Skip to main content
Erschienen in: Breast Cancer Research and Treatment 3/2016

Open Access 08.09.2016 | Epidemiology

Subsequent risk of ipsilateral and contralateral invasive breast cancer after treatment for ductal carcinoma in situ: incidence and the effect of radiotherapy in a population-based cohort of 10,090 women

verfasst von: Lotte E. Elshof, Michael Schaapveld, Marjanka K. Schmidt, Emiel J. Rutgers, Flora E. van Leeuwen, Jelle Wesseling

Erschienen in: Breast Cancer Research and Treatment | Ausgabe 3/2016

Abstract

Purpose

To assess the effect of different treatment strategies on the risk of subsequent invasive breast cancer (IBC) in women diagnosed with ductal carcinoma in situ (DCIS).

Methods

Up to 15-year cumulative incidences of ipsilateral IBC (iIBC) and contralateral IBC (cIBC) were assessed among a population-based cohort of 10,090 women treated for DCIS in the Netherlands between 1989 and 2004. Multivariable Cox regression analyses were used to evaluate associations of treatment with iIBC risk.

Results

Fifteen years after DCIS diagnosis, cumulative incidence of iIBC was 1.9 % after mastectomy, 8.8 % after BCS+RT, and 15.4 % after BCS alone. Patients treated with BCS alone had a higher iIBC risk than those treated with BCS+RT during the first 5 years after treatment. This difference was less pronounced for patients <50 years [hazard ratio (HR) 2.11, 95 % confidence interval (CI) 1.35–3.29 for women <50, and HR 4.44, 95 % CI 3.11–6.36 for women ≥50, P interaction  < 0.0001]. Beyond 5 years of follow-up, iIBC risk did not differ between patients treated with BCS+RT or BCS alone for women <50. Cumulative incidence of cIBC at 15 years was 6.4 %, compared to 3.4 % in the general population.

Conclusions

We report an interaction of treatment with age and follow-up period on iIBC risk, indicating that the benefit of RT seems to be smaller among younger women, and stressing the importance of clinical studies with long follow-up. Finally, the low cIBC risk does not justify contralateral prophylactic mastectomies for many women with unilateral DCIS.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1007/​s10549-016-3973-y) contains supplementary material, which is available to authorized users.
An erratum to this article is available at http://​dx.​doi.​org/​10.​1007/​s10549-016-4060-0.
Abkürzungen
BCS
Breast-conserving surgery
CI
Confidence interval
cIBC
Contralateral invasive breast cancer
DCIS
Ductal carcinoma in situ
HR
Hazard ratio
IBC
Invasive breast cancer
iIBC
Ipsilateral invasive breast cancer
NCR
Netherlands cancer registry
PALGA
Nationwide network and registry of histology and cytopathology, the Netherlands
RCT
Randomized controlled trial
RT
Radiotherapy

Introduction

Ductal carcinoma in situ (DCIS) is a potential precursor lesion of invasive breast cancer (IBC) [1]. Most women (80–85 %) diagnosed with DCIS present with a mammographic abnormality without clinical symptoms [2]. Since the introduction of population-based mammographic screening and, more recently, digital mammography, the incidence of DCIS has increased substantially [37]. In the Netherlands, the European standardized rate of in situ breast carcinoma—of which DCIS is the most common type (~80 %)—increased fivefold since 1989, up to 25.1 per 100,000 women in 2013 [8]. In the United States, the incidence (age adjusted to the 2000 US standard population) increased even more: from 5.8 per 100,000 in 1975 to 33.8 per 100,000 women in 2010 [9].
The natural course of DCIS is not well known because DCIS has almost always been treated by mastectomy or breast-conserving surgery (BCS) with or without radiotherapy (RT). Between 1988 and 2011, only 2 % of women with DCIS were managed without surgery in the United States [10]. In the Netherlands, the percentage of non-operated DCIS between 1989 and 2004 was 0.8 % [11].
Women with DCIS are treated to prevent the development of IBC, assuming that this may lead to a reduction in breast cancer-specific deaths. Some women with unilateral DCIS even undergo contralateral prophylactic mastectomy. However, the long-term benefit of treating asymptomatic DCIS that may or may not progress to IBC is difficult to quantify [12]. Therefore, screening programs are criticized to be associated with overdiagnosis and resultant overtreatment of DCIS [13, 14].
Considerable uncertainty remains about the likelihood that a treatment strategy will prevent IBC, whether that likelihood will change based on specific patient and DCIS characteristics, and whether the reduction in risk is enough to justify the costs and the potential side effects of that treatment [12]. The effect of different treatment strategies on the risk of subsequent events in women diagnosed with DCIS has been addressed previously in both prospective trials and observational studies [1527]. However, many of these studies focused on local recurrences, not discriminating between invasive and non-invasive events, or did not have complete information on treatment. Moreover, several studies have analyzed specific subgroups, such as “favorable” and “good-risk” DCIS, or focused on a specific treatment strategy.
Gierisch et al. prioritized research needs for DCIS patients, and pointed out the assessment of the effect of treatment strategies on IBC, using existing observational data [12]. We assessed the effect of DCIS treatment strategies on risk of subsequent ipsilateral invasive breast cancer (iIBC) using a large population-based cohort with complete information on treatment and follow-up. In addition, we analyzed the risk of contralateral IBC (cIBC).

