Skip to main content
Erschienen in: Brain Topography 2/2013

01.04.2013 | Original Paper

Processing of Coherent Visual Motion in Topographically Organized Visual Areas in Human Cerebral Cortex

verfasst von: Randolph F. Helfrich, Hubertus G.T. Becker, Thomas Haarmeier

Erschienen in: Brain Topography | Ausgabe 2/2013

Einloggen, um Zugang zu erhalten

Abstract

Recent imaging studies in human subjects have demonstrated representations of global visual motion in medial parieto-occipital cortex (area V6) and posterior parietal cortex, the latter containing at least seven topographically organized areas along the intraparietal sulcus (IPS0–IPS5, SPL1). In this fMRI study we used topographic mapping procedures to delineate a total of 18 visual areas in human cerebral cortex and tested their responsiveness to coherent visual motion under conditions of controlled attention and fixation. Preferences for coherent visual motion as compared to motion noise as well as hemispheric asymmetries were assessed for contralateral, ipsilateral, and bilateral visual motion presentations. Except for areas V1–V4 and IPS3-5, all other areas showed stronger responses to coherent motion with the most significant activations found in V6, followed by MT/MST, V3A, IPS0-2 and SPL1. Hemispheric differences were negligible altogether suggesting that asymmetries in parietal cortex observed in cognitive tasks do not reflect differences in basic visual response properties. Interestingly, areas V6, MST, V3A, and areas along the intraparietal sulcus showed specific representations of coherent visual motion not only when presented in the hemifield primarily covered by the given visual representation but also when presented in the ipsilateral visual field. This finding suggests that coherent motion induces a switch in spatial representation in specialized motion areas from contralateral to full-field coding.
Literatur
Zurück zum Zitat Allman JM, Kaas JH (1971) Representation of the visual field in striate and adjoining cortex of the owl monkey (Aotus trivirgatus). Brain Res 35(1):89–106CrossRefPubMed Allman JM, Kaas JH (1971) Representation of the visual field in striate and adjoining cortex of the owl monkey (Aotus trivirgatus). Brain Res 35(1):89–106CrossRefPubMed
Zurück zum Zitat Amano K, Wandell BA, Dumoulin SO (2009) Visual field maps, population receptive field sizes, and visual field coverage in the human MT+ complex. J Neurophysiol 102(5):2704–2718CrossRefPubMed Amano K, Wandell BA, Dumoulin SO (2009) Visual field maps, population receptive field sizes, and visual field coverage in the human MT+ complex. J Neurophysiol 102(5):2704–2718CrossRefPubMed
Zurück zum Zitat Andersen RA (1989) Visual and eye movement functions of the posterior parietal cortex. Annu Rev Neurosci 12:377–403CrossRefPubMed Andersen RA (1989) Visual and eye movement functions of the posterior parietal cortex. Annu Rev Neurosci 12:377–403CrossRefPubMed
Zurück zum Zitat Astafiev SV, Shulman GL, Stanley CM, Snyder AZ, Van Essen DC, Corbetta M (2003) Functional organization of human intraparietal and frontal cortex for attending, looking, and pointing. J Neurosci 23(11):4689–4699PubMed Astafiev SV, Shulman GL, Stanley CM, Snyder AZ, Van Essen DC, Corbetta M (2003) Functional organization of human intraparietal and frontal cortex for attending, looking, and pointing. J Neurosci 23(11):4689–4699PubMed
Zurück zum Zitat Becker HG, Erb M, Haarmeier T (2008) Differential dependency on motion coherence in subregions of the human MT+ complex. Eur J Neurosci 28(8):1674–1685CrossRefPubMed Becker HG, Erb M, Haarmeier T (2008) Differential dependency on motion coherence in subregions of the human MT+ complex. Eur J Neurosci 28(8):1674–1685CrossRefPubMed
Zurück zum Zitat Born RT, Bradley DC (2005) Structure and function of visual area MT. Annu Rev Neurosci 28:157–189CrossRefPubMed Born RT, Bradley DC (2005) Structure and function of visual area MT. Annu Rev Neurosci 28:157–189CrossRefPubMed
Zurück zum Zitat Braddick OJ, O’Brien JM, Wattam-Bell J, Atkinson J, Hartley T, Turner R (2001) Brain areas sensitive to coherent visual motion. Perception 30(1):61–72CrossRefPubMed Braddick OJ, O’Brien JM, Wattam-Bell J, Atkinson J, Hartley T, Turner R (2001) Brain areas sensitive to coherent visual motion. Perception 30(1):61–72CrossRefPubMed
