhancement with the time-window-of-integration model. Neuropsychologia 46:2556–2562PubMedCrossRef
Zurück zum Zitat Frens MA, van Opstal (1998) Visual–auditory interactions modulate saccade-related activity in monkey superior colliculus. Brain Res Bull 46:211–224PubMedCrossRef Frens MA, van Opstal (1998) Visual–auditory interactions modulate saccade-related activity in monkey superior colliculus. Brain Res Bull 46:211–224PubMedCrossRef
Zurück zum Zitat Frens MA, Van Opstal AJ, Van der Willigen RF (1995) Spatial and temporal factors determine auditory–visual interactions in human saccadic eye movements. Percept Psychophys 57:802–816PubMed Frens MA, Van Opstal AJ, Van der Willigen RF (1995) Spatial and temporal factors determine auditory–visual interactions in human saccadic eye movements. Percept Psychophys 57:802–816PubMed
Zurück zum Zitat Good MD, Gilkey RH (1996) Sound localization in noise: the effect of signal-to-noise ratio. J Acoust Soc Am 99:1108–1117PubMedCrossRef Good MD, Gilkey RH (1996) Sound localization in noise: the effect of signal-to-noise ratio. J Acoust Soc Am 99:1108–1117PubMedCrossRef
Zurück zum Zitat Harrington LK, Peck CK (1998) Spatial disparity affects visual–auditory interactions in human sensorimotor processing. Exp Brain Res 122:247–252PubMedCrossRef Harrington LK, Peck CK (1998) Spatial disparity affects visual–auditory interactions in human sensorimotor processing. Exp Brain Res 122:247–252PubMedCrossRef
Zurück zum Zitat Heuermann H, Colonius H (2001) Spatial and temporal factors in visual–auditory interaction. In: Sommerfeld E, Kompass R, Lachmann T (eds) Proceedings of the 17th meeting of the international society for psychophysics. Pabst Science, Lengerich, pp 118–123 Heuermann H, Colonius H (2001) Spatial and temporal factors in visual–auditory interaction. In: Sommerfeld E, Kompass R, Lachmann T (eds) Proceedings of the 17th meeting of the international society for psychophysics. Pabst Science, Lengerich, pp 118–123
Zurück zum Zitat Hughes HC, Reuter-Lorenz PA, Nozawa G, Fendrich R (1994) Visual–auditory interactions in sensorimotor processing: saccades versus manual responses. J Exp Psychol Hum Percept Perform 20: 131–153PubMedCrossRef Hughes HC, Reuter-Lorenz PA, Nozawa G, Fendrich R (1994) Visual–auditory interactions in sensorimotor processing: saccades versus manual responses. J Exp Psychol Hum Percept Perform 20: 131–153PubMedCrossRef
Zurück zum Zitat Hughes HC, Nelson MD, Aronchick DM (1998) Spatial characteristics of visual–auditory summation in human saccades. Vis Res 38:3955–3963PubMedCrossRef Hughes HC, Nelson MD, Aronchick DM (1998) Spatial characteristics of visual–auditory summation in human saccades. Vis Res 38:3955–3963PubMedCrossRef
Zurück zum Zitat Kadunce DC, Vaughan JW, Wallace MT, Benedek G, Stein BE (1997) Mechanisms of within- and cross-modality suppression in the superior colliculus. J Neurophysiol 78:2834–2847PubMed Kadunce DC, Vaughan JW, Wallace MT, Benedek G, Stein BE (1997) Mechanisms of within- and cross-modality suppression in the superior colliculus. J Neurophysiol 78:2834–2847PubMed
Zurück zum Zitat King AJ, Palmer AR (1985) Integration of visual and auditory information in bimodal neurones in the guinea-pig superior colliculus. Exp Brain Res 60:492–500PubMedCrossRef King AJ, Palmer AR (1985) Integration of visual and auditory information in bimodal neurones in the guinea-pig superior colliculus. Exp Brain Res 60:492–500PubMedCrossRef
Zurück zum Zitat Lewald J, Guski R (2003) Cross-modal perceptual integration of spatially and temporally disparate auditory and visual stimuli. Cogn Brain Res 16:468–478CrossRef Lewald J, Guski R (2003) Cross-modal perceptual integration of spatially and temporally disparate auditory and visual stimuli. Cogn Brain Res 16:468–478CrossRef
Zurück zum Zitat Lorenzi C, Gatehouse S, Lever C (1999) Sound localization in normal-hearing listeners. J Acoust Soc Am 99:1810–1820CrossRef Lorenzi C, Gatehouse S, Lever C (1999) Sound localization in normal-hearing listeners. J Acoust Soc Am 99:1810–1820CrossRef
Zurück zum Zitat Lueck CJ, Crawford TJ, Savage CJ, Kennard C (1990) Auditory–visual interaction in the generation of saccades in man. Exp Brain Res 82:149–157PubMed Lueck CJ, Crawford TJ, Savage CJ, Kennard C (1990) Auditory–visual interaction in the generation of saccades in man. Exp Brain Res 82:149–157PubMed
