Skip to main content
Erschienen in: Breast Cancer Research and Treatment 2/2010

01.07.2010 | Preclinical study

Identification of WEE1 as a potential molecular target in cancer cells by RNAi screening of the human tyrosine kinome

verfasst von: Lyndsay M. Murrow, Sireesha V. Garimella, Tamara L. Jones, Natasha J. Caplen, Stanley Lipkowitz

Erschienen in: Breast Cancer Research and Treatment | Ausgabe 2/2010

Einloggen, um Zugang zu erhalten

Abstract

Breast cancers can be classified into those that express the estrogen (ER) and progesterone (PR) receptors, those with ERBB2 (HER-2/Neu) amplification, and those without expression of ER, PR, or amplification of ERBB2 (referred to as triple-negative or basal-like breast cancer). In order to identify potential molecular targets in breast cancer, we performed a synthetic siRNA-mediated RNAi screen of the human tyrosine kinome. A primary RNAi screen conducted in the triple-negative/basal-like breast cancer cell line MDA-MB231 followed by secondary RNAi screens and further studies in this cell line and two additional triple-negative/basal-like breast cancer cell lines, BT20 and HCC1937, identified the G2/M checkpoint protein, WEE1, as a potential therapeutic target. Similar sensitivity to WEE1 inhibition was observed in cell lines from all subtypes of breast cancer. RNAi-mediated silencing or small compound inhibition of WEE1 in breast cancer cell lines resulted in an increase in γH2AX levels, arrest in the S-phase of the cell cycle, and a significant decrease in cell proliferation. WEE1-inhibited cells underwent apoptosis as demonstrated by positive Annexin V staining, increased sub-G1 DNA content, apoptotic morphology, caspase activation, and rescue by the pan-caspase inhibitor, Z-VAD-FMK. In contrast, the non-transformed mammary epithelial cell line, MCF10A, did not exhibit any of these downstream effects following WEE1 silencing or inhibition. These results identify WEE1 as a potential molecular target in breast cancer.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Brenton JD, Carey LA, Ahmed AA, Caldas C (2005) Molecular classification and molecular forecasting of breast cancer: ready for clinical application? J Clin Oncol 23(29):7350–7360CrossRefPubMed Brenton JD, Carey LA, Ahmed AA, Caldas C (2005) Molecular classification and molecular forecasting of breast cancer: ready for clinical application? J Clin Oncol 23(29):7350–7360CrossRefPubMed
2.
Zurück zum Zitat Irvin WJ Jr, Carey LA (2008) What is triple-negative breast cancer? Eur J Cancer 44(18):2799–2805CrossRefPubMed Irvin WJ Jr, Carey LA (2008) What is triple-negative breast cancer? Eur J Cancer 44(18):2799–2805CrossRefPubMed
3.
Zurück zum Zitat Sorlie T, Perou CM, Tibshirani R et al (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 98(19):10869–10874CrossRefPubMedPubMedCentral Sorlie T, Perou CM, Tibshirani R et al (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 98(19):10869–10874CrossRefPubMedPubMedCentral
4.
Zurück zum Zitat Bertucci F, Finetti P, Cervera N, Esterni B, Hermitte F, Viens P, Birnbaum D (2008) How basal are triple-negative breast cancers? Int J Cancer 123(1):236–240CrossRefPubMed Bertucci F, Finetti P, Cervera N, Esterni B, Hermitte F, Viens P, Birnbaum D (2008) How basal are triple-negative breast cancers? Int J Cancer 123(1):236–240CrossRefPubMed
5.