Methods

Patient selection

All women diagnosed with breast carcinoma in situ in the Netherlands between January 1st 1989 and December 31st 2004 were selected from the Netherlands cancer registry (NCR) managed by the Netherlands Comprehensive Cancer Organization. Patients with previous malignancies, except for non-melanoma skin cancer, were not included. This cohort (n = 12,717) was linked to the nationwide network and registry of histology and cytopathology in the Netherlands (PALGA) [28]. The selection criteria for this study were a diagnosis of pure DCIS, i.e., no lobular or other subtype component, and only treated by surgery with or without RT. See Fig. 1 for a detailed list of the excluded cases (n = 2627). The study was approved by the review boards of the NCR and PALGA.

DCIS treatment and other characteristics

Information on treatment, age, date of diagnosis, and grade was derived from data provided by NCR. Guidelines for DCIS treatment in the Netherlands recommend mastectomy or BCS, consisting of microscopic complete tumor excision. From 1999, the addition of RT after BCS is included in the recommendation. Adjuvant (hormonal) treatment is not recommended. Primary DCIS treatment was categorized into (1) BCS+RT; (2) BCS alone; and (3) mastectomy. Initial treatment was defined as the final treatment for the ipsilateral breast within 3 months after DCIS diagnosis. For patients for whom surgery type was not coded by NCR, we retrieved this information from PALGA. We validated whether patients registered by NCR as treated with BCS had indeed undergone BCS using the conclusions of pathology reports within 3 months of DCIS diagnosis. Furthermore, we validated surgical treatment for women who developed subsequent iIBC after mastectomy, using conclusion texts of all available pathology reports. Subsequently, we assessed whether women initially treated with BCS had undergone ipsilateral mastectomy during follow-up, using both NCR and PALGA data.
Based on the gradual implementation of the national breast cancer screening program, we categorized year of DCIS diagnosis into two periods: 1989–1998 (implementation phase) and 1999–2004 (full coverage). Age was subdivided into two groups: <50 and ≥50 years. Grade was available for 53 % of the entire cohort. The grading system used in the Netherlands is based on the classification presented by Holland et al. [29].

Follow-up data

The occurrence of iIBC and cIBC was ascertained based on NCR data, and additionally, for patients treated with BCS, through evaluating pathology reports. Follow-up for subsequent IBC and vital status were complete until at least January 1, 2011.

Statistical analyses

Time at risk started at date of DCIS diagnosis and stopped at date of diagnosis of the event of interest (iIBC or cIBC), date of death or emigration, or January 1, 2011, whichever came first. We calculated cumulative incidence of iIBC and cIBC using death as competing risk. P values were based on competing risk regression [30], with time since DCIS diagnosis as time-scale and adjusted for age (continuous). Further, we compared cumulative incidence of cIBC with the expected cumulative incidence of IBC in the general population. Expected cumulative incidence was derived from age- and period-specific cancer incidence and overall mortality in the Dutch female population, estimated using the conditional method [31].
Cox proportional hazards analyses, using age as primary time-scale and time since DCIS diagnosis as secondary time-scale (0–5, 5–10, and ≥10 years), were used to quantify the effects of different treatments on iIBC and cIBC risks. Period of DCIS diagnosis and age group at DCIS diagnosis were added as covariables. Proportional hazard assumptions were verified using graphical and residual-based methods.
To examine whether iIBC risk differed by grade, we performed a subgroup analysis for women with a reported grade. Because the proportion of women with missing data on grade was more than 30 % up to 1998, we performed this subgroup analysis for women diagnosed between 1999 and 2004.
Surgical treatment was either analyzed as initial DCIS treatment (cumulative incidence) or as a time-varying variable including subsequent mastectomies (Cox regression analysis).
All statistical analyses were performed using STATA/SE 13.1 (StataCorp LP, College Station, TX). A two-sided P value less than 0.05 was considered statistically significant.