Zurück zum Zitat Brandt T, Bartenstein P, Janek A, Dieterich M (1998) Reciprocal inhibitory visual-vestibular interaction. Visual motion stimulation deactivates the parieto-insular vestibular cortex. Brain 121(Pt 9):1749–1758CrossRefPubMed Brandt T, Bartenstein P, Janek A, Dieterich M (1998) Reciprocal inhibitory visual-vestibular interaction. Visual motion stimulation deactivates the parieto-insular vestibular cortex. Brain 121(Pt 9):1749–1758CrossRefPubMed
Zurück zum Zitat Bremmer F, Schlack A, Shah NJ, Zafiris O, Kubischik M, Hoffmann K, Zilles K, Fink GR (2001) Polymodal motion processing in posterior parietal and premotor cortex: a human fMRI study strongly implies equivalencies between humans and monkeys. Neuron 29(1):287–296CrossRefPubMed Bremmer F, Schlack A, Shah NJ, Zafiris O, Kubischik M, Hoffmann K, Zilles K, Fink GR (2001) Polymodal motion processing in posterior parietal and premotor cortex: a human fMRI study strongly implies equivalencies between humans and monkeys. Neuron 29(1):287–296CrossRefPubMed
Zurück zum Zitat Cardin V, Smith AT (2010) Sensitivity of human visual and vestibular cortical regions to egomotion-compatible visual stimulation. Cereb Cortex 20(8):1964–1973CrossRefPubMed Cardin V, Smith AT (2010) Sensitivity of human visual and vestibular cortical regions to egomotion-compatible visual stimulation. Cereb Cortex 20(8):1964–1973CrossRefPubMed
Zurück zum Zitat Cavada C (2001) The visual parietal areas in the macaque monkey: current structural knowledge and ignorance. Neuroimage 14(1 Pt 2):S21–S26CrossRefPubMed Cavada C (2001) The visual parietal areas in the macaque monkey: current structural knowledge and ignorance. Neuroimage 14(1 Pt 2):S21–S26CrossRefPubMed
Zurück zum Zitat Cohen J (1988) Statistical power analysis for the behavioral sciences, 2nd edn. Erlbaum, Hillsdale Cohen J (1988) Statistical power analysis for the behavioral sciences, 2nd edn. Erlbaum, Hillsdale
Zurück zum Zitat Colby CL, Duhamel JR, Goldberg ME (1993) The analysis of visual space by the lateral intraparietal area of the monkey: the role of extraretinal signals. Prog Brain Res 95:307–316CrossRefPubMed Colby CL, Duhamel JR, Goldberg ME (1993) The analysis of visual space by the lateral intraparietal area of the monkey: the role of extraretinal signals. Prog Brain Res 95:307–316CrossRefPubMed
Zurück zum Zitat Deichmann R, Schwarzbauer C, Turner R (2004) Optimisation of the 3D MDEFT sequence for anatomical brain imaging: technical implications at 1.5 and 3 T. Neuroimage 21(2):757–767CrossRefPubMed Deichmann R, Schwarzbauer C, Turner R (2004) Optimisation of the 3D MDEFT sequence for anatomical brain imaging: technical implications at 1.5 and 3 T. Neuroimage 21(2):757–767CrossRefPubMed
Zurück zum Zitat Desimone R, Ungerleider LG (1986) Multiple visual areas in the caudal superior temporal sulcus of the macaque. J Comp Neurol 248(2):164–189CrossRefPubMed Desimone R, Ungerleider LG (1986) Multiple visual areas in the caudal superior temporal sulcus of the macaque. J Comp Neurol 248(2):164–189CrossRefPubMed
Zurück zum Zitat DeYoe EA, Carman GJ, Bandettini P, Glickman S, Wieser J, Cox R, Miller D, Neitz J (1996) Mapping striate and extrastriate visual areas in human cerebral cortex. Proc Natl Acad Sci USA 93(6):2382–2386CrossRefPubMed DeYoe EA, Carman GJ, Bandettini P, Glickman S, Wieser J, Cox R, Miller D, Neitz J (1996) Mapping striate and extrastriate visual areas in human cerebral cortex. Proc Natl Acad Sci USA 93(6):2382–2386CrossRefPubMed
Zurück zum Zitat Dubner R, Zeki SM (1971) Response properties and receptive fields of cells in an anatomically defined region of the superior temporal sulcus in the monkey. Brain Res 35(2):528–532CrossRefPubMed Dubner R, Zeki SM (1971) Response properties and receptive fields of cells in an anatomically defined region of the superior temporal sulcus in the monkey. Brain Res 35(2):528–532CrossRefPubMed
Zurück zum Zitat Duhamel JR, Colby CL, Goldberg ME (1998) Ventral intraparietal area of the macaque: congruent visual and somatic response properties. J Neurophysiol 79(1):126–136PubMed Duhamel JR, Colby CL, Goldberg ME (1998) Ventral intraparietal area of the macaque: congruent visual and somatic response properties. J Neurophysiol 79(1):126–136PubMed
