Skip to main content

Advertisement

Log in

BRIP1, PALB2, and RAD51C mutation analysis reveals their relative importance as genetic susceptibility factors for breast cancer

  • Brief Report
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Mutations in the recognized breast cancer susceptibility genes BRCA1, BRCA2, TP53, ATM, and CHEK2 account for approximately 20% of hereditary breast cancer. This raises the possibility that mutations in other biologically relevant genes may be involved in genetic predisposition to breast cancer. In this study, BRIP1, PALB2, and RAD51C were sequenced for mutations as a result of previously being associated with breast cancer risk due to their role in the double-strand break repair pathway and their close association with BRCA1 and BRCA2. Two truncating mutations in PALB2 (Q66X and W1038X), one of which is has not been reported before, were detected in an independent Australian cohort of 70 individuals with breast or ovarian cancer, and have strong family histories of breast or breast/ovarian cancer. In addition, six missense variants predicted to be causative were detected, one in BRIP1 and five in PALB2. No causative variants were identified in RAD51C. This study supports recent observations that although rare, PALB2 mutations are present in a small but substantial proportion of inherited breast cancer cases, and indicates that RAD51C at a population level does not account for a substantial number of familial breast cancer cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Abbreviations

AML:

Acute myeloid leukemia

FA:

Fanconi anemia

MLPA:

Multiplex ligation-dependent probe amplification

PCR:

Polymerase chain reaction

SNP:

Single nucleotide polymorphism

References

  1. Lynch HT, Krush AJ (1971) Carcinoma of the breast and ovary in three families. Surg Gynecol Obstet 133(4):644–648

    PubMed  CAS  Google Scholar 

  2. Lynch HT, Krush AJ, Lemon HM, Kaplan AR, Condit PT, Bottomley RH (1972) Tumor variation in families with breast cancer. JAMA 222(13):1631–1635

    Article  PubMed  CAS  Google Scholar 

  3. Lynch HT, Guirgis HA, Albert S, Brennan M, Lynch J, Kraft C et al (1974) Familial association of carcinoma of the breast and ovary. Surg Gynecol Obstet 138(5):717–724

    PubMed  CAS  Google Scholar 

  4. National breast and ovarian cancer centre. Breast Cancer. (2009); http://www.nbocc.org.au/

  5. National Breast and Ovarian Cancer Centre (2009) Breast cancer risk factors: a review of the evidence. National Breast and Ovarian Cancer Centre, Surry Hills, NSW

    Google Scholar 

  6. Wooster R, Weber BL (2003) Breast and ovarian cancer. NEJM 348(23):2339–2347

    Article  PubMed  CAS  Google Scholar 

  7. Nathanson KL, Wooster R, Weber BL (2001) Breast cancer genetics: what we know and what we need. Nat Med 7(5):552–556

    Article  PubMed  CAS  Google Scholar 

  8. Stratton MR, Rahman N (2008) The emerging landscape of breast cancer susceptibility. Nat Genet 40(1):17–22

    Article  PubMed  CAS  Google Scholar 

  9. Turnbull C, Rahman N (2008) Genetic predisposition to breast cancer: past, present and future. Annu Rev Genom Hum Genet 9:321–345

    Article  CAS  Google Scholar 

  10. Easton DF, Bishop DT, Ford D, Crockford GP, Consortium BCL (1993) Genetic linkage analysis in familial breast and ovarian cancer. Am J Hum Genet 52(4):678–701

    PubMed  CAS  Google Scholar 

  11. Couch FJ, DeShano ML, Blackwood MA, Calzone K, Stopfer J, Campeau L et al (1997) BRCA1 mutations in women attending clinics that evaluate the risk of breast cancer. NEJM 336(20):1409–1415

    Article  PubMed  CAS  Google Scholar 

  12. Ford D, Easton DF, Stratton M, Narod S, Goldgar D, Devilee P et al (1998) Genetic heterogeneity and penetrance analysis of the BRCA1 and BRCA2 genes in breast cancer families. Am J Hum Genet 62:676–689