Results

Patient characteristics

Analyses included 10,090 women (Fig. 1), of whom 7931 (79 %) women were ≥50 years at DCIS diagnosis. Median age at DCIS diagnosis was 57.6 years (interquartile range 50.7–66.3 years). Median follow-up was 10.7 years (interquartile range 7.7–14.3 years). During follow-up, 1856 patients died. Table 1 shows characteristics, events and follow-up of the study population by treatment group.
Table 1
Characteristics of the study population by treatment group
Number of DCIS patients (%)
Initial DCIS treatment
BCS+RT
BCS alone
Mastectomy
Total
Age at DCIS diagnosis, years, median (interquartile range)
57.2 (51.2–65.2)
58.9 (51.2–67.2)
57.1 (49.9–66.5)
57.6 (50.7–66.3)
Age at DCIS diagnosis (years)
 <40
91 (3.5)
108 (4.1)
360 (7.5)
559 (5.5)
 40–49
367 (14.1)
371 (14.0)
862 (17.9)
1600 (15.9)
 50–59
1087 (41.6)
942 (35.4)
1553 (32.2)
3582 (35.5)
 60–69
739 (28.3)
785 (29.5)
1245 (25.8)
2769 (27.4)
 70–79
308 (11.8)
335 (12.6)
630 (13.1)
630 (13.1)
 >80
20 (0.8)
117 (4.4)
170 (3.5)
170 (3.5)
Period of DCIS diagnosis
 1989–1998 (implementation phase)
751 (28.8)
1677 (63.1)
2603 (54.0)
5031 (49.9)
 1999–2004 (full nationwide coverage)
1861 (71.3)
981 (36.9)
2217 (46.0)
5059 (50.1)
DCIS grade (1999–2004a)
 1
215 (13.6)
302 (40.8)
190 (10.2)
707 (16.9)
 2
578 (36.7)
235 (31.7)
554 (29.6)
1367 (32.6)
 3
783 (49.7)
204 (27.5)
1128 (60.3)
2115 (50.5)
Subsequent ipsilateral mastectomy
 No
2497 (95.6)
2345 (88.2)
NA
9662 (95.8)
 Yes
115 (4.4)
313 (11.8)
NA
428 (4.2)
Follow-up interval, years, median (interquartile range)
9.0 (7.1–11.9)
12.0 (9.0–15.3)
11.1 (7.8–14.9)
10.7 (7.7–14.3)
Follow-up interval (years)
 0–4b
101 (3.9)
202 (7.6)
301 (6.2)
604 (6.0)
 5–9
1458 (55.8)
656 (24.7)
1741 (36.1)
3855 (38.2)
 ≥10
1053 (40.3)
1800 (67.7)
2778 (57.6)
5631 (55.8)
Subsequent invasive breast cancerc
 No
2351 (90.0)
2167 (81.5)
4501 (93.4)
9019 (89.4)
 Ipsilateral only
130 (5.0)
336 (12.6)
68 (1.4)
534 (5.3)
 Contralateral only
122 (4.7)
117 (4.4)
243 (5.0)
482 (4.8)
 Ipsilateral+contralateral
9 (0.3)
38 (1.4)
7 (0.15)
54 (0.5)
Total
2612
2658
4820
10090
BCS breast-conserving surgery, RT radiotherapy
aData on grade is presented for cases diagnosed from 1999. Grade was not reported in 870 women (17.2 %)
bNine patients with follow-up time = 0 (BCS+RT n = 1, BCS alone n = 2, Mastectomy = 6)
cOne patient with unknown laterality of subsequent invasive breast cancer

DCIS treatment

Nearly 48 % (n = 4820) of DCIS patients were initially treated with mastectomy. Of all 5270 women initially treated with BCS, 50 % additionally received RT. Use of BCS increased over time in women <50 years (P trend  = 0.010) and ≥50 years (P trend  < 0.001). The use of RT after BCS also increased over time in both groups (P trend  < 0.001) (Fig. 2). Fifteen years after initial DCIS treatment, cumulative incidence of subsequent ipsilateral mastectomy was 5.2 % in the BCS+RT group, versus 12.0 % in the BCS-alone group.

Ipsilateral invasive breast cancer

During follow-up, 588 women developed an iIBC. The median time to iIBC was 5.8 years (interquartile range 2.8–9.0 years). Fifteen years after DCIS diagnosis, cumulative incidence of iIBC was 1.9 % [95 % confidence interval (95 % CI) 1.5–2.4 %] after mastectomy, 8.8 % (95 % CI 7.1–10.8 %) after BCS+RT, and 15.4 % (95 % CI 13.9–17.0 %) after BCS alone.
When assessing the risk of iIBC by treatment, the proportional hazards assumption was violated. We accounted for time dependency in the treatment effect by addition of an interaction term that involved time and treatment to the model (P interaction  < 0.001). Additionally, we found that the effect of treatment was different depending on age group (P interaction  < 0.0001). An extra interaction term that involved period of diagnosis and treatment was not significant (P interaction  = 0.445). Therefore, Table 2 presents the effect of treatment on iIBC risk by follow-up interval and age group.
Table 2
Multivariate Cox regression analysis for iIBC in women treated for DCIS
Age group at DCIS diagnosis
Follow-up time
Treatment
Total iIBC
Person-time (years)
HR (95 % CI)
P value
<50 years
0–5 years
BCS+RT
17
2186
Ref
 
BCS alone
36
2108
2.11 (1.35–3.29)
0.001
Mastectomy
19
6237
0.35 (0.20–0.61)
<0.001
5–10 years
BCS+RT
19
1579
Ref
 