Zurück zum Zitat Dukelow SP, DeSouza JF, Culham JC, van den Berg AV, Menon RS, Vilis T (2001) Distinguishing subregions of the human MT+ complex using visual fields and pursuit eye movements. J Neurophysiol 86(4):1991–2000PubMed Dukelow SP, DeSouza JF, Culham JC, van den Berg AV, Menon RS, Vilis T (2001) Distinguishing subregions of the human MT+ complex using visual fields and pursuit eye movements. J Neurophysiol 86(4):1991–2000PubMed
Zurück zum Zitat Dumoulin SO, Bittar RG, Kabani NJ, Baker CL Jr, Le Goualher G, Bruce Pike G, Evans AC (2000) A new anatomical landmark for reliable identification of human area V5/MT: a quantitative analysis of sulcal patterning. Cereb Cortex 10(5):454–463CrossRefPubMed Dumoulin SO, Bittar RG, Kabani NJ, Baker CL Jr, Le Goualher G, Bruce Pike G, Evans AC (2000) A new anatomical landmark for reliable identification of human area V5/MT: a quantitative analysis of sulcal patterning. Cereb Cortex 10(5):454–463CrossRefPubMed
Zurück zum Zitat Engel SA, Rumelhart DE, Wandell BA, Lee AT, Glover GH, Chichilnisky EJ, Shadlen MN (1994) fMRI of human visual cortex. Nature 369(6481):525CrossRefPubMed Engel SA, Rumelhart DE, Wandell BA, Lee AT, Glover GH, Chichilnisky EJ, Shadlen MN (1994) fMRI of human visual cortex. Nature 369(6481):525CrossRefPubMed
Zurück zum Zitat Evangeliou MN, Raos V, Galletti C, Savaki HE (2009) Functional imaging of the parietal cortex during action execution and observation. Cereb Cortex 19(3):624–639CrossRefPubMed Evangeliou MN, Raos V, Galletti C, Savaki HE (2009) Functional imaging of the parietal cortex during action execution and observation. Cereb Cortex 19(3):624–639CrossRefPubMed
Zurück zum Zitat Fattori P, Galletti C, Battaglini PP (1992) Parietal neurons encoding visual space in a head-frame of reference. Boll Soc Ital Biol Sper 68(11):663–670PubMed Fattori P, Galletti C, Battaglini PP (1992) Parietal neurons encoding visual space in a head-frame of reference. Boll Soc Ital Biol Sper 68(11):663–670PubMed
Zurück zum Zitat Fattori P, Pitzalis S, Galletti C (2009) The cortical visual area V6 in macaque and human brains. J Physiol Paris 103(1–2):88–97CrossRefPubMed Fattori P, Pitzalis S, Galletti C (2009) The cortical visual area V6 in macaque and human brains. J Physiol Paris 103(1–2):88–97CrossRefPubMed
Zurück zum Zitat Fox PT, Raichle ME (1985) Stimulus rate determines regional brain blood flow in striate cortex. Ann Neurol 17(3):303–305CrossRefPubMed Fox PT, Raichle ME (1985) Stimulus rate determines regional brain blood flow in striate cortex. Ann Neurol 17(3):303–305CrossRefPubMed
Zurück zum Zitat Galletti C, Battaglini PP, Fattori P (1991) Functional properties of neurons in the anterior bank of the parieto-occipital sulcus of the macaque monkey. Eur J Neurosci 3(5):452–461CrossRefPubMed Galletti C, Battaglini PP, Fattori P (1991) Functional properties of neurons in the anterior bank of the parieto-occipital sulcus of the macaque monkey. Eur J Neurosci 3(5):452–461CrossRefPubMed
Zurück zum Zitat Galletti C, Fattori P, Battaglini PP, Shipp S, Zeki S (1996) Functional demarcation of a border between areas V6 and V6A in the superior parietal gyrus of the macaque monkey. Eur J Neurosci 8(1):30–52CrossRefPubMed Galletti C, Fattori P, Battaglini PP, Shipp S, Zeki S (1996) Functional demarcation of a border between areas V6 and V6A in the superior parietal gyrus of the macaque monkey. Eur J Neurosci 8(1):30–52CrossRefPubMed
Zurück zum Zitat Galletti C, Fattori P, Gamberini M, Kutz DF (1999a) The cortical visual area V6: brain location and visual topography. Eur J Neurosci 11(11):3922–3936CrossRefPubMed Galletti C, Fattori P, Gamberini M, Kutz DF (1999a) The cortical visual area V6: brain location and visual topography. Eur J Neurosci 11(11):3922–3936CrossRefPubMed
Zurück zum Zitat Galletti C, Fattori P, Kutz DF, Gamberini M (1999b) Brain location and visual topography of cortical area V6A in the macaque monkey. Eur J Neurosci 11(2):575–582CrossRefPubMed Galletti C, Fattori P, Kutz DF, Gamberini M (1999b) Brain location and visual topography of cortical area V6A in the macaque monkey. Eur J Neurosci 11(2):575–582CrossRefPubMed
Zurück zum Zitat Galletti C, Gamberini M, Kutz DF, Fattori P, Luppino G, Matelli M (2001) The cortical connections of area V6: an occipito-parietal network processing visual information. Eur J Neurosci 13(8):1572–1588CrossRefPubMed Galletti C, Gamberini M, Kutz DF, Fattori P, Luppino G, Matelli M (2001) The cortical connections of area V6: an occipito-parietal network processing visual information. Eur J Neurosci 13(8):1572–1588CrossRefPubMed
