Skip to main content
Erschienen in: Cancer and Metastasis Reviews 2/2008

01.06.2008

SV40 small T antigen and PP2A phosphatase in cell transformation

verfasst von: Anna A. Sablina, William C. Hahn

Erschienen in: Cancer and Metastasis Reviews | Ausgabe 2/2008

Einloggen, um Zugang zu erhalten

Abstract

The SV40 early region protein, SV40 small t antigen, promotes cell transformation through negative regulation of the protein phosphatase 2A (PP2A) family of serine–threonine phosphatases. More recently, reduced levels of PP2A activity have been found in different types of human cancer. This occurs either through inactivating mutations of PP2A structural subunits, or by upregulation of the cellular PP2A inhibitors, CIP2A and SET. Several distinct PP2A complexes have been identified that contribute directly to tumor suppression by regulating specific phosphorylation events. These studies provide us with new insights into the role of protein phosphatases in cancer initiation and maintenance.
Literatur
1.
Zurück zum Zitat Hahn, W. C., Dessain, S. K., Brooks, M. W., King, J. E., Elenbaas, B., Sabatini, D. M., et al. (2002). Enumeration of the simian virus 40 early region elements necessary for human cell transformation. Molecular and Cellular Biology, 22(7), 2111–2123.PubMedCrossRef Hahn, W. C., Dessain, S. K., Brooks, M. W., King, J. E., Elenbaas, B., Sabatini, D. M., et al. (2002). Enumeration of the simian virus 40 early region elements necessary for human cell transformation. Molecular and Cellular Biology, 22(7), 2111–2123.PubMedCrossRef
2.
Zurück zum Zitat Kleinberger, T., & Shenk, T. (1993). Adenovirus e4orf4 protein binds to protein phosphatase 2A, and the complex down regulates e1a-enhanced Junb transcription. Journal of Virology, 67(12), 7556–7560.PubMed Kleinberger, T., & Shenk, T. (1993). Adenovirus e4orf4 protein binds to protein phosphatase 2A, and the complex down regulates e1a-enhanced Junb transcription. Journal of Virology, 67(12), 7556–7560.PubMed
3.
Zurück zum Zitat Pallas, D. C., Shahrik, L. K., Martin, B. L., Jaspers, S., Miller, T. B., Brautigan, D. L., et al. (1990). Polyoma small and middle t antigens and SV40 small t antigen form stable complexes with protein phosphatase 2A. Cell, 60(1), 167–176.PubMedCrossRef Pallas, D. C., Shahrik, L. K., Martin, B. L., Jaspers, S., Miller, T. B., Brautigan, D. L., et al. (1990). Polyoma small and middle t antigens and SV40 small t antigen form stable complexes with protein phosphatase 2A. Cell, 60(1), 167–176.PubMedCrossRef
4.
Zurück zum Zitat Rundell, K. (1987). Complete interaction of cellular 56,000- and 32,000-mr proteins with simian virus 40 small-t antigen in productively infected cells. Journal of Virology, 61(4), 1240–1243.PubMed Rundell, K. (1987). Complete interaction of cellular 56,000- and 32,000-mr proteins with simian virus 40 small-t antigen in productively infected cells. Journal of Virology, 61(4), 1240–1243.PubMed
5.
Zurück zum Zitat Yu, J., Boyapati, A., & Rundell, K. (2001). Critical role for SV40 small-t antigen in human cell transformation. Virology, 290(2), 192–198.PubMedCrossRef Yu, J., Boyapati, A., & Rundell, K. (2001). Critical role for SV40 small-t antigen in human cell transformation. Virology, 290(2), 192–198.PubMedCrossRef
6.
Zurück zum Zitat Calin, G. A., Di Iasio, M. G., Caprini, E., Vorechovsky, I., Natali, P. G., Sozzi, G., et al. (2000). Low frequency of alterations of the alpha (PPP2r1A) and beta (PPP2r1B) isoforms of the subunit a of the serine–threonine phosphatase 2A in human neoplasms. Oncogene, 19(9), 1191–1195.PubMedCrossRef Calin, G. A., Di Iasio, M. G., Caprini, E., Vorechovsky, I., Natali, P. G., Sozzi, G., et al. (2000). Low frequency of alterations of the alpha (PPP2r1A) and beta (PPP2r1B) isoforms of the subunit a of the serine–threonine phosphatase 2A in human neoplasms. Oncogene, 19(9), 1191–1195.PubMedCrossRef
7.
Zurück zum Zitat Takagi, Y., Futamura, M., Yamaguchi, K., Aoki, S., Takahashi, T., & Saji, S. (2000). Alterations of the PPP2r1B gene located at 11q23 in human colorectal cancers. Gut, 47(2), 268–271.PubMedCrossRef Takagi, Y., Futamura, M., Yamaguchi, K., Aoki, S., Takahashi, T., & Saji, S. (2000). Alterations of the PPP2r1B gene located at 11q23 in human colorectal cancers. Gut, 47(2), 268–271.PubMedCrossRef