BCS alone
23
1668
1.01 (0.66–1.55)
0.95
Mastectomy
12
5414
0.13 (0.07–0.23)
<0.001
>10 years
BCS+RT
15
808
Ref
 
BCS alone
20
1346
0.78 (0.46–1.33)
0.37
Mastectomy
11
4455
0.20 (0.11–0.37)
<0.001
≥50 years
0–5 years
BCS+RT
29
10394
Ref
 
BCS alone
141
9542
4.44 (3.11–6.36)
<0.001
Mastectomy
15
18066
0.27 (0.16–0.46)
< 0.001
5–10 years
BCS+RT
48
6971
Ref
 
BCS alone
112
7077
2.13 (1.54–2.96)
<0.001
Mastectomy
9
14806
0.10 (0.06–0.17)
<0.001
>10 years
BCS+RT
11
2353
Ref
 
BCS alone
40
4391
1.64 (1.01–2.69)
0.05
Mastectomy
11
9515
0.15 (0.08–0.29)
<0.001
Period of DCIS diagnosis
 1989–1998
  
412
67011
Ref
 
 1999–2004
  
176
41906
0.72 (0.59–0.87)
0.03
Age group at DCIS diagnosis
 <50 years
  
172
25801
Ref
 
 ≥50 years
  
416
83116
0.38 (0.25–0.59)
<0.001
With age as primary time-scale, and treatment as time-varying variable
iIBC ipsilateral invasive breast cancer, HR hazard ratio, CI confidence interval, BCS breast-conserving surgery, RT radiotherapy
Women diagnosed with DCIS between 1999 and 2004 were less likely to develop iIBC than women diagnosed between 1989 and 1998, regardless of treatment and age [hazard ratio (HR) 0.72, 95 % CI 0.59–0.87]. After adjusting for treatment and period, women ≥50 years had lower iIBC risk than <50 women years (HR 0.38, 95 % CI 0.25–0.59). Figure 3 shows the cumulative incidence of iIBC by treatment strategy stratified by period of DCIS diagnosis and age group at DCIS diagnosis.
Both women <50 and ≥50 years treated with BCS alone had a higher risk of developing iIBC than women treated with BCS+RT in the first 5 years after DCIS treatment. However, for women ≥50 years, the difference in iIBC risk after BCS alone compared to BCS+RT was much larger than for women <50 years (HR 2.11, 95 % CI 1.35–3.29 for women <50 years and HR 4.44, 95 % CI 3.11–6.36 for women ≥50 years). While among patients <50 years at DCIS diagnosis, risk of iIBC no longer differed after 5 years following BCS+RT or BCS alone (HR 1.01, 95 % CI 0.66–1.55 for 5–10 years follow-up and HR 0.78, 95 % CI 0.46–1.33 for ≥10 years follow-up), for women ≥50 years, iIBC risk remained increased after BCS alone during subsequent follow-up intervals, although the difference in risks was smaller than in the first 5 years (HR 1.64, 95 % CI 1.01–2.69 for ≥10 years follow-up). A trend in the proportional reduction with age was found when the data were subdivided into three groups according to age: <45, 45–55, and >55 years (data not shown).
Women undergoing mastectomy were less likely to develop iIBC compared to women undergoing BCS (Table 2). The highest absolute iIBC risk after mastectomy was seen for women <50 years treated between 1989 and 1998 (10-year cumulative incidence: 2.9 %, 95 % CI 1.9–4.4 %). For women ≥50 years diagnosed from 1999 to 2004 and treated with mastectomy, the 10-year cumulative incidence was lowest at 0.6 % (95 % CI 0.2–1.2 %).
In a subgroup analysis of women diagnosed with DCIS between 1999 and 2004, the Cox model including grade was comparable to the main model (data not shown). The difference in iIBC risk after BCS alone and BCS+RT was of the same magnitude [e.g., for women ≥50 years in the first 5 years after DCIS treatment: HR 4.78, 95 % CI 2.64–8.65 (model including grade) vs HR 4.57, 95 % CI 2.55–8.22 (main model)]. Additionally, iIBC risk did not differ by grade (adjusted estimate for intermediate vs low grade and high vs low grade: HR 1.25, 95 % CI 0.80–1.97 and HR 1.19, 95 % CI 0.75–1.87, respectively).

Contralateral invasive breast cancer

Contralateral IBC occurred in 536 women. The median time to cIBC was 6.2 years (interquartile range 3.3–9.8 years). Cumulative incidences of cIBC at 15 and 20 years after DCIS diagnosis were 6.4 % (95 % CI 5.9–7.1 %) and 8.9 % (95 % CI 7.7–10.1 %), respectively, reaching a rate of 0.4–0.5 % per annum. The risk of cIBC did not differ by treatment, period of diagnosis, or age group (see Supplemental Table 1, which demonstrates the multivariate Cox proportional hazards analysis for cIBC risk).
The cumulative risk of cIBC is visualized in Fig. 4. The absolute risk of developing cIBC in women treated for DCIS was slightly higher than the risk of IBC in the general population (3.4 % at 15 years).