Zurück zum Zitat Goebel R, Khorram-Sefat D, Muckli L, Hacker H, Singer W (1998) The constructive nature of vision: direct evidence from functional magnetic resonance imaging studies of apparent motion and motion imagery. Eur J Neurosci 10(5):1563–1573CrossRefPubMed Goebel R, Khorram-Sefat D, Muckli L, Hacker H, Singer W (1998) The constructive nature of vision: direct evidence from functional magnetic resonance imaging studies of apparent motion and motion imagery. Eur J Neurosci 10(5):1563–1573CrossRefPubMed
Zurück zum Zitat Grefkes C, Fink GR (2005) The functional organization of the intraparietal sulcus in humans and monkeys. J Anat 207(1):3–17CrossRefPubMed Grefkes C, Fink GR (2005) The functional organization of the intraparietal sulcus in humans and monkeys. J Anat 207(1):3–17CrossRefPubMed
Zurück zum Zitat Haarmeier T, Kammer T (2010) Effect of TMS on oculomotor behavior but not perceptual stability during smooth pursuit eye movements. Cereb Cortex 20(9):2234–2243CrossRefPubMed Haarmeier T, Kammer T (2010) Effect of TMS on oculomotor behavior but not perceptual stability during smooth pursuit eye movements. Cereb Cortex 20(9):2234–2243CrossRefPubMed
Zurück zum Zitat Haarmeier T, Thier P (1998) An electrophysiological correlate of visual motion awareness in man. J Cogn Neurosci 10(4):464–471CrossRefPubMed Haarmeier T, Thier P (1998) An electrophysiological correlate of visual motion awareness in man. J Cogn Neurosci 10(4):464–471CrossRefPubMed
Zurück zum Zitat Hagler DJ Jr, Riecke L, Sereno MI (2007) Parietal and superior frontal visuospatial maps activated by pointing and saccades. Neuroimage 35(4):1562–1577CrossRefPubMed Hagler DJ Jr, Riecke L, Sereno MI (2007) Parietal and superior frontal visuospatial maps activated by pointing and saccades. Neuroimage 35(4):1562–1577CrossRefPubMed
Zurück zum Zitat Handel B, Lutzenberger W, Thier P, Haarmeier T (2008) Selective attention increases the dependency of cortical responses on visual motion coherence in man. Cereb Cortex 18(12):2902–2908CrossRefPubMed Handel B, Lutzenberger W, Thier P, Haarmeier T (2008) Selective attention increases the dependency of cortical responses on visual motion coherence in man. Cereb Cortex 18(12):2902–2908CrossRefPubMed
Zurück zum Zitat Heide W, Kompf D (1998) Combined deficits of saccades and visuo-spatial orientation after cortical lesions. Exp Brain Res 123(1–2):164–171CrossRefPubMed Heide W, Kompf D (1998) Combined deficits of saccades and visuo-spatial orientation after cortical lesions. Exp Brain Res 123(1–2):164–171CrossRefPubMed
Zurück zum Zitat Huk AC, Dougherty RF, Heeger DJ (2002) Retinotopy and functional subdivision of human areas MT and MST. J Neurosci 22(16):7195–7205PubMed Huk AC, Dougherty RF, Heeger DJ (2002) Retinotopy and functional subdivision of human areas MT and MST. J Neurosci 22(16):7195–7205PubMed
Zurück zum Zitat Jack AI, Patel GH, Astafiev SV, Snyder AZ, Akbudak E, Shulman GL, Corbetta M (2007) Changing human visual field organization from early visual to extra-occipital cortex. PLoS ONE 2(5):e452CrossRefPubMed Jack AI, Patel GH, Astafiev SV, Snyder AZ, Akbudak E, Shulman GL, Corbetta M (2007) Changing human visual field organization from early visual to extra-occipital cortex. PLoS ONE 2(5):e452CrossRefPubMed
Zurück zum Zitat Kaido T, Hoshida T, Taoka T, Sakaki T (2004) Retinotopy with coordinates of lateral occipital cortex in humans. J Neurosurg 101(1):114–118CrossRefPubMed Kaido T, Hoshida T, Taoka T, Sakaki T (2004) Retinotopy with coordinates of lateral occipital cortex in humans. J Neurosurg 101(1):114–118CrossRefPubMed
Zurück zum Zitat Kolster H, Peeters R, Orban GA (2010) The retinotopic organization of the human middle temporal area MT/V5 and its cortical neighbors. J Neurosci 30(29):9801–9820CrossRefPubMed Kolster H, Peeters R, Orban GA (2010) The retinotopic organization of the human middle temporal area MT/V5 and its cortical neighbors. J Neurosci 30(29):9801–9820CrossRefPubMed
