Skip to main content

Advertisement

Log in

Influence of iterative image reconstruction on CT-based calcium score measurements

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Iterative reconstruction techniques for coronary CT angiography have been introduced as an alternative for traditional filter back projection (FBP) to reduce image noise, allowing improved image quality and a potential for dose reduction. However, the impact of iterative reconstruction on the coronary artery calcium score is not fully known. In 112 consecutive stable patients with suspected coronary artery disease, the coronary calcium scores were assessed. Comparisons were made between the Agatston, volume and mass scores obtained with traditional FBP, and by using adaptive statistical iterative reconstruction (ASIR). A significant reduction of the Agatston score, volume score and mass score was observed for ASIR when compared to FBP, with median differences of resp. 26, 5 mm3 and 1 mg. Using the ASIR reconstruction, the number of patients with a calcium score of zero increased by 13 %. Iterative CT reconstruction significantly reduces the Agatston, volume and mass scores. Since the calcium score is used as a prognostic tool for coronary artery disease, caution must be taken when using iterative reconstruction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

FBP:

Filtered back projection

IR:

Iterative reconstruction

ASIR:

Adaptive statistical iterative reconstruction

CAC:

Coronary artery calcium

CAD:

Coronary artery disease

CCTA:

Coronary CT angiography

References

  1. Simons DB, Schwarz RS, Edwards WD et al (1992) Noninvasive definition of anatomic coronary artery disease by ultrafast computed tomographic scanning: a quantitative pathologic comparison study. J Am Coll Cardiol 20(5):1118–1126

    Article  CAS  PubMed  Google Scholar 

  2. Budoff MJ, Shaw LJ, Liu ST et al (2007) Long-term prognosis associated with coronary calcification: observations from a registry of 25,253 patients. J Am Coll Cardiol 49(18):1860–1870

    Article  PubMed  Google Scholar 

  3. Shaw LJ, Raggi P, Schisterman E et al (2003) Prognostic value of cardiac risk factors and coronary artery calcium screening for all-cause mortality. Radiology 228(3):826–833

    Article  PubMed  Google Scholar 

  4. Budoff MJ, Diamond GA, Raggi P et al (2002) Continuous probabilistic prediction of angiographically significant coronary artery disease using electron beam tomography. Circulation 105(15):1791–1796

    Article  PubMed  Google Scholar 

  5. Sarwar A, Shaw LJ, Shapiro MD et al (2009) Diagnostic and prognostic value of absence of coronary artery calcification. JACC Cardiovasc Imaging 2(6):675–688. Review. Erratum in: JACC Cardiovasc Imaging 2010;3(10):1089. Hoffmann, Udo [corrected to Hoffmann, Udo]

  6. Haberl R, Becker A, Leber A et al (2001) Correlation of coronary calcification and angiographically documented stenosis in patients with coronary artery disease: results of 1,764 patients. J Am Coll Cardiol 37(2):451–457

    Article  CAS  PubMed  Google Scholar 

  7. Knez A, Becker A, Leber A et al (2004) Relation of coronary calcium scores by electron beam tomography to obstructive disease in 2,115 symptomatic patients. Am J Cardiol 93(9):1150–1152

    Article  CAS  PubMed  Google Scholar 

  8. Villines TC, Hulten EA, Shaw LF et al (2011) Prevalence and severity of coronary artery disease and adverse events among symptomatic patients with coronary artery calcification scores of zero undergoing coronary computed tomography angiography results from the CONFIRM (Coronary CT Angiography Evaluation for Clinical Outcomes: an International Multicenter) Registry. J Am Coll Cardiol 58(24):2533–2540

    Article  PubMed  Google Scholar 

  9. Mouden M, Timmer JR, Reiffers S et al (2013) Coronary artery calcium scoring to exclude flow-limiting coronary artery disease in symptomatic stable patients at low or intermediate risk. Radiology [Epub ahead of print], PMID:23788718

  10. Hecht HS (2011) Controversies in nuclear cardiology: CT calcium scoring should be routinely performed in patients undergoing myocardial perfusion imaging who have a normal test result (and should be routinely performed before myocardial perfusion imaging)–pro. J Nucl Cardiol 18:695–699

    Article  PubMed  Google Scholar 

  11. Thompson RC, McGhie AI, Moser KW et al (2005) Clinical utility of coronary calcium scoring after nonischemic myocardial perfusion imaging. J Nucl Cardiol 12:392–400

    Article  PubMed  Google Scholar 

  12. Bybee KA, Lee J, Markiewicz R et al (2010) Diagnostic and clinical benefit of combined coronary calcium and perfusion assessment in patients undergoing PET/CT myocardial stress perfusion imaging. J Nucl Cardiol 17:188–196

    Article  PubMed  Google Scholar 

  13. Fazel R, Krumholz HM, Yongfei Wang SM et al (2009) Exposure to low-dose ionizing radiation from medical imaging procedures. N Engl J Med 361:849–857