Discussion

To the best of our knowledge, this is the largest population-based, nationwide cohort study with accurate and complete long-term outcome data of subsequent invasive breast cancer after DCIS treatment. For women treated with BCS, our study confirms the protective effect of RT with regard to iIBC risk shown by randomized controlled trials (RCTs) [2327, 32]. Importantly, the benefit of RT regarding iIBC risk may differ by age and follow-up interval. It appeared that the use of RT after BCS in women <50 years reduced the risk of iIBC only in the first years after treatment. In women ≥50 years, iIBC risk remained increased during subsequent follow-up after BCS alone, compared to BCS+RT, but the difference became less pronounced with longer follow-up. Our results suggest that RT is effective in treating microscopic residual disease, but may not prevent de novo IBC in DCIS patients. One of the RCTs also found that the beneficial effect of RT seemed to be restricted to the first 5 years after treatment [24].
Interestingly, the results of our Cox regression analysis point towards less benefit from RT in women <50 years than in older women. This observation could be due to confounding if for example younger women treated with RT were more likely to have DCIS with unfavorable prognostic features. However, a meta-analysis of the RCTs also found age to modify the benefit of RT: women <50 years showed a smaller proportional risk reduction in the rate of local recurrence (either in situ or invasive) than women ≥50. A trend in the proportional reduction with age was also found when the data were subdivided into five age groups and was independent of histological grade, comedonecrosis, nuclear grade, or architecture [32].
Additionally, we found high iIBC risks after BCS—either with or without RT—in women <50 years. Moreover, these young women treated with mastectomy had a higher cumulative iIBC incidence than older women who received this treatment. Prior studies have also reported that local recurrences following mastectomy seem to occur particularly in younger women [3335]. Data that may explain this higher risk in younger women are limited and inconsistent [3538]. Despite the increased iIBC risk, young age per se should not be considered a contraindication for BCS, especially because breast cancer-specific mortality has not been shown to differ between mastectomy and BCS [32, 39].
Another clinical relevant observation is that the absolute risk of cIBC was low with a rate of 0.4–0.5 % per annum. This result is comparable to the population-based study by Falk et al. (n = 3,163; median follow-up 5.2 years) [15]. Despite the low cIBC risk, a marked increase in the use of contralateral prophylactic mastectomies among women with DCIS in recent years has been reported [4042]. Because contralateral prophylactic mastectomies will not likely result in any survival advantage despite the minimization of cIBC risk [43] and are not risk-free [4345], we advocate that prophylactic contralateral mastectomies for DCIS in women without hereditary breast cancer risk should be discouraged.
One of the strengths of our study was that we differentiated between invasive and non-invasive recurrences. Our 10-year estimates are in line with the 10-year absolute risks reported in other population-based cohort studies and RCTs [15, 17, 32]. However, direct comparison with previous studies, which focused most of their analyses on any local recurrence as outcome, is often difficult. Differences in study design, inclusion criteria, and statistical methods (e.g., cumulative incidence vs Kaplan–Meier estimates) may for example play a role.
Interestingly, the 10-year cumulative incidence and Kaplan–Meier estimates in two, rather small, North American non-randomized prospective studies of women with “favorable” DCIS treated with BCS alone between 1995 and 2002, were only slightly lower than the 10-year cumulative incidence of iIBC for women diagnosed between 1999 and 2004 and treated with BCS alone in our population-based cohort [21, 22]. On the other hand, the estimated 7-year iIBC cumulative incidences in a fifth RCT between BCS+RT (n = 287) and BCS alone (n = 298) in a selected “good-risk” group of women were much lower [23]. Notably, in this RCT in which 62 % of women used tamoxifen, only eight iIBCs occurred in the BCS-alone arm, and only one in the BCS+RT arm (median follow-up 7.2 years). The differences in risk estimates could be explained by differences in selection criteria, and utilization of tamoxifen, although the effect of tamoxifen on iIBC seems to be minimal [46].
A limitation of our study is the potential of confounding by indication. As the allocation of DCIS treatment was not randomized and the indication for treatment may have been related to the risk of IBC, this could have introduced bias. It is plausible to assume that women with less favorable characteristics more often received adjuvant RT after BCS. Therefore, if confounding by indication plays a role, this will probably have resulted in an underestimation of the difference in iIBC risk between BCS+RT and BCS alone. Although grade was associated with treatment strategy in our study, we found that grade was not a confounding factor in our subgroup analysis, as grade was not associated with iIBC risk. We did not have information on several other risk factors associated with local recurrence, such as DCIS size and margin status after excision. However, it is still uncertain to what extent these factors are associated with subsequent invasive breast cancer risk [47, 48] and therefore whether these could be confounding factors in our study.
A last issue concerns the applicability of our results to today’s clinical practice. Our study shows that the risk of developing iIBC was lower for women diagnosed between 1999 and 2004 than for women diagnosed between 1989 and 1998, while risk of cIBC was similar for both periods. The decrease in iIBC risk over the years was independent of treatment strategy and is likely the result of the detection of relatively more harmless DCIS lesions and improvements in preoperative assessment and surgical management. Most likely, the risk found for the latter period reflects the upper boundary of today’s risk of iIBC in women treated for DCIS, as patient evaluation and selection for treatment have evolved further since 2004.
It should be emphasized that the women in our cohort were not treated with tamoxifen for DCIS. In the Netherlands, hormonal treatment for DCIS is not recommended and its use is very limited in current clinical practice [49, 50]. A meta-analysis of RCTs assessing the effect of postoperative tamoxifen showed a reduced rate of cIBC, but no impact on the risk of iIBC or all-cause mortality [46]. The difference in absolute IBC risk between our cohort and a population in which tamoxifen was more common will therefore probably be limited.
In summary, our finding that the reduction in iIBC risk among women treated with BCS + RT, compared to BCS alone, diminishes with longer follow-up, emphasizes the importance of clinical studies with long-term follow-up. Furthermore, the beneficial effect of RT seems to be smaller among younger women and should be investigated further. Finally, the low risk of cIBC does not justify contralateral prophylactic mastectomies for many women with unilateral DCIS.