Zurück zum Zitat Charafe-Jauffret E, Ginestier C, Monville F et al (2006) Gene expression profiling of breast cell lines identifies potential new basal markers. Oncogene 25(15):2273–2284CrossRefPubMed Charafe-Jauffret E, Ginestier C, Monville F et al (2006) Gene expression profiling of breast cell lines identifies potential new basal markers. Oncogene 25(15):2273–2284CrossRefPubMed
6.
Zurück zum Zitat Neve RM, Chin K, Fridlyand J et al (2006) A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 10(6):515–527CrossRefPubMedPubMedCentral Neve RM, Chin K, Fridlyand J et al (2006) A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 10(6):515–527CrossRefPubMedPubMedCentral
7.
Zurück zum Zitat Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S (2002) The protein kinase complement of the human genome. Science 298(5600):1912–1934CrossRefPubMed Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S (2002) The protein kinase complement of the human genome. Science 298(5600):1912–1934CrossRefPubMed
9.
Zurück zum Zitat Krause DS, Van Etten RA (2005) Tyrosine kinases as targets for cancer therapy. N Engl J Med 353(2):172–187CrossRefPubMed Krause DS, Van Etten RA (2005) Tyrosine kinases as targets for cancer therapy. N Engl J Med 353(2):172–187CrossRefPubMed
10.
Zurück zum Zitat MacKeigan JP, Murphy LO, Blenis J (2005) Sensitized RNAi screen of human kinases and phosphatases identifies new regulators of apoptosis and chemoresistance. Nat Cell Biol 7(6):591–600CrossRefPubMed MacKeigan JP, Murphy LO, Blenis J (2005) Sensitized RNAi screen of human kinases and phosphatases identifies new regulators of apoptosis and chemoresistance. Nat Cell Biol 7(6):591–600CrossRefPubMed
11.
Zurück zum Zitat Bettencourt-Dias M, Giet R, Sinka R et al (2004) Genome-wide survey of protein kinases required for cell cycle progression. Nature 432(7020):980–987CrossRefPubMed Bettencourt-Dias M, Giet R, Sinka R et al (2004) Genome-wide survey of protein kinases required for cell cycle progression. Nature 432(7020):980–987CrossRefPubMed
12.
Zurück zum Zitat Giroux V, Iovanna J, Dagorn JC (2006) Probing the human kinome for kinases involved in pancreatic cancer cell survival and gemcitabine resistance. FASEB J 20(12):1982–1991CrossRefPubMed Giroux V, Iovanna J, Dagorn JC (2006) Probing the human kinome for kinases involved in pancreatic cancer cell survival and gemcitabine resistance. FASEB J 20(12):1982–1991CrossRefPubMed
13.
Zurück zum Zitat Rahman M, Davis SR, Pumphrey JG, Bao J, Nau MM, Meltzer PS, Lipkowitz S (2009) TRAIL induces apoptosis in triple-negative breast cancer cells with a mesenchymal phenotype. Breast Cancer Res Treat 113(2):217–230CrossRefPubMed Rahman M, Davis SR, Pumphrey JG, Bao J, Nau MM, Meltzer PS, Lipkowitz S (2009) TRAIL induces apoptosis in triple-negative breast cancer cells with a mesenchymal phenotype. Breast Cancer Res Treat 113(2):217–230CrossRefPubMed
15.
Zurück zum Zitat McGowan CH, Russell P (1993) Human Wee1 kinase inhibits cell division by phosphorylating p34cdc2 exclusively on Tyr15. EMBO J 12(1):75–85PubMedPubMedCentral McGowan CH, Russell P (1993) Human Wee1 kinase inhibits cell division by phosphorylating p34cdc2 exclusively on Tyr15. EMBO J 12(1):75–85PubMedPubMedCentral
16.
Zurück zum Zitat Palmer BD, Thompson AM, Booth RJ et al (2006) 4-Phenylpyrrolo[3, 4-c]carbazole-1, 3(2H, 6H)-dione inhibitors of the checkpoint kinase Wee1. Structure–activity relationships for chromophore modification and phenyl ring substitution. J Med Chem 49(16):4896–4911CrossRefPubMed Palmer BD, Thompson AM, Booth RJ et al (2006) 4-Phenylpyrrolo[3, 4-c]carbazole-1, 3(2H, 6H)-dione inhibitors of the checkpoint kinase Wee1. Structure–activity relationships for chromophore modification and phenyl ring substitution. J Med Chem 49(16):4896–4911CrossRefPubMed