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Moscariello A, Takx RA, Schoepf UJ et al (2011) Coronary CT angiography: image quality, diagnostic accuracy, and potential for radiation dose reduction using a novel iterative image reconstruction technique-comparison with traditional filtered back projection. Eur Radiol 21(10):2130–2138

    Article  PubMed  Google Scholar 

  15. Utsunomiya D, Weigold WG, Weissman G et al (2012) Effect of hybrid iterative reconstruction technique on quantitative and qualitative image analysis at 256-slice prospective gating cardiac CT. Eur Radiol 22(6):1287–1294

    Article  PubMed  Google Scholar 

  16. Renker M, Ramachandra A, Schoepf JU (2011) Iterative image reconstruction techniques: applications for cardiac CT. J Cardiovasc Comput Tomogr 5(4):225–230

    Article  PubMed  Google Scholar 

  17. Renker M, Nance JW, Schoepf UJ (2011) Evaluation of heavily calcified vessels with coronary CT angiography: comparison of iterative and filtered back projection image reconstruction. Radiology 260(2):390–399

    Article  PubMed  Google Scholar 

  18. Leipsic J, Heilbron BG, Hague C et al (2012) Iterative reconstruction for coronary CT angiography: finding its way. Int J Cardiovasc Imaging 28(3):613–620

    Article  PubMed  Google Scholar 

  19. Ebersberger U, Tricarico F, Schoepf UJ et al (2012) CT evaluation of coronary artery stents with iterative image reconstruction: improvements in image quality and potential for radiation dose reduction. Eur Radiol 31:125–132. doi:10.1007/s00330-012-2580-5

    Google Scholar 

  20. Murazaki H, Funama Y, Hatemura M et al (2011) Quantitative evaluation of calcium (content) in the coronary artery using hybrid iterative reconstruction (iDose) algorithm on low-dose 64-detector CT: comparison of iDose and filtered back projection. Nihon Hoshasen Gijutsu Gakkai Zasshi 67(4):360–366 (printed in Japanese)

    Article  PubMed  Google Scholar 

  21. Funabashi N, Irie R, Aiba M et al (2013) Adaptive-iterative-dose-reduction 3D with multisector-reconstruction method in 320-slice CT may maintain accurate-measurement of the Agatston-calcium-score of severe-calcification even at higher pulsating-beats and low tube-current in vitro. Int J Cardiol 168(1):601–603

    Article  PubMed  Google Scholar 

  22. Blobel J, Mews J, Schuijf JD et al (2013) Determining the radiation dose reduction potential for coronary calcium scanning with computed tomography: an anthropomorphic phantom study comparing filtered backprojection and the adaptive iterative dose reduction algorithm for image reconstruction. Invest Radiol 48(12):857–862. doi:10.1097/RLI.0b013e31829e3932

  23. Gebhard C, Fiechter M, Fuchs TA (2012). Coronary artery calcium score influence of adaptive statistical iterative reconstruction using 64 MDCT. Int J Cardiol [Epub ahead of print]

  24. Kurata A, Dharampal A, Dedic A et al (2013). Impact of iterative reconstruction on CT coronary calcium quantification. Eur Radiol. doi:10.1007/s00330-013-3022-8

  25. Diamond GA, Forrester JS (1979) Analysis of probability as an aid in the clinical diagnosis of coronary-artery disease. N Eng J Med 300:1350–1358

    Article  CAS  Google Scholar 

  26. Agatston AS, Janowitz WR, Hildner FJ et al (1990) Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol 15:827–832

    Article  CAS  PubMed  Google Scholar 

  27. Huda W, Ogden KM, Khorasani MR (2008) Converting dose-length product to effective dose at CT. Radiology 248:995–1003

    Article  PubMed Central  PubMed  Google Scholar 

  28. Budoff MJ, Nasir K, McClelland RL et al (2009) Coronary calcium predicts events better with absolute calcium scores than age–sex–race/ethnicity percentiles. J Am Coll Cardiol 53(4):345–352

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Becker CR, Kleffel T, Crispin A (2001) Coronary artery calcium measurement: agreement of multirow detector and electron beam CT. Am J Radiol 176:1295–1298

    CAS  Google Scholar 

  30. Thibault JB, Sauer KD, Bouman CA et al (2007) A three-dimensional statistical approach to improved image quality for multislice helical CT. Med Phys 34(11):4526–4544

    Google Scholar 

  31. Richard S, Husarik DB, Yadava G et al (2012). Towards task-based assessment of CT performance: system and object MTF across different reconstruction algorithms. Med Phys 39(7): 4115–4122. doi:10.1118/1.4725171

    Google Scholar 

  32. Willemink MJ, Leiner T, de Jong PA et al (2013) Iterative reconstruction techniques for computed tomography part 2: initial results in dose reduction and image quality. Eur Radiol 23(6):1632–1642

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jochen A. C. van Osch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Osch, J.A.C., Mouden, M., van Dalen, J.A. et al. Influence of iterative image reconstruction on CT-based calcium score measurements. Int J Cardiovasc Imaging 30, 961–967 (2014). https://doi.org/10.1007/s10554-014-0409-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-014-0409-9

Keywords

Navigation