8.
Zurück zum Zitat Tamaki, M., Goi, T., Hirono, Y., Katayama, K., & Yamaguchi, A. (2004). Ppp2r1b gene alterations inhibit interaction of PP2A Abeta and PP2A C proteins in colorectal cancers. Oncology Reports, 11(3), 655–659.PubMed Tamaki, M., Goi, T., Hirono, Y., Katayama, K., & Yamaguchi, A. (2004). Ppp2r1b gene alterations inhibit interaction of PP2A Abeta and PP2A C proteins in colorectal cancers. Oncology Reports, 11(3), 655–659.PubMed
9.
Zurück zum Zitat Wang, S. S., Esplin, E. D., Li, J. L., Huang, L., Gazdar, A., Minna, J., et al. (1998). Alterations of the PPP2r1B gene in human lung and colon cancer. Science, 282(5387), 284–287.PubMedCrossRef Wang, S. S., Esplin, E. D., Li, J. L., Huang, L., Gazdar, A., Minna, J., et al. (1998). Alterations of the PPP2r1B gene in human lung and colon cancer. Science, 282(5387), 284–287.PubMedCrossRef
10.
Zurück zum Zitat Ruediger, R., Pham, H. T., & Walter, G. (2001). Alterations in protein phosphatase 2A subunit interaction in human carcinomas of the lung and colon with mutations in the a beta subunit gene. Oncogene, 20(15), 1892–1899.PubMedCrossRef Ruediger, R., Pham, H. T., & Walter, G. (2001). Alterations in protein phosphatase 2A subunit interaction in human carcinomas of the lung and colon with mutations in the a beta subunit gene. Oncogene, 20(15), 1892–1899.PubMedCrossRef
11.
Zurück zum Zitat Ruediger, R., Pham, H. T., & Walter, G. (2001). Disruption of protein phosphatase 2A subunit interaction in human cancers with mutations in the Aalpha subunit gene. Oncogene, 20(1), 10–15.PubMedCrossRef Ruediger, R., Pham, H. T., & Walter, G. (2001). Disruption of protein phosphatase 2A subunit interaction in human cancers with mutations in the Aalpha subunit gene. Oncogene, 20(1), 10–15.PubMedCrossRef
12.
Zurück zum Zitat Sweet, B. H., & Hilleman, M. R. (1960). The vacuolating virus, SV40. Proceedings of the Society for Experimental Biology and Medicine, 105, 420–427.PubMed Sweet, B. H., & Hilleman, M. R. (1960). The vacuolating virus, SV40. Proceedings of the Society for Experimental Biology and Medicine, 105, 420–427.PubMed
13.
Zurück zum Zitat Eddy, B. E., Borman, G. S., Berkeley, W. H., & Young, R. D. (1961). Tumors induced in hamsters by injection of rhesus monkey kidney cell extracts. Proceedings of the Society for Experimental Biology and Medicine, 107, 191–197.PubMed Eddy, B. E., Borman, G. S., Berkeley, W. H., & Young, R. D. (1961). Tumors induced in hamsters by injection of rhesus monkey kidney cell extracts. Proceedings of the Society for Experimental Biology and Medicine, 107, 191–197.PubMed
14.
Zurück zum Zitat Eddy, B. E., Borman, G. S., Grubbs, G. E., & Young, R. D. (1962). Identification of the oncogenic substance in rhesus monkey kidney cell culture as simian virus 40. Virology, 17, 65–75.PubMedCrossRef Eddy, B. E., Borman, G. S., Grubbs, G. E., & Young, R. D. (1962). Identification of the oncogenic substance in rhesus monkey kidney cell culture as simian virus 40. Virology, 17, 65–75.PubMedCrossRef
15.
Zurück zum Zitat Shein, H. M., & Enders, J. F. (1962). Transformation induced by simian virus 40 in human renal cell cultures. I. Morphology and growth characteristics. Proceedings of the National Academy of Sciences of the United States of America, 48, 1164–1172.PubMedCrossRef Shein, H. M., & Enders, J. F. (1962). Transformation induced by simian virus 40 in human renal cell cultures. I. Morphology and growth characteristics. Proceedings of the National Academy of Sciences of the United States of America, 48, 1164–1172.PubMedCrossRef
16.
Zurück zum Zitat Rabson, A. S., O’conor, G. T., Kirschstein, R. L., & Branigan, W. J. (1962). Papillary ependymomas produced in Rattus (mastomys) natalensis inoculated with vacuolating virus (SV40). Journal of National Cancer Institute, 29, 765–787. Rabson, A. S., O’conor, G. T., Kirschstein, R. L., & Branigan, W. J. (1962). Papillary ependymomas produced in Rattus (mastomys) natalensis inoculated with vacuolating virus (SV40). Journal of National Cancer Institute, 29, 765–787.
17.