Zurück zum Zitat Konen CS, Kastner S (2008) Representation of eye movements and stimulus motion in topographically organized areas of human posterior parietal cortex. J Neurosci 28(33):8361–8375CrossRefPubMed Konen CS, Kastner S (2008) Representation of eye movements and stimulus motion in topographically organized areas of human posterior parietal cortex. J Neurosci 28(33):8361–8375CrossRefPubMed
Zurück zum Zitat Kovacs G, Cziraki C, Vidnyanszky Z, Schweinberger SR, Greenlee MW (2008a) Position-specific and position-invariant face aftereffects reflect the adaptation of different cortical areas. Neuroimage 43(1):156–164CrossRefPubMed Kovacs G, Cziraki C, Vidnyanszky Z, Schweinberger SR, Greenlee MW (2008a) Position-specific and position-invariant face aftereffects reflect the adaptation of different cortical areas. Neuroimage 43(1):156–164CrossRefPubMed
Zurück zum Zitat Kovacs G, Raabe M, Greenlee MW (2008b) Neural correlates of visually induced self-motion illusion in depth. Cereb Cortex 18(8):1779–1787CrossRefPubMed Kovacs G, Raabe M, Greenlee MW (2008b) Neural correlates of visually induced self-motion illusion in depth. Cereb Cortex 18(8):1779–1787CrossRefPubMed
Zurück zum Zitat Larsson J, Heeger DJ (2006) Two retinotopic visual areas in human lateral occipital cortex. J Neurosci 26(51):13128–13142CrossRefPubMed Larsson J, Heeger DJ (2006) Two retinotopic visual areas in human lateral occipital cortex. J Neurosci 26(51):13128–13142CrossRefPubMed
Zurück zum Zitat Larsson J, Landy MS, Heeger DJ (2006) Orientation-selective adaptation to first- and second-order patterns in human visual cortex. J Neurophysiol 95(2): 862–881CrossRefPubMed Larsson J, Landy MS, Heeger DJ (2006) Orientation-selective adaptation to first- and second-order patterns in human visual cortex. J Neurophysiol 95(2): 862–881CrossRefPubMed
Zurück zum Zitat Maunsell JH, van Essen DC (1983) The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey. J Neurosci 3(12):2563–2586PubMed Maunsell JH, van Essen DC (1983) The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey. J Neurosci 3(12):2563–2586PubMed
Zurück zum Zitat McKeefry DJ, Watson JD, Frackowiak RS, Fong K, Zeki S (1997) The activity in human areas V1/V2, V3, and V5 during the perception of coherent and incoherent motion. Neuroimage 5(1):1–12CrossRefPubMed McKeefry DJ, Watson JD, Frackowiak RS, Fong K, Zeki S (1997) The activity in human areas V1/V2, V3, and V5 during the perception of coherent and incoherent motion. Neuroimage 5(1):1–12CrossRefPubMed
Zurück zum Zitat Nakamura H, Kuroda T, Wakita M, Kusunoki M, Kato A, Mikami A, Sakata H, Itoh K (2001) From three-dimensional space vision to prehensile hand movements: the lateral intraparietal area links the area V3A and the anterior intraparietal area in macaques. J Neurosci 21(20):8174–8187PubMed Nakamura H, Kuroda T, Wakita M, Kusunoki M, Kato A, Mikami A, Sakata H, Itoh K (2001) From three-dimensional space vision to prehensile hand movements: the lateral intraparietal area links the area V3A and the anterior intraparietal area in macaques. J Neurosci 21(20):8174–8187PubMed
Zurück zum Zitat Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9(1):97–113CrossRefPubMed Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9(1):97–113CrossRefPubMed
Zurück zum Zitat Orban GA, Van Essen D, Vanduffel W (2004) Comparative mapping of higher visual areas in monkeys and humans. Trends Cogn Sci 8(7):315–324CrossRefPubMed Orban GA, Van Essen D, Vanduffel W (2004) Comparative mapping of higher visual areas in monkeys and humans. Trends Cogn Sci 8(7):315–324CrossRefPubMed
Zurück zum Zitat Orban GA, Claeys K, Nelissen K, Smans R, Sunaert S, Todd JT, Wardak C, Durand JB, Vanduffel W (2006) Mapping the parietal cortex of human and non-human primates. Neuropsychologia 44(13):2647–2667CrossRefPubMed Orban GA, Claeys K, Nelissen K, Smans R, Sunaert S, Todd JT, Wardak C, Durand JB, Vanduffel W (2006) Mapping the parietal cortex of human and non-human primates. Neuropsychologia 44(13):2647–2667CrossRefPubMed
Zurück zum Zitat Pitzalis S, Galletti C, Huang RS, Patria F, Committeri G, Galati G, Fattori P, Sereno MI (2006) Wide-field retinotopy defines human cortical visual area v6. J Neurosci 26(30):7962–7973CrossRefPubMed Pitzalis S, Galletti C, Huang RS, Patria F, Committeri G, Galati G, Fattori P, Sereno MI (2006) Wide-field retinotopy defines human cortical visual area v6. J Neurosci 26(30):7962–7973CrossRefPubMed