Acknowledgments

The authors thank Otto Visser, Annemarie Eeltink and the registration teams of the Netherlands Comprehensive Cancer Organization for the collection of data for the Netherlands Cancer Registry. The authors also thank Lucy Overbeek and PALGA, the nationwide histopathology and cytopathology data network and archive, for providing pathology data. This work was supported by Pink Ribbon (Grant Number 2011.WO19.C88 to J.W.) and the Dutch Cancer Society (Grant Number NKI2009-4363 to M.K.S.).

Funding

This study was funded by Pink Ribbon (Grant Number 2011.WO19.C88 to J.W.) and the Dutch Cancer Society (Grant Number NKI2009-4363 to M.K.S.).

Compliance with Ethical Standards

Conflict of Interest

LE Elshof, M Schaapveld, MK Schmidt, EJ Rutgers, FE van Leeuwen, and J Wesseling declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.
The study was approved by the review boards of the Netherlands Cancer Regsitry and PALGA, the nationwide histopathology and cytopathology data network and archive. The study used only unidentifiable patient information, and no informed consent was required.

Reasearch involving human and animal rights

This article does not contain any studies with animals performed by any of the authors.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Gynäkologie

Kombi-Abonnement

Mit e.Med Gynäkologie erhalten Sie Zugang zu CME-Fortbildungen der beiden Fachgebiete, den Premium-Inhalten der Fachzeitschriften, inklusive einer gedruckten gynäkologischen oder urologischen Zeitschrift Ihrer Wahl.

