Skip to main content
Log in

Comparison of conventional and cadmium–zinc–telluride single-photon emission computed tomography for analysis of thallium-201 myocardial perfusion imaging: an exploratory study in normal databases for different ethnicities

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

The aim of this study was to clarify the differences in thallium-201–chloride (thallium-201) myocardial perfusion imaging (MPI) scans evaluated by conventional anger-type single-photon emission computed tomography (conventional SPECT) versus cadmium–zinc–telluride SPECT (CZT SPECT) imaging in normal databases for different ethnic groups. MPI scans from 81 consecutive Japanese patients were examined using conventional SPECT and CZT SPECT and analyzed with the pre-installed quantitative perfusion SPECT (QPS) software. We compared the summed stress score (SSS), summed rest score (SRS), and summed difference score (SDS) for the two SPECT devices. For a normal MPI reference, we usually use Japanese databases for MPI created by the Japanese Society of Nuclear Medicine, which can be used with conventional SPECT but not with CZT SPECT. In this study, we used new Japanese normal databases constructed in our institution to compare conventional and CZT SPECT. Compared with conventional SPECT, CZT SPECT showed lower SSS (p < 0.001), SRS (p = 0.001), and SDS (p = 0.189) using the pre-installed SPECT database. In contrast, CZT SPECT showed no significant difference from conventional SPECT in QPS analysis using the normal databases from our institution. Myocardial perfusion analyses by CZT SPECT should be evaluated using normal databases based on the ethnic group being evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Mannting F, Morgan-Mannting MG (1993) Gated SPECT with technetium-99m-sestamibi for assessment of myocardial perfusion abnormalities. J Nucl Med 34(4):601–608

    CAS  PubMed  Google Scholar 

  2. DePuey EG, Rozanski A (1995) Using gated technetium-99m-sestamibi SPECT to characterize fixed myocardial defects as infarct or artifact. J Nucl Med 36(6):952–955

    CAS  PubMed  Google Scholar 

  3. Iskandrian AE, Germano G, VanDecker W, Ogilby JD, Wolf N, Mintz R et al (1998) Validation of left ventricular volume measurements by gated SPECT 99mTc-labeled sestamibi imaging. J Nucl Cardiol 5(6):574–578

    Article  CAS  PubMed  Google Scholar 

  4. Shanoudy H, Raggi P, Beller GA, Soliman A, Ammermann EG, Kastner RJ et al (1998) Comparison of technetium-99m tetrofosmin and thallium-201 single-photon emission computed tomographic imaging for detection of myocardial perfusion defects in patients with coronary artery disease. J Am Coll Cardiol 31(2):331–337

    Article  CAS  PubMed  Google Scholar 

  5. Husain SS (2007) Myocardial perfusion imaging protocols: is there an ideal protocol? J Nucl Med Technol 35(1):3–9

    PubMed  Google Scholar 

  6. Sharir T, Ben-Haim S, Merzon K, Prochorov V, Dickman D, Ben-Haim S et al (2008) High-speed myocardial perfusion imaging initial clinical comparison with conventional dual detector anger camera imaging. JACC Cardiovasc Imaging 1(2):156–163

    Article  PubMed  Google Scholar 

  7. Nakazato R, Slomka PJ, Fish M, Schwartz RG, Hayes SW, Thomson LE et al (2015) Quantitative high-efficiency cadmium-zinc-telluride SPECT with dedicated parallel-hole collimation system in obese patients: results of a multi-center study. J Nucl Cardiol 22(2):266–275

    Article  PubMed  Google Scholar 

  8. Berman DS, Kang X, Tamarappoo B, Wolak A, Hayes SW, Nakazato R et al (2009) Stress thallium-201/rest technetium-99m sequential dual isotope high-speed myocardial perfusion imaging. JACC Cardiovasc Imaging 2(3):273–282

    Article  PubMed  Google Scholar 

  9. Ben-Haim S, Kacperski K, Hain S, Van Gramberg D, Hutton BF, Erlandsson K et al (2010) Simultaneous dual-radionuclide myocardial perfusion imaging with a solid-state dedicated cardiac camera. Eur J Nucl Med Mol Imaging 37(9):1710–1721