Zurück zum Zitat Pitzalis S, Sereno MI, Committeri G, Fattori P, Galati G, Patria F, Galletti C (2010) Human v6: the medial motion area. Cereb Cortex 20(2):411–424CrossRefPubMed Pitzalis S, Sereno MI, Committeri G, Fattori P, Galati G, Patria F, Galletti C (2010) Human v6: the medial motion area. Cereb Cortex 20(2):411–424CrossRefPubMed
Zurück zum Zitat Posner MI, Petersen SE (1990) The attention system of the human brain. Annu Rev Neurosci 13:25–42CrossRefPubMed Posner MI, Petersen SE (1990) The attention system of the human brain. Annu Rev Neurosci 13:25–42CrossRefPubMed
Zurück zum Zitat Press WA, Brewer AA, Dougherty RF, Wade AR, Wandell BA (2001) Visual areas and spatial summation in human visual cortex. Vis Res 41(10–11):1321–1332CrossRefPubMed Press WA, Brewer AA, Dougherty RF, Wade AR, Wandell BA (2001) Visual areas and spatial summation in human visual cortex. Vis Res 41(10–11):1321–1332CrossRefPubMed
Zurück zum Zitat Rees G, Friston K, Koch C (2000) A direct quantitative relationship between the functional properties of human and macaque V5. Nat Neurosci 3(7):716–723CrossRefPubMed Rees G, Friston K, Koch C (2000) A direct quantitative relationship between the functional properties of human and macaque V5. Nat Neurosci 3(7):716–723CrossRefPubMed
Zurück zum Zitat Schaafsma SJ, Duysens J, Gielen CC (1997) Responses in ventral intraparietal area of awake macaque monkey to optic flow patterns corresponding to rotation of planes in depth can be explained by translation and expansion effects. Vis Neurosci 14(4):633–646CrossRefPubMed Schaafsma SJ, Duysens J, Gielen CC (1997) Responses in ventral intraparietal area of awake macaque monkey to optic flow patterns corresponding to rotation of planes in depth can be explained by translation and expansion effects. Vis Neurosci 14(4):633–646CrossRefPubMed
Zurück zum Zitat Schlack A, Hoffmann KP, Bremmer F (2003) Selectivity of macaque ventral intraparietal area (area VIP) for smooth pursuit eye movements. J Physiol 551(Pt 2):551–561CrossRefPubMed Schlack A, Hoffmann KP, Bremmer F (2003) Selectivity of macaque ventral intraparietal area (area VIP) for smooth pursuit eye movements. J Physiol 551(Pt 2):551–561CrossRefPubMed
Zurück zum Zitat Schluppeck D, Glimcher P, Heeger DJ (2005) Topographic organization for delayed saccades in human posterior parietal cortex. J Neurophysiol 94(2):1372–1384CrossRefPubMed Schluppeck D, Glimcher P, Heeger DJ (2005) Topographic organization for delayed saccades in human posterior parietal cortex. J Neurophysiol 94(2):1372–1384CrossRefPubMed
Zurück zum Zitat Schluppeck D, Curtis CE, Glimcher PW, Heeger DJ (2006) Sustained activity in topographic areas of human posterior parietal cortex during memory-guided saccades. J Neurosci 26(19):5098–5108CrossRefPubMed Schluppeck D, Curtis CE, Glimcher PW, Heeger DJ (2006) Sustained activity in topographic areas of human posterior parietal cortex during memory-guided saccades. J Neurosci 26(19):5098–5108CrossRefPubMed
Zurück zum Zitat Sereno MI, Huang RS (2006) A human parietal face area contains aligned head-centered visual and tactile maps. Nat Neurosci 9(10):1337–1343CrossRefPubMed Sereno MI, Huang RS (2006) A human parietal face area contains aligned head-centered visual and tactile maps. Nat Neurosci 9(10):1337–1343CrossRefPubMed
Zurück zum Zitat Sereno MI, Tootell RB (2005) From monkeys to humans: what do we now know about brain homologies? Curr Opin Neurobiol 15(2):135–144CrossRefPubMed Sereno MI, Tootell RB (2005) From monkeys to humans: what do we now know about brain homologies? Curr Opin Neurobiol 15(2):135–144CrossRefPubMed
Zurück zum Zitat Sereno MI, Dale AM, Reppas JB, Kwong KK, Belliveau JW, Brady TJ, Rosen BR, Tootell RB (1995) Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science 268(5212):889–893CrossRefPubMed Sereno MI, Dale AM, Reppas JB, Kwong KK, Belliveau JW, Brady TJ, Rosen BR, Tootell RB (1995) Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science 268(5212):889–893CrossRefPubMed
Zurück zum Zitat Sereno MI, Pitzalis S, Martinez A (2001) Mapping of contralateral space in retinotopic coordinates by a parietal cortical area in humans. Science 294(5545):1350–1354CrossRefPubMed Sereno MI, Pitzalis S, Martinez A (2001) Mapping of contralateral space in retinotopic coordinates by a parietal cortical area in humans. Science 294(5545):1350–1354CrossRefPubMed