    Article  PubMed  CAS  Google Scholar 

  13. Peto J, Collins N, Barfoot R, Seal S, Warren W, Rahman N et al (1999) Prevalence of BRCA1 and BRCA2 gene mutations in patients with early-onset breast cancer. JNCI 91(11):943–949

    PubMed  CAS  Google Scholar 

  14. Stoppa-Lyonnet D, Laurent-Puig P, Essioux L, Pages S, Ithier G, Ligot L, Institut Curie Breast Cancer Group et al (1997) BRCA1 sequence variations in 160 individuals referred to a breast/ovarian family cancer clinic. Am J Hum Genet 60(5):1021–1030

    PubMed  CAS  Google Scholar 

  15. Rosa-Rosa JM, Pita G, Urioste M, Llort G, Brunet J, Lázaro C et al (2009) Genome-wide linkage scan reveals three putative breast-cancer susceptibility loci. Am J Hum Genet 84(2):115–122

    Article  PubMed  CAS  Google Scholar 

  16. Turnbull C, Ahmed S, Morrison J, Pernet D, Renwick A, Maranian M et al. (2010) Genome-wide assocation study identifies five new breast cancer susceptibility loci. Nat Genet. doi:10.1038/ng.586

  17. Easton DF, Pooley KA, Dunning AM, Pharoah PD, Thompson D, Ballinger DG et al (2007) Genome-wide association study identifies novel breast cancer susceptibility loci. Nature 447(7148):1087–1093

    Article  PubMed  CAS  Google Scholar 

  18. Smith P, McGuffog L, Easton DF, Mann GJ, Pupo GM, Newman B et al (2006) A genome wide linkage search for breast cancer susceptibility genes. Genes Chromosomes Cancer 45(7):646–655

    Article  PubMed  CAS  Google Scholar 

  19. Gold B, Kirchhoff T, Stefanov S, Lautenberger J, Viale A, Garber J et al (2008) Genome-wide association study provides evidence for a breast cancer risk locus at 6q22.33. Proc Natl Acad Sci USA 105(11):4340–4345

    Article  PubMed  CAS  Google Scholar 

  20. Cox DG, Penney K, Guo Q, Hankinson SE, Hunter DJ (2007) TGFB1 and TGFBR1 polymorphisms and breast cancer risk in the Nurses’ Health Study. BMC Cancer 7(175):175

    Article  PubMed  Google Scholar 

  21. Meindl A, Hellebrand H, Wiek C, Erven V, Wappenschmidt B, Niederacher D et al (2010) Germline mutations in breast and ovarian cancer pedigrees establish RAD51C as a human cancer susceptibility gene. Nat Genet 42(5):410–414

    Article  PubMed  CAS  Google Scholar 

  22. Levy-Lahad E (2010) Fanconi anemia and breast cancer susceptibility meet again. Nat Genet 42(5):368–369

    Article  PubMed  CAS  Google Scholar 

  23. Seal S, Thompson D, Renwick A, Elliott A, Kelly P, Barfoot R et al (2006) Truncating mutations in the Fanconi anemia J gene BRIP1 are low-penetrance breast cancer susceptibility alleles. Nat Genet 38(11):1239–1241

    Article  PubMed  CAS  Google Scholar 

  24. Zhang F, Fan Q, Ren K, Auerbach AD, Andreassen PR (2010) FANCJ/BRIP1 recruitment and regulation of FANCD2 in DNA damage responses. Chromosoma 119(6):637–649

    Article  PubMed  CAS  Google Scholar 

  25. Xia B, Sheng Q, Nakanishi K, Ohashi A, Wu J, Christ N et al (2006) Control of BRCA2 cellular and clinical functions by a nuclear partner, PALB2. Mol Cell 22(6):719–729

    Article  PubMed  CAS  Google Scholar 

  26. Rahman N, Seal S, Thompson D, Kelly P, Renwick A, Elliott A et al (2007) PALB2, which encodes a BRCA2-interacting protein, is a breast cancer susceptibility gene. Nat Genet 39(2):165–167