    Article  PubMed  PubMed Central  Google Scholar 

  10. Einstein AJ, Blankstein R, Andrews H, Fish M, Padgett R, Hayes SW et al (2014) Comparison of image quality, myocardial perfusion, and left ventricular function between standard imaging and single-injection ultra-low-dose imaging using a high-efficiency SPECT camera: the MILLISIEVERT study. J Nucl Med 55(9):1430–1437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tanaka H, Chikamori T, Tanaka N, Hida S, Igarashi Y, Yamashita J et al (2014) Diagnostic performance of a novel cadmium-zinc-telluride gamma camera system assessed using fractional flow reserve. Circ J 78(11):2727–2734

    Article  PubMed  Google Scholar 

  12. Hori Y, Yoda S, Nakanishi K, Tano A, Suzuki Y, Matsumoto N et al (2015) Myocardial ischemic reduction evidenced by gated myocardial perfusion imaging after treatment results in good prognosis in patients with coronary artery disease. J Cardiol 65(4):278–284

    Article  PubMed  Google Scholar 

  13. Shiraishi S, Sakamoto F, Tsuda N, Yoshida M, Tomiguchi S, Utsunomiya D et al (2015) Prediction of left main or 3-vessel disease using myocardial perfusion reserve on dynamic thallium-201 single-photon emission computed tomography with a semiconductor gamma camera. Circ J 79(3):623–631

    Article  PubMed  Google Scholar 

  14. Ishihara M, Taniguchi Y, Onoguchi M, Shibutani T (2016) Optimal thallium-201 dose in cadmium-zinc-telluride SPECT myocardial perfusion imaging. J Nucl Cardiol. doi:10.1007/s12350-016-0749-z

    Google Scholar 

  15. Erlandsson K, Kacperski K, van Gramberg D, Hutton BF (2009) Performance evaluation of D-SPECT: a novel SPECT system for nuclear cardiology. Phys Med Biol 54(9):2635–2649

    Article  PubMed  Google Scholar 

  16. Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. The Lancet 1(8476):307–310

    Article  CAS  Google Scholar 

  17. Baggish AL, Boucher CA (2008) Radiopharmaceutical agents for myocardial perfusion imaging. Circulation 118(16):1668–1674

    Article  PubMed  Google Scholar 

  18. Chen CC, Huang WS, Hung GU, Chen WC, Kao CH, Chen J (2013) Left-ventricular dyssynchrony evaluated by thallium-201 gated SPECT myocardial perfusion imaging: a comparison with Tc-99m sestamibi. Nucl Med Commun 34(3):229–232

    Article  PubMed  PubMed Central  Google Scholar 

  19. Songy B, Lussato D, Guernou M, Queneau M, Geronazzo R (2011) Comparison of myocardial perfusion imaging using thallium-201 between a new cadmium-zinc-telluride cardiac camera and a conventional SPECT camera. Clin Nucl Med 36(9):776–780

    Article  PubMed  Google Scholar 

  20. Sharir T, Slomka PJ, Hayes SW, DiCarli MF, Ziffer JA, Martin WH et al (2010) Multicenter trial of high-speed versus conventional single-photon emission computed tomography imaging: quantitative results of myocardial perfusion and left ventricular function. J Am Coll Cardiol 55(18):1965–1974

    Article  PubMed  Google Scholar 

  21. Cuberas-Borrós G, Aguadé-Bruix S, Boronat-de Ferrater M, Muxi-Pradas MA, Romero-Farina G, Castell-Conesa J et al (2010) Normal myocardial perfusion SPECT database for the Spanish population. Rev Esp Cardiol 63(8):934–942

    Article  PubMed  Google Scholar 

  22. Nakajima K, Kumita S, Ishida Y, Momose M, Hashimoto J, Morita K et al (2007) Creation and characterization of Japanese standards for myocardial perfusion SPECT: database from the Japanese Society of Nuclear Medicine Working Group. Ann Nucl Med 21(9):505–511

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank all their coworkers, including the radiological technologists and cardiologists, at Hyogo Brain and Heart Center at Himeji, Himeji.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahisa Onoguchi.

Ethics declarations

Conflict of interest

All authors have nothing to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishihara, M., Onoguchi, M., Taniguchi, Y. et al. Comparison of conventional and cadmium–zinc–telluride single-photon emission computed tomography for analysis of thallium-201 myocardial perfusion imaging: an exploratory study in normal databases for different ethnicities. Int J Cardiovasc Imaging 33, 2057–2066 (2017). https://doi.org/10.1007/s10554-017-1205-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-017-1205-0

Keywords

Navigation