Zurück zum Zitat Sheremata SL, Bettencourt KC, Somers DC (2010) Hemispheric asymmetry in visuotopic posterior parietal cortex emerges with visual short-term memory load. J Neurosci 30(38):12581–12588CrossRefPubMed Sheremata SL, Bettencourt KC, Somers DC (2010) Hemispheric asymmetry in visuotopic posterior parietal cortex emerges with visual short-term memory load. J Neurosci 30(38):12581–12588CrossRefPubMed
Zurück zum Zitat Silver MA, Kastner S (2009) Topographic maps in human frontal and parietal cortex. Trends Cogn Sci 13(11):488–495CrossRefPubMed Silver MA, Kastner S (2009) Topographic maps in human frontal and parietal cortex. Trends Cogn Sci 13(11):488–495CrossRefPubMed
Zurück zum Zitat Silver MA, Ress D, Heeger DJ (2005) Topographic maps of visual spatial attention in human parietal cortex. J Neurophysiol 94(2):1358–1371CrossRefPubMed Silver MA, Ress D, Heeger DJ (2005) Topographic maps of visual spatial attention in human parietal cortex. J Neurophysiol 94(2):1358–1371CrossRefPubMed
Zurück zum Zitat Smith AT, Greenlee MW, Singh KD, Kraemer FM, Hennig J (1998) The processing of first- and second-order motion in human visual cortex assessed by functional magnetic resonance imaging (fMRI). J Neurosci 18(10):3816–3830PubMed Smith AT, Greenlee MW, Singh KD, Kraemer FM, Hennig J (1998) The processing of first- and second-order motion in human visual cortex assessed by functional magnetic resonance imaging (fMRI). J Neurosci 18(10):3816–3830PubMed
Zurück zum Zitat Smith AT, Wall MB, Williams AL, Singh KD (2006) Sensitivity to optic flow in human cortical areas MT and MST. Eur J Neurosci 23(2):561–569CrossRefPubMed Smith AT, Wall MB, Williams AL, Singh KD (2006) Sensitivity to optic flow in human cortical areas MT and MST. Eur J Neurosci 23(2):561–569CrossRefPubMed
Zurück zum Zitat Stenbacka L, Vanni S (2007) fMRI of peripheral visual field representation. Clin Neurophysiol 118(6):1303–1314CrossRefPubMed Stenbacka L, Vanni S (2007) fMRI of peripheral visual field representation. Clin Neurophysiol 118(6):1303–1314CrossRefPubMed
Zurück zum Zitat Stiers P, Peeters R, Lagae L, Van Hecke P, Sunaert S (2006) Mapping multiple visual areas in the human brain with a short fMRI sequence. Neuroimage 29(1):74–89CrossRefPubMed Stiers P, Peeters R, Lagae L, Van Hecke P, Sunaert S (2006) Mapping multiple visual areas in the human brain with a short fMRI sequence. Neuroimage 29(1):74–89CrossRefPubMed
Zurück zum Zitat Sunaert S, Van Hecke P, Marchal G, Orban GA (1999) Motion-responsive regions of the human brain. Exp Brain Res 127(4):355–370CrossRefPubMed Sunaert S, Van Hecke P, Marchal G, Orban GA (1999) Motion-responsive regions of the human brain. Exp Brain Res 127(4):355–370CrossRefPubMed
Zurück zum Zitat Swisher JD, Halko MA, Merabet LB, McMains SA, Somers DC (2007) Visual topography of human intraparietal sulcus. J Neurosci 27(20):5326–5337CrossRefPubMed Swisher JD, Halko MA, Merabet LB, McMains SA, Somers DC (2007) Visual topography of human intraparietal sulcus. J Neurosci 27(20):5326–5337CrossRefPubMed
Zurück zum Zitat Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain. 3-Dimensional proportional system: an approach to cerebral imaging. Thieme, New York, NY, USA Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain. 3-Dimensional proportional system: an approach to cerebral imaging. Thieme, New York, NY, USA
Zurück zum Zitat Tikhonov A, Haarmeier T, Thier P, Braun C, Lutzenberger W (2004) Neuromagnetic activity in medial parietooccipital cortex reflects the perception of visual motion during eye movements. Neuroimage 21(2):593–600CrossRefPubMed Tikhonov A, Haarmeier T, Thier P, Braun C, Lutzenberger W (2004) Neuromagnetic activity in medial parietooccipital cortex reflects the perception of visual motion during eye movements. Neuroimage 21(2):593–600CrossRefPubMed
Zurück zum Zitat Tootell RB, Reppas JB, Dale AM, Look RB, Sereno MI, Malach R, Brady TJ, Rosen BR (1995) Visual motion aftereffect in human cortical area MT revealed by functional magnetic resonance imaging. Nature 375(6527):139–141CrossRefPubMed Tootell RB, Reppas JB, Dale AM, Look RB, Sereno MI, Malach R, Brady TJ, Rosen BR (1995) Visual motion aftereffect in human cortical area MT revealed by functional magnetic resonance imaging. Nature 375(6527):139–141CrossRefPubMed