    Article  PubMed  CAS  Google Scholar 

  27. Xia B, Dorsman JC, Ameziane N, de Vries Y, Rooimans MA, Sheng Q et al (2007) Fanconi anemia is associated with a defect in the BRCA2 partner PALB2. Nat Genet 39(2):159–161

    Article  PubMed  CAS  Google Scholar 

  28. Levran O, Attwooll C, Henry RT, Milton KL, Neveling K, Rio P et al (2005) The BRCA1-interacting helicase BRIP1 is deficient in Fanconi anemia. Nat Genet 37(9):931–933

    Article  PubMed  CAS  Google Scholar 

  29. Vaz F, Hanenberg H, Schuster B, Barker K, Wiek C, Erven V et al (2010) Mutation of the RAD51C gene in a Fanconi anemia-like disorder. Nat Genet 42(5):406–409

    Article  PubMed  CAS  Google Scholar 

  30. Cantor SB, Bell DW, Ganesan S, Kass EM, Drapkin R, Grossman S et al (2001) BACH1, a novel helicase-like protein, interacts directly with BRCA1 and contributes to its DNA repair function. Cell 105(1):149–160

    Article  PubMed  CAS  Google Scholar 

  31. Yu X, Chini CC, He M, Mer G, Chen J (2003) The BRCT domain is a phospho-protein binding domain. Science 302(5645):639–642

    Article  PubMed  CAS  Google Scholar 

  32. Cantor S, Drapkin R, Zhang F, Lin Y, Han J, Pamidi S et al (2004) The BRCA1-associated protein BACH1 is a DNA helicase targeted by clinically relevant inactivating mutations. Proc Natl Acad Sci USA 101(8):2357–2362

    Article  PubMed  CAS  Google Scholar 

  33. Sy SM, Huen MS, Chen J (2009) PALB2 is an integral component of the BRCA complex required for homologous recombination repair. Proc Natl Acad Sci USA 106(17):7155–7160

    Article  PubMed  CAS  Google Scholar 

  34. Reid S, Schindler D, Hanenberg H, Barker K, Hanks S, Kalb R et al (2007) Biallelic mutations in PALB2 cause Fanconi anemia subtype FA-N and predispose to childhood cancer. Nat Genet 39(2):162–164

    Article  PubMed  CAS  Google Scholar 

  35. Scully R, Chen J, Plug A, Xiao Y, Weaver D, Feunteun J et al (1997) Association of BRCA1 with Rad51 in mitotic and meiotic cells. Cell 88(2):265–275

    Article  PubMed  CAS  Google Scholar 

  36. Venkitaraman AR (2009) Linking the cellular functions of BRCA genes to cancer pathogenesis and treatment. Annu Rev Pathol 4:461–487

    Article  PubMed  CAS  Google Scholar 

  37. Ripperger T, Gadzicki D, Meindl A, Schlegelberger B (2009) Breast cancer susceptibility: current knowledge and implications for genetic counselling. Eur J Hum Genet 17(6):722–731

    Article  PubMed  CAS  Google Scholar 

  38. Tischkowitz M, Xia B, Sabbaghian N, Reis-Filho JS, Hamel N, Li G et al (2007) Analysis of PALB2/FANCN-associated breast cancer families. PNAS 104(16):6788–6793

    Article  PubMed  CAS  Google Scholar 

  39. Rutter JL, Smith AM, Dávila MR, Sigurdson AJ, Ruthann MG, Pineda MA et al (2003) Mutational analysis of the BRCA1-interacting genes ZNF350/ZBRK1 and BRIP/BACH1 among BRCA1 and BRCA2-negative probands from breast-ovarian cancer families and among early-onset breast cancer cases and reference individuals. Hum Mutat 22(2):121–128