17.
Zurück zum Zitat Iorns E, Lord CJ, Grigoriadis A et al (2009) Integrated functional, gene expression and genomic analysis for the identification of cancer targets. PLoS ONE 4(4):e5120CrossRefPubMedPubMedCentral Iorns E, Lord CJ, Grigoriadis A et al (2009) Integrated functional, gene expression and genomic analysis for the identification of cancer targets. PLoS ONE 4(4):e5120CrossRefPubMedPubMedCentral
18.
19.
Zurück zum Zitat Rogakou EP, Boon C, Redon C, Bonner WM (1999) Megabase chromatin domains involved in DNA double-strand breaks in vivo. J Cell Biol 146(5):905–916CrossRefPubMedPubMedCentral Rogakou EP, Boon C, Redon C, Bonner WM (1999) Megabase chromatin domains involved in DNA double-strand breaks in vivo. J Cell Biol 146(5):905–916CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Tyner JW, Walters DK, Willis SG et al (2008) RNAi screening of the tyrosine kinome identifies therapeutic targets in acute myeloid leukemia. Blood 111(4):2238–2245CrossRefPubMedPubMedCentral Tyner JW, Walters DK, Willis SG et al (2008) RNAi screening of the tyrosine kinome identifies therapeutic targets in acute myeloid leukemia. Blood 111(4):2238–2245CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat O’Connell MJ, Raleigh JM, Verkade HM, Nurse P (1997) Chk1 is a wee1 kinase in the G2 DNA damage checkpoint inhibiting cdc2 by Y15 phosphorylation. EMBO J 16(3):545–554CrossRefPubMedPubMedCentral O’Connell MJ, Raleigh JM, Verkade HM, Nurse P (1997) Chk1 is a wee1 kinase in the G2 DNA damage checkpoint inhibiting cdc2 by Y15 phosphorylation. EMBO J 16(3):545–554CrossRefPubMedPubMedCentral
22.
Zurück zum Zitat Yuli C, Shao N, Rao R et al (2007) BRCA1a has antitumor activity in TN breast, ovarian and prostate cancers. Oncogene 26(41):6031–6037CrossRefPubMed Yuli C, Shao N, Rao R et al (2007) BRCA1a has antitumor activity in TN breast, ovarian and prostate cancers. Oncogene 26(41):6031–6037CrossRefPubMed
23.
Zurück zum Zitat Wang Y, Li J, Booher RN, Kraker A, Lawrence T, Leopold WR, Sun Y (2001) Radiosensitization of p53 mutant cells by PD0166285, a novel G(2) checkpoint abrogator. Cancer Res 61(22):8211–8217PubMed Wang Y, Li J, Booher RN, Kraker A, Lawrence T, Leopold WR, Sun Y (2001) Radiosensitization of p53 mutant cells by PD0166285, a novel G(2) checkpoint abrogator. Cancer Res 61(22):8211–8217PubMed
24.
Zurück zum Zitat Li J, Wang Y, Sun Y, Lawrence TS (2002) Wild-type TP53 inhibits G(2)-phase checkpoint abrogation and radiosensitization induced by PD0166285, a WEE1 kinase inhibitor. Radiat Res 157(3):322–330CrossRefPubMed Li J, Wang Y, Sun Y, Lawrence TS (2002) Wild-type TP53 inhibits G(2)-phase checkpoint abrogation and radiosensitization induced by PD0166285, a WEE1 kinase inhibitor. Radiat Res 157(3):322–330CrossRefPubMed
25.
Zurück zum Zitat Wang Y, Decker SJ, Sebolt-Leopold J (2004) Knockdown of Chk1, Wee1 and Myt1 by RNA interference abrogates G2 checkpoint and induces apoptosis. Cancer Biol Ther 3(3):305–313CrossRefPubMed Wang Y, Decker SJ, Sebolt-Leopold J (2004) Knockdown of Chk1, Wee1 and Myt1 by RNA interference abrogates G2 checkpoint and induces apoptosis. Cancer Biol Ther 3(3):305–313CrossRefPubMed
26.