Zurück zum Zitat Tootell RB, Mendola JD, Hadjikhani NK, Ledden PJ, Liu AK, Reppas JB, Sereno MI, Dale AM (1997) Functional analysis of V3A and related areas in human visual cortex. J Neurosci 17(18):7060–7078PubMed Tootell RB, Mendola JD, Hadjikhani NK, Ledden PJ, Liu AK, Reppas JB, Sereno MI, Dale AM (1997) Functional analysis of V3A and related areas in human visual cortex. J Neurosci 17(18):7060–7078PubMed
Zurück zum Zitat Tootell RB, Mendola JD, Hadjikhani NK, Liu AK, Dale AM (1998) The representation of the ipsilateral visual field in human cerebral cortex. Proc Natl Acad Sci USA 95(3):818–824CrossRefPubMed Tootell RB, Mendola JD, Hadjikhani NK, Liu AK, Dale AM (1998) The representation of the ipsilateral visual field in human cerebral cortex. Proc Natl Acad Sci USA 95(3):818–824CrossRefPubMed
Zurück zum Zitat Van Oostende S, Sunaert S, Van Hecke P, Marchal G, Orban GA (1997) The kinetic occipital (KO) region in man: an fMRI study. Cereb Cortex 7(7):690–701CrossRefPubMed Van Oostende S, Sunaert S, Van Hecke P, Marchal G, Orban GA (1997) The kinetic occipital (KO) region in man: an fMRI study. Cereb Cortex 7(7):690–701CrossRefPubMed
Zurück zum Zitat Vanduffel W, Fize D, Mandeville JB, Nelissen K, Van Hecke P, Rosen BR, Tootell RB, Orban GA (2001) Visual motion processing investigated using contrast agent-enhanced fMRI in awake behaving monkeys. Neuron 32(4):565–577CrossRefPubMed Vanduffel W, Fize D, Mandeville JB, Nelissen K, Van Hecke P, Rosen BR, Tootell RB, Orban GA (2001) Visual motion processing investigated using contrast agent-enhanced fMRI in awake behaving monkeys. Neuron 32(4):565–577CrossRefPubMed
Zurück zum Zitat von Pfostl V, Stenbacka L, Vanni S, Parkkonen L, Galletti C, Fattori P (2009) Motion sensitivity of human V6: a magnetoencephalography study. Neuroimage 45(4):1253–1263CrossRef von Pfostl V, Stenbacka L, Vanni S, Parkkonen L, Galletti C, Fattori P (2009) Motion sensitivity of human V6: a magnetoencephalography study. Neuroimage 45(4):1253–1263CrossRef
Zurück zum Zitat Wade AR, Brewer AA, Rieger JW, Wandell BA (2002) Functional measurements of human ventral occipital cortex: retinotopy and colour. Philos Trans R Soc Lond B Biol Sci 357(1424):963–973CrossRefPubMed Wade AR, Brewer AA, Rieger JW, Wandell BA (2002) Functional measurements of human ventral occipital cortex: retinotopy and colour. Philos Trans R Soc Lond B Biol Sci 357(1424):963–973CrossRefPubMed
Zurück zum Zitat Wall MB, Lingnau A, Ashida H, Smith AT (2008) Selective visual responses to expansion and rotation in the human MT complex revealed by functional magnetic resonance imaging adaptation. Eur J Neurosci 27(10):2747–2757CrossRefPubMed Wall MB, Lingnau A, Ashida H, Smith AT (2008) Selective visual responses to expansion and rotation in the human MT complex revealed by functional magnetic resonance imaging adaptation. Eur J Neurosci 27(10):2747–2757CrossRefPubMed
Zurück zum Zitat Wandell BA, Dumoulin SO, Brewer AA (2007) Visual field maps in human cortex. Neuron 56(2):366–383CrossRefPubMed Wandell BA, Dumoulin SO, Brewer AA (2007) Visual field maps in human cortex. Neuron 56(2):366–383CrossRefPubMed
Zurück zum Zitat Zhang T, Britten KH (2004) Clustering of selectivity for optic flow in the ventral intraparietal area. NeuroReport 15(12):1941–1945CrossRefPubMed Zhang T, Britten KH (2004) Clustering of selectivity for optic flow in the ventral intraparietal area. NeuroReport 15(12):1941–1945CrossRefPubMed
Zurück zum Zitat Zhang T, Heuer HW, Britten KH (2004) Parietal area VIP neuronal responses to heading stimuli are encoded in head-centered coordinates. Neuron 42(6):993–1001CrossRefPubMed Zhang T, Heuer HW, Britten KH (2004) Parietal area VIP neuronal responses to heading stimuli are encoded in head-centered coordinates. Neuron 42(6):993–1001CrossRefPubMed
Metadaten
Titel
Processing of Coherent Visual Motion in Topographically Organized Visual Areas in Human Cerebral Cortex
verfasst von
Randolph F. Helfrich
Hubertus G.T. Becker
Thomas Haarmeier
Publikationsdatum
01.04.2013
Verlag
Springer US
Erschienen in
Brain Topography / Ausgabe 2/2013
Print ISSN: 0896-0267
Elektronische ISSN: 1573-6792
DOI
https://doi.org/10.1007/s10548-012-0226-1

Weitere Artikel der Ausgabe 2/2013

Brain Topography 2/2013 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.