    Article  PubMed  CAS  Google Scholar 

  40. Kumar P, Henikoff S, Ng PC (2009) Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc 4(7):1073–1081

    Article  PubMed  CAS  Google Scholar 

  41. Ng PC, Henikoff S (2003) SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res 31(13):3812–3814

    Article  PubMed  CAS  Google Scholar 

  42. Bamford S, Dawson E, Forbes S, Clements J, Pettett R, Dogan A et al (2004) The COSMIC (Catalogue of Somatic Mutations in Cancer) database and website. Br J Cancer 91(2):355–358

    PubMed  CAS  Google Scholar 

  43. Da Silva L, Lakhani SR (2010) Pathology of hereditary breast cancer. Mod Pathol 23(Suppl 2):S46–S51

    Article  PubMed  CAS  Google Scholar 

  44. Palacios J, Honrado E, Osorio A, Cazorla A, Sarrio D, Barroso A et al (2003) Immunohistochemical characteristics defined by tissue microarray of hereditary breast cancer not attributable to BRCA1 or BRCA2 mutations: differences from breast carcinomas arising in BRCA1 and BRCA2 mutation carriers. Clin Cancer Res 9(10 Pt 1):3606–3614

    PubMed  CAS  Google Scholar 

  45. Tischkowitz M, Xia B (2010) PALB2/FANCN: recombining cancer and Fanconi anemia. Cancer Res 70(19):7353–7359

    Article  PubMed  CAS  Google Scholar 

  46. Foulkes WD, Ghadirian P, Akbari MR, Hamel N, Giroux S, Sabbaghian N et al (2007) Identification of a novel truncating PALB2 mutation and analysis of its contribution to early-onset breast cancer in French–Canadian women. Breast Cancer Res 9(6):83

    Article  Google Scholar 

  47. Oliver AW, Swift S, Lord CJ, Ashworth A, Pearl LH (2009) Structural basis for recruitment of BRCA2 by PALB2. EMBO Rep 10(9):990–996

    Article  PubMed  CAS  Google Scholar 

  48. Zhang F, Fan Q, Ren K, Andreassen PR (2009) PALB2 functionally connects the breast cancer susceptibility proteins BRCA1 and BRCA2. Mol Cancer Res 7(7):1110–1118

    Article  PubMed  CAS  Google Scholar 

  49. Zhang F, Ma J, Wu J, Ye L, Cai H, Xia B et al (2009) PALB2 links BRCA1 and BRCA2 in the DNA-damage response. Curr Biol 19(6):524–529

    Article  PubMed  CAS  Google Scholar 

  50. Buisson R, Dion-Cote AM, Coulombe Y, Launay H, Cai H, Stasiak AZ et al (2010) Cooperation of breast cancer proteins PALB2 and piccolo BRCA2 in stimulating homologous recombination. Nat Struct Mol Biol 17(10):1247–1254

    Article  PubMed  CAS  Google Scholar 

  51. Thompson D, Easton DF (2002) Cancer incidence in BRCA1 mutation carriers. J Natl Cancer Inst 94(18):1358–1365

    PubMed  CAS  Google Scholar 

  52. The Breast Cancer Linkage Consortium (1999) Cancer risks in BRCA2 mutation carriers. JNCI 91(15):1310–1316

    Google Scholar 

Download references

Acknowledgments

We would like to thank all the patients for their consent to the use of their samples in this study. We would also like to acknowledge Dr. Allan Spigelman, Claire Groombridge, and Margaret Gleeson for providing patient samples and family information. This study was supported by Grant from National Breast Cancer Foundation (NBCF), Australia.

Conflict of interest

The authors of this article declare no competing interests related to the study and no commercial associations that may pose a conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodney J. Scott.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wong, M.W., Nordfors, C., Mossman, D. et al. BRIP1, PALB2, and RAD51C mutation analysis reveals their relative importance as genetic susceptibility factors for breast cancer. Breast Cancer Res Treat 127, 853–859 (2011). https://doi.org/10.1007/s10549-011-1443-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-011-1443-0

Keywords

Navigation