Zurück zum Zitat Hashimoto O, Shinkawa M, Torimura T, Nakamura T, Selvendiran K, Sakamoto M, Koga H, Ueno T, Sata M (2006) Cell cycle regulation by the Wee1 inhibitor PD0166285, pyrido [2, 3-d] pyrimidine, in the B16 mouse melanoma cell line. BMC Cancer 6:292CrossRefPubMedPubMedCentral Hashimoto O, Shinkawa M, Torimura T, Nakamura T, Selvendiran K, Sakamoto M, Koga H, Ueno T, Sata M (2006) Cell cycle regulation by the Wee1 inhibitor PD0166285, pyrido [2, 3-d] pyrimidine, in the B16 mouse melanoma cell line. BMC Cancer 6:292CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat Syljuasen RG, Sorensen CS, Hansen LT et al (2005) Inhibition of human Chk1 causes increased initiation of DNA replication, phosphorylation of ATR targets, and DNA breakage. Mol Cell Biol 25(9):3553–3562CrossRefPubMedPubMedCentral Syljuasen RG, Sorensen CS, Hansen LT et al (2005) Inhibition of human Chk1 causes increased initiation of DNA replication, phosphorylation of ATR targets, and DNA breakage. Mol Cell Biol 25(9):3553–3562CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat Niida H, Tsuge S, Katsuno Y, Konishi A, Takeda N, Nakanishi M (2005) Depletion of Chk1 leads to premature activation of Cdc2-cyclin B and mitotic catastrophe. J Biol Chem 280(47):39246–39252CrossRefPubMed Niida H, Tsuge S, Katsuno Y, Konishi A, Takeda N, Nakanishi M (2005) Depletion of Chk1 leads to premature activation of Cdc2-cyclin B and mitotic catastrophe. J Biol Chem 280(47):39246–39252CrossRefPubMed
29.
Zurück zum Zitat Sidi S, Sanda T, Kennedy RD et al (2008) Chk1 suppresses a caspase-2 apoptotic response to DNA damage that bypasses p53, Bcl-2, and caspase-3. Cell 133(5):864–877CrossRefPubMedPubMedCentral Sidi S, Sanda T, Kennedy RD et al (2008) Chk1 suppresses a caspase-2 apoptotic response to DNA damage that bypasses p53, Bcl-2, and caspase-3. Cell 133(5):864–877CrossRefPubMedPubMedCentral
30.
Zurück zum Zitat Turner N, Tutt A, Ashworth A (2004) Hallmarks of ‘BRCAness’ in sporadic cancers. Nat Rev Cancer 4(10):814–819CrossRefPubMed Turner N, Tutt A, Ashworth A (2004) Hallmarks of ‘BRCAness’ in sporadic cancers. Nat Rev Cancer 4(10):814–819CrossRefPubMed
31.
Zurück zum Zitat Petitjean A, Mathe E, Kato S, Ishioka C, Tavtigian SV, Hainaut P, Olivier M (2007) Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: lessons from recent developments in the IARC TP53 database. Hum Mutat 28(6):622–629CrossRefPubMed Petitjean A, Mathe E, Kato S, Ishioka C, Tavtigian SV, Hainaut P, Olivier M (2007) Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: lessons from recent developments in the IARC TP53 database. Hum Mutat 28(6):622–629CrossRefPubMed
32.
Zurück zum Zitat Chauvier D, Lecoeur H, Langonne A, Borgne-Sanchez A, Mariani J, Martinou JC, Rebouillat D, Jacotot E (2005) Upstream control of apoptosis by caspase-2 in serum-deprived primary neurons. Apoptosis 10(6):1243–1259CrossRefPubMed Chauvier D, Lecoeur H, Langonne A, Borgne-Sanchez A, Mariani J, Martinou JC, Rebouillat D, Jacotot E (2005) Upstream control of apoptosis by caspase-2 in serum-deprived primary neurons. Apoptosis 10(6):1243–1259CrossRefPubMed
33.
Zurück zum Zitat Gregoli PA, Bondurant MC (1999) Function of caspases in regulating apoptosis caused by erythropoietin deprivation in erythroid progenitors. J Cell Physiol 178(2):133–143CrossRefPubMed Gregoli PA, Bondurant MC (1999) Function of caspases in regulating apoptosis caused by erythropoietin deprivation in erythroid progenitors. J Cell Physiol 178(2):133–143CrossRefPubMed
34.