Zurück zum Zitat Ma WJ, Pouget A (2008) Linking neurons to behavior in multisensory perception: a computaitonal review. Brain Res 1242:4–12PubMedCrossRef Ma WJ, Pouget A (2008) Linking neurons to behavior in multisensory perception: a computaitonal review. Brain Res 1242:4–12PubMedCrossRef
Zurück zum Zitat McIlwain JT (1986) Effect of eye position on saccades evoked electrically from superior colliculus of alert cats. J Neurophysiol 55:97–112PubMed McIlwain JT (1986) Effect of eye position on saccades evoked electrically from superior colliculus of alert cats. J Neurophysiol 55:97–112PubMed
Zurück zum Zitat Meredith MA, Nemitz JW, Stein BE (1987) Determinants of multisensory integration in superior colliculus neurons. I. Temporal factors. J Neurosci 10:3215–3229 Meredith MA, Nemitz JW, Stein BE (1987) Determinants of multisensory integration in superior colliculus neurons. I. Temporal factors. J Neurosci 10:3215–3229
Zurück zum Zitat Meredith MA, Stein BE (1986) Visual, auditory, and somatosensory convergence on cells in superior colliculus results in multisensory integration. J Neurophysiol 56:640–662PubMed Meredith MA, Stein BE (1986) Visual, auditory, and somatosensory convergence on cells in superior colliculus results in multisensory integration. J Neurophysiol 56:640–662PubMed
Zurück zum Zitat Meredith MA, Stein BE (1996) Spatial determinants of multisensory integration in cat superior colliculus neurons. J Neurophysiol 75:1843–1857PubMed Meredith MA, Stein BE (1996) Spatial determinants of multisensory integration in cat superior colliculus neurons. J Neurophysiol 75:1843–1857PubMed
Zurück zum Zitat Middlebrooks JC, Knudsen EI (1984) A neural code for auditory space in the cat’s superior colliculus. J Neurosci 4:2621–2634PubMed Middlebrooks JC, Knudsen EI (1984) A neural code for auditory space in the cat’s superior colliculus. J Neurosci 4:2621–2634PubMed
Zurück zum Zitat Miller J (1982) Divided attention: evidence for coactivation with redundant signals. Cogn Psychol 14:247–279PubMedCrossRef Miller J (1982) Divided attention: evidence for coactivation with redundant signals. Cogn Psychol 14:247–279PubMedCrossRef
Zurück zum Zitat Morein-Zamir S, Soto-Faraco S, Kingstone A (2003) Auditory capture of vision: examining temporal ventriloquism. Cogn Brain Res 17:154–163CrossRef Morein-Zamir S, Soto-Faraco S, Kingstone A (2003) Auditory capture of vision: examining temporal ventriloquism. Cogn Brain Res 17:154–163CrossRef
Zurück zum Zitat Munoz DP, Fecteau JH (2002) Vying for dominance: dynamic interactions control visual fixation and saccadic initiation in the superior colliculus. Prog Brain Res 140:3–19PubMedCrossRef Munoz DP, Fecteau JH (2002) Vying for dominance: dynamic interactions control visual fixation and saccadic initiation in the superior colliculus. Prog Brain Res 140:3–19PubMedCrossRef
Zurück zum Zitat Munoz DP, Schall JD (2004) Concurrent, distributed control of saccade initiation in the frontal eye field and superior colliculus. In: Hall WC, Moschovakis A (eds) The superior colliculus: new approaches for studying sensorimotor integration. CRC Press, Boca Raton, pp 55–82 Munoz DP, Schall JD (2004) Concurrent, distributed control of saccade initiation in the frontal eye field and superior colliculus. In: Hall WC, Moschovakis A (eds) The superior colliculus: new approaches for studying sensorimotor integration. CRC Press, Boca Raton, pp 55–82
Zurück zum Zitat Populin LC, Yin TC (2002) Bimodal interactions in the superior colliculus of the behaving cat. J Neurosci 22:2826–2834PubMed Populin LC, Yin TC (2002) Bimodal interactions in the superior colliculus of the behaving cat. J Neurosci 22:2826–2834PubMed
Zurück zum Zitat Raab DH (1962) Statistical facilitation of simple reaction times. Trans N Y Acad Sci 24:574–590PubMed Raab DH (1962) Statistical facilitation of simple reaction times. Trans N Y Acad Sci 24:574–590PubMed
Zurück zum Zitat Rowland BA, Quessy S, Stanford TR, Stein BE (2007) Multisensory integration shortens physiological response latencies. J Neurosci 27(22):5879–5884PubMedCrossRef Rowland BA, Quessy S, Stanford TR, Stein BE (2007) Multisensory integration shortens physiological response latencies. J Neurosci 27(22):5879–5884PubMedCrossRef