Anhänge

Electronic supplementary material

Literatur
3.
Zurück zum Zitat Ernster VL, Ballard-Barbash R, Barlow WE et al (2002) Detection of ductal carcinoma in situ in women undergoing screening mammography. J Natl Cancer Inst 94:1546–1554CrossRefPubMed Ernster VL, Ballard-Barbash R, Barlow WE et al (2002) Detection of ductal carcinoma in situ in women undergoing screening mammography. J Natl Cancer Inst 94:1546–1554CrossRefPubMed
6.
Zurück zum Zitat Vigeland E, Klaasen H, Klingen TA et al (2008) Full-field digital mammography compared to screen film mammography in the prevalent round of a population-based screening programme: the Vestfold County study. Eur Radiol 18:183–191. doi:10.1007/s00330-007-0730-y CrossRefPubMed Vigeland E, Klaasen H, Klingen TA et al (2008) Full-field digital mammography compared to screen film mammography in the prevalent round of a population-based screening programme: the Vestfold County study. Eur Radiol 18:183–191. doi:10.​1007/​s00330-007-0730-y CrossRefPubMed
7.
Zurück zum Zitat Bluekens AMJ, Holland R, Karssemeijer N et al (2012) Comparison of digital screening mammography and screen-film mammography in the early detection of clinically relevant cancers: a multicenter study. Radiology 265:707–714. doi:10.1148/radiol.12111461 CrossRefPubMed Bluekens AMJ, Holland R, Karssemeijer N et al (2012) Comparison of digital screening mammography and screen-film mammography in the early detection of clinically relevant cancers: a multicenter study. Radiology 265:707–714. doi:10.​1148/​radiol.​12111461 CrossRefPubMed
9.
Zurück zum Zitat Howlader N, Noone AM, Krapcho M, et al. SEER cancer statistics review, 1975–2010, National Cancer Institute Howlader N, Noone AM, Krapcho M, et al. SEER cancer statistics review, 1975–2010, National Cancer Institute
11.
Zurück zum Zitat Boekel NB, Schaapveld M, Gietema JA et al (2014) Cardiovascular morbidity and mortality after treatment for ductal carcinoma in situ of the breast. J Natl Cancer Inst 106:156. doi:10.1093/jnci/dju156 CrossRef Boekel NB, Schaapveld M, Gietema JA et al (2014) Cardiovascular morbidity and mortality after treatment for ductal carcinoma in situ of the breast. J Natl Cancer Inst 106:156. doi:10.​1093/​jnci/​dju156 CrossRef
12.
Zurück zum Zitat Gierisch JM, Myers ER, Schmit KM et al (2014) Prioritization of research addressing management strategies for ductal carcinoma in situ. Ann Intern Med 160:484–491. doi:10.7326/M13-2548 CrossRefPubMed Gierisch JM, Myers ER, Schmit KM et al (2014) Prioritization of research addressing management strategies for ductal carcinoma in situ. Ann Intern Med 160:484–491. doi:10.​7326/​M13-2548 CrossRefPubMed
13.
Zurück zum Zitat Ripping TM, Verbeek ALM, Fracheboud J et al (2015) Overdiagnosis by mammographic screening for breast cancer studied in birth cohorts in The Netherlands. Int J Cancer 137:921–929. doi:10.1002/ijc.29452 CrossRefPubMed Ripping TM, Verbeek ALM, Fracheboud J et al (2015) Overdiagnosis by mammographic screening for breast cancer studied in birth cohorts in The Netherlands. Int J Cancer 137:921–929. doi:10.​1002/​ijc.​29452 CrossRefPubMed
17.
Zurück zum Zitat Rakovitch E, Nofech-Mozes S, Narod SA et al (2013) Can we select individuals with low risk ductal carcinoma in situ (DCIS)? A population-based outcomes analysis. Breast Cancer Res Treat 138:581–590. doi:10.1007/s10549-013-2455-8 CrossRefPubMed Rakovitch E, Nofech-Mozes S, Narod SA et al (2013) Can we select individuals with low risk ductal carcinoma in situ (DCIS)? A population-based outcomes analysis. Breast Cancer Res Treat 138:581–590. doi:10.​1007/​s10549-013-2455-8 CrossRefPubMed
18.
Zurück zum Zitat Schouten van der Velden AP, van Vugt R, Van Dijck JAAM et al (2007) Local recurrences after different treatment strategies for ductal carcinoma in situ of the breast: a population-based study in the East Netherlands. Int J Radiat Oncol Biol Phys 69:703–710. doi:10.1016/j.ijrobp.2007.03.062 CrossRefPubMed Schouten van der Velden AP, van Vugt R, Van Dijck JAAM et al (2007) Local recurrences after different treatment strategies for ductal carcinoma in situ of the breast: a population-based study in the East Netherlands. Int J Radiat Oncol Biol Phys 69:703–710. doi:10.​1016/​j.​ijrobp.​2007.​03.​062 CrossRefPubMed
21.
Zurück zum Zitat Wong JS, Chen Y-H, Gadd MA et al (2014) Eight-year update of a prospective study of wide excision alone for small low- or intermediate-grade ductal carcinoma in situ (DCIS). Breast Cancer Res Treat 143:343–350. doi:10.1007/s10549-013-2813-6 CrossRefPubMed Wong JS, Chen Y-H, Gadd MA et al (2014) Eight-year update of a prospective study of wide excision alone for small low- or intermediate-grade ductal carcinoma in situ (DCIS). Breast Cancer Res Treat 143:343–350. doi:10.​1007/​s10549-013-2813-6 CrossRefPubMed
24.
Zurück zum Zitat Donker M, Litière S, Werutsky G et al (2013) Breast-conserving treatment with or without radiotherapy in ductal carcinoma in situ: 15-year recurrence rates and outcome after a recurrence, from the EORTC 10853 randomized phase III trial. J Clin Oncol 31:4054–4059. doi:10.1200/JCO.2013.49.5077 CrossRefPubMed Donker M, Litière S, Werutsky G et al (2013) Breast-conserving treatment with or without radiotherapy in ductal carcinoma in situ: 15-year recurrence rates and outcome after a recurrence, from the EORTC 10853 randomized phase III trial. J Clin Oncol 31:4054–4059. doi:10.​1200/​JCO.​2013.​49.​5077 CrossRefPubMed