Zurück zum Zitat Pereira NA, Song Z (2008) Some commonly used caspase substrates and inhibitors lack the specificity required to monitor individual caspase activity. Biochem Biophys Res Commun 377(3):873–877CrossRefPubMed Pereira NA, Song Z (2008) Some commonly used caspase substrates and inhibitors lack the specificity required to monitor individual caspase activity. Biochem Biophys Res Commun 377(3):873–877CrossRefPubMed
35.
Zurück zum Zitat Schellens JH, Leijen S, Shaprio GI et al. (2009) A phase I and pharmacological study of MK-1775, a Wee1 tyrosine kinase inhibitor, in both monotherapy and in combination with gemcitabine, cisplatin, or carboplatin in patients with advanced solid tumors. J Clin Oncol 27(15s):148s Schellens JH, Leijen S, Shaprio GI et al. (2009) A phase I and pharmacological study of MK-1775, a Wee1 tyrosine kinase inhibitor, in both monotherapy and in combination with gemcitabine, cisplatin, or carboplatin in patients with advanced solid tumors. J Clin Oncol 27(15s):148s
36.
37.
Zurück zum Zitat Sedelnikova OA, Bonner WM (2006) GammaH2AX in cancer cells: a potential biomarker for cancer diagnostics, prediction and recurrence. Cell Cycle 5(24):2909–2913CrossRefPubMed Sedelnikova OA, Bonner WM (2006) GammaH2AX in cancer cells: a potential biomarker for cancer diagnostics, prediction and recurrence. Cell Cycle 5(24):2909–2913CrossRefPubMed
38.
Zurück zum Zitat Hong Y, Cervantes RB, Tichy E, Tischfield JA, Stambrook PJ (2007) Protecting genomic integrity in somatic cells and embryonic stem cells. Mutat Res 614(1–2):48–55CrossRefPubMed Hong Y, Cervantes RB, Tichy E, Tischfield JA, Stambrook PJ (2007) Protecting genomic integrity in somatic cells and embryonic stem cells. Mutat Res 614(1–2):48–55CrossRefPubMed
39.
Zurück zum Zitat Opar A (2009) Novel anticancer strategy targets DNA repair. Nat Rev Drug Discov 8(6):437–438CrossRefPubMed Opar A (2009) Novel anticancer strategy targets DNA repair. Nat Rev Drug Discov 8(6):437–438CrossRefPubMed
40.
Zurück zum Zitat O'Shaughnessy J, Osborne C, Pippen J et al (2009) Efficacy of BSI-201, a poly(ADP-ribose) polymerase-1 (PARP1) inhibitor, in combination with gemcitabine/carboplatin (G/C) in patients with metastatic triple-negative breast cancer (TNBC): results of a randomised phase II trial. J Clin Oncol 27(15s):6s O'Shaughnessy J, Osborne C, Pippen J et al (2009) Efficacy of BSI-201, a poly(ADP-ribose) polymerase-1 (PARP1) inhibitor, in combination with gemcitabine/carboplatin (G/C) in patients with metastatic triple-negative breast cancer (TNBC): results of a randomised phase II trial. J Clin Oncol 27(15s):6s
41.
Zurück zum Zitat Ashwell S, Zabludoff S (2008) DNA damage detection and repair pathways—recent advances with inhibitors of checkpoint kinases in cancer therapy. Clin Cancer Res 14(13):4032–4037CrossRefPubMed Ashwell S, Zabludoff S (2008) DNA damage detection and repair pathways—recent advances with inhibitors of checkpoint kinases in cancer therapy. Clin Cancer Res 14(13):4032–4037CrossRefPubMed
Metadaten
Titel
Identification of WEE1 as a potential molecular target in cancer cells by RNAi screening of the human tyrosine kinome
verfasst von
Lyndsay M. Murrow
Sireesha V. Garimella
Tamara L. Jones
Natasha J. Caplen
Stanley Lipkowitz
Publikationsdatum
01.07.2010
Verlag
Springer US
Erschienen in
Breast Cancer Research and Treatment / Ausgabe 2/2010
Print ISSN: 0167-6806
Elektronische ISSN: 1573-7217
DOI
https://doi.org/10.1007/s10549-009-0571-2

Weitere Artikel der Ausgabe 2/2010

Breast Cancer Research and Treatment 2/2010 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.