Zurück zum Zitat Sparks DL (1999) Conceptual issues related to the role of the superior colliculus in the control of gaze. Curr Opin Neurobiol 9:698–707PubMedCrossRef Sparks DL (1999) Conceptual issues related to the role of the superior colliculus in the control of gaze. Curr Opin Neurobiol 9:698–707PubMedCrossRef
Zurück zum Zitat Sparks DL, Freedman EG, Chen LL, Gandhi NJ (2001) Cortical and subcortical contributions to coordinated eye and head movements. Vis Res 41:3295–3305PubMedCrossRef Sparks DL, Freedman EG, Chen LL, Gandhi NJ (2001) Cortical and subcortical contributions to coordinated eye and head movements. Vis Res 41:3295–3305PubMedCrossRef
Zurück zum Zitat Spence C, Squire S (2003) Multisensory integration: maintaining the perception of synchrony. Curr Biol 13:R519–R521PubMedCrossRef Spence C, Squire S (2003) Multisensory integration: maintaining the perception of synchrony. Curr Biol 13:R519–R521PubMedCrossRef
Zurück zum Zitat Steenken R, Colonius H, Diederich A, Rach S (2008) Visual–auditory interaction in saccadic reaction time: effects of auditory masker level. Brain Res 1220:150–156PubMedCrossRef Steenken R, Colonius H, Diederich A, Rach S (2008) Visual–auditory interaction in saccadic reaction time: effects of auditory masker level. Brain Res 1220:150–156PubMedCrossRef
Zurück zum Zitat Stein BE (1998) Neural mechanisms for synthesizing sensory information and producing adaptive behavior. Exp Brain Res 123: 124–135PubMedCrossRef Stein BE (1998) Neural mechanisms for synthesizing sensory information and producing adaptive behavior. Exp Brain Res 123: 124–135PubMedCrossRef
Zurück zum Zitat Stein BE, Meredith MA (1993) The merging of the senses. The MIT Press, Cambridge Stein BE, Meredith MA (1993) The merging of the senses. The MIT Press, Cambridge
Zurück zum Zitat van Atteveldt NM, Formisano E, Blomert L, Goebel R (2007) The effect of temporal asynchrony on the multisensory integration of letters and speech sounds. Cereb Cortex 17(4):962–974PubMedCrossRef van Atteveldt NM, Formisano E, Blomert L, Goebel R (2007) The effect of temporal asynchrony on the multisensory integration of letters and speech sounds. Cereb Cortex 17(4):962–974PubMedCrossRef
Zurück zum Zitat Van Opstal AJ, Munoz DP (2004) Auditory–visual interactions subserving primate gaze orienting. In: Calvert G, Spence C, Stein BE (eds) Handbook of multisensory processes, Cambridge, MIT Press, pp 373–393 Van Opstal AJ, Munoz DP (2004) Auditory–visual interactions subserving primate gaze orienting. In: Calvert G, Spence C, Stein BE (eds) Handbook of multisensory processes, Cambridge, MIT Press, pp 373–393
Zurück zum Zitat Wallace MT, Wilkinson LK, Stein BE (1996) Representation and integration of multiple sensory inputs in primate superior colliculus. J Neurophysiol 76:1246–1266PubMed Wallace MT, Wilkinson LK, Stein BE (1996) Representation and integration of multiple sensory inputs in primate superior colliculus. J Neurophysiol 76:1246–1266PubMed
Zurück zum Zitat Whitchurch EA, Takahashi TT (2006) Combined auditory and visual stimuli facilitate head saccades in the barn owl (Tyto alba). J Neurophysiol 96:730–745PubMedCrossRef Whitchurch EA, Takahashi TT (2006) Combined auditory and visual stimuli facilitate head saccades in the barn owl (Tyto alba). J Neurophysiol 96:730–745PubMedCrossRef
Zurück zum Zitat Wightman FL, Kistler DJ (1989) Headphone simulation of free field listening I: stimulus synthesis. J Acoust Soc Am 85:858–867PubMedCrossRef Wightman FL, Kistler DJ (1989) Headphone simulation of free field listening I: stimulus synthesis. J Acoust Soc Am 85:858–867PubMedCrossRef
Metadaten
Titel
Time-Window-of-Integration (TWIN) Model for Saccadic Reaction Time: Effect of Auditory Masker Level on Visual–Auditory Spatial Interaction in Elevation
verfasst von
Hans Colonius
Adele Diederich
Rike Steenken
Publikationsdatum
01.05.2009
Verlag
Springer US
Erschienen in
Brain Topography / Ausgabe 3-4/2009
Print ISSN: 0896-0267
Elektronische ISSN: 1573-6792
DOI
https://doi.org/10.1007/s10548-009-0091-8

Weitere Artikel der Ausgabe 3-4/2009

Brain Topography 3-4/2009 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.