25.
26.
27.
28.
Zurück zum Zitat Casparie M, Tiebosch ATMG, Burger G et al (2007) Pathology databanking and biobanking in The Netherlands, a central role for PALGA, the nationwide histopathology and cytopathology data network and archive. Cell Oncol 29:19–24PubMedPubMedCentral Casparie M, Tiebosch ATMG, Burger G et al (2007) Pathology databanking and biobanking in The Netherlands, a central role for PALGA, the nationwide histopathology and cytopathology data network and archive. Cell Oncol 29:19–24PubMedPubMedCentral
29.
Zurück zum Zitat Holland R, Peterse JL, Millis RR et al (1994) Ductal carcinoma in situ: a proposal for a new classification. Semin Diagn Pathol 11:167–180PubMed Holland R, Peterse JL, Millis RR et al (1994) Ductal carcinoma in situ: a proposal for a new classification. Semin Diagn Pathol 11:167–180PubMed
30.
Zurück zum Zitat Fine JPG, Gray RJ (1999) A proportional hazards model for the subdistribution of a competing risk. J Am Stat Assoc 94:496–509CrossRef Fine JPG, Gray RJ (1999) A proportional hazards model for the subdistribution of a competing risk. J Am Stat Assoc 94:496–509CrossRef
31.
Zurück zum Zitat Ederer F, Heise H (1959) Instructions to Ibm 650 programmers in processing survival computations. Technical end results evaluation section. National Cancer Institute, Bethesda Ederer F, Heise H (1959) Instructions to Ibm 650 programmers in processing survival computations. Technical end results evaluation section. National Cancer Institute, Bethesda
32.
Zurück zum Zitat Correa C, McGale P (2010) Overview of the randomized trials of radiotherapy in ductal carcinoma in situ of the breast early breast cancer trialists’ collaborative group (EBCTCG). J Natl Cancer Inst Monogr 2010:162–177. doi:10.1093/jncimonographs/lgq039 CrossRefPubMed Correa C, McGale P (2010) Overview of the randomized trials of radiotherapy in ductal carcinoma in situ of the breast early breast cancer trialists’ collaborative group (EBCTCG). J Natl Cancer Inst Monogr 2010:162–177. doi:10.​1093/​jncimonographs/​lgq039 CrossRefPubMed
35.
Zurück zum Zitat Vicini FA, Recht A (2002) Age at diagnosis and outcome for women with ductal carcinoma-in situ of the breast: a critical review of the literature. J Clin Oncol 20:2736–2744CrossRefPubMed Vicini FA, Recht A (2002) Age at diagnosis and outcome for women with ductal carcinoma-in situ of the breast: a critical review of the literature. J Clin Oncol 20:2736–2744CrossRefPubMed
37.
Zurück zum Zitat Pradier C, Cornuau M, Norca J et al (2011) Differences in breast carcinoma in situ between menopausal and premenopausal women. Anticancer Res 31:1783–1788PubMed Pradier C, Cornuau M, Norca J et al (2011) Differences in breast carcinoma in situ between menopausal and premenopausal women. Anticancer Res 31:1783–1788PubMed
42.
44.
Zurück zum Zitat Montgomery LL, Tran KN, Heelan MC et al (1999) Issues of regret in women with contralateral prophylactic mastectomies. Ann Surg Oncol 6:546–552CrossRefPubMed Montgomery LL, Tran KN, Heelan MC et al (1999) Issues of regret in women with contralateral prophylactic mastectomies. Ann Surg Oncol 6:546–552CrossRefPubMed
48.
Zurück zum Zitat Kerlikowske K, Molinaro A, Cha I et al (2003) Characteristics associated with recurrence among women with ductal carcinoma in situ treated by lumpectomy. J Natl Cancer Inst 95:1692–1702CrossRefPubMed Kerlikowske K, Molinaro A, Cha I et al (2003) Characteristics associated with recurrence among women with ductal carcinoma in situ treated by lumpectomy. J Natl Cancer Inst 95:1692–1702CrossRefPubMed
49.
Zurück zum Zitat Elshof LE, Tryfonidis K, Slaets L et al (2015) Feasibility of a prospective, randomised, open-label, international multicentre, phase III, non-inferiority trial to assess the safety of active surveillance for low risk ductal carcinoma in situ—The LORD study. Eur J Cancer 51:1497–1510. doi:10.1016/j.ejca.2015.05.008 CrossRefPubMed Elshof LE, Tryfonidis K, Slaets L et al (2015) Feasibility of a prospective, randomised, open-label, international multicentre, phase III, non-inferiority trial to assess the safety of active surveillance for low risk ductal carcinoma in situ—The LORD study. Eur J Cancer 51:1497–1510. doi:10.​1016/​j.​ejca.​2015.​05.​008 CrossRefPubMed
Metadaten
Titel
Subsequent risk of ipsilateral and contralateral invasive breast cancer after treatment for ductal carcinoma in situ: incidence and the effect of radiotherapy in a population-based cohort of 10,090 women
verfasst von
Lotte E. Elshof
Michael Schaapveld
Marjanka K. Schmidt
Emiel J. Rutgers
Flora E. van Leeuwen
Jelle Wesseling
Publikationsdatum
08.09.2016
Verlag
Springer US
Erschienen in
Breast Cancer Research and Treatment / Ausgabe 3/2016
Print ISSN: 0167-6806
Elektronische ISSN: 1573-7217
DOI
https://doi.org/10.1007/s10549-016-3973-y

Weitere Artikel der Ausgabe 3/2016

Breast Cancer Research and Treatment 3/2016 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.