Zurück zum Zitat Rundell, K., & Parakati, R. (2001). The role of the SV40 ST antigen in cell growth promotion and transformation. Seminars in Cancer Biology, 11(1), 5–13.PubMedCrossRef Rundell, K., & Parakati, R. (2001). The role of the SV40 ST antigen in cell growth promotion and transformation. Seminars in Cancer Biology, 11(1), 5–13.PubMedCrossRef
18.
Zurück zum Zitat Sullivan, C. S., & Pipas, J. M. (2002). T antigens of simian virus 40: Molecular chaperones for viral replication and tumorigenesis. Microbiology and Molecular Biology Reviews, 66(2), 179–202.PubMedCrossRef Sullivan, C. S., & Pipas, J. M. (2002). T antigens of simian virus 40: Molecular chaperones for viral replication and tumorigenesis. Microbiology and Molecular Biology Reviews, 66(2), 179–202.PubMedCrossRef
19.
Zurück zum Zitat Hirakawa, T., & Ruley, H. E. (1988). Rescue of cells from ras oncogene-induced growth arrest by a second, complementing, oncogene. Proceedings of the National Academy of Sciences of the United States of America, 85(5), 1519–1523.PubMedCrossRef Hirakawa, T., & Ruley, H. E. (1988). Rescue of cells from ras oncogene-induced growth arrest by a second, complementing, oncogene. Proceedings of the National Academy of Sciences of the United States of America, 85(5), 1519–1523.PubMedCrossRef
20.
Zurück zum Zitat Michalovitz, D., Fischer-Fantuzzi, L., Vesco, C., Pipas, J. M., & Oren, M. (1987). Activated ha-ras can cooperate with defective simian virus 40 in the transformation of nonestablished rat embryo fibroblasts. Journal of Virology, 61(8), 2648–2654.PubMed Michalovitz, D., Fischer-Fantuzzi, L., Vesco, C., Pipas, J. M., & Oren, M. (1987). Activated ha-ras can cooperate with defective simian virus 40 in the transformation of nonestablished rat embryo fibroblasts. Journal of Virology, 61(8), 2648–2654.PubMed
21.
Zurück zum Zitat Sager, R., Tanaka, K., Lau, C. C., Ebina, Y., & Anisowicz, A. (1983). Resistance of human cells to tumorigenesis induced by cloned transforming genes. Proceedings of the National Academy of Sciences of the United States of America, 80(24), 7601–7605.PubMedCrossRef Sager, R., Tanaka, K., Lau, C. C., Ebina, Y., & Anisowicz, A. (1983). Resistance of human cells to tumorigenesis induced by cloned transforming genes. Proceedings of the National Academy of Sciences of the United States of America, 80(24), 7601–7605.PubMedCrossRef
22.
Zurück zum Zitat Chang, L. S., Pan, S., Pater, M. M., & Di Mayorca, G. (1985). Differential requirement for SV40 early genes in immortalization and transformation of primary rat and human embryonic cells. Virology, 146(2), 246–261.PubMedCrossRef Chang, L. S., Pan, S., Pater, M. M., & Di Mayorca, G. (1985). Differential requirement for SV40 early genes in immortalization and transformation of primary rat and human embryonic cells. Virology, 146(2), 246–261.PubMedCrossRef
23.
Zurück zum Zitat Lustig, A. J. (1999). Crisis intervention: The role of telomerase. Proceedings of the National Academy of Sciences of the United States of America, 96(7), 3339–3341.PubMedCrossRef Lustig, A. J. (1999). Crisis intervention: The role of telomerase. Proceedings of the National Academy of Sciences of the United States of America, 96(7), 3339–3341.PubMedCrossRef
24.
Zurück zum Zitat Rangarajan, A., Hong, S. J., Gifford, A., & Weinberg, R. A. (2004). Species- and cell type-specific requirements for cellular transformation. Cancer Cells, 6(2), 171–183.CrossRef Rangarajan, A., Hong, S. J., Gifford, A., & Weinberg, R. A. (2004). Species- and cell type-specific requirements for cellular transformation. Cancer Cells, 6(2), 171–183.CrossRef
25.
Zurück zum Zitat Voorhoeve, P. M., & Agami, R. (2003). The tumor-suppressive functions of the human ink4a locus. Cancer Cells, 4(4), 311–319.CrossRef Voorhoeve, P. M., & Agami, R. (2003). The tumor-suppressive functions of the human ink4a locus. Cancer Cells, 4(4), 311–319.CrossRef
26.
Zurück zum Zitat Mungre, S., Enderle, K., Turk, B., Porras, A., Wu, Y. Q., Mumby, M. C., et al. (1994). Mutations which affect the inhibition of protein phosphatase 2A by simian virus 40 small-t antigen in vitro decrease viral transformation. Journal of Virology, 68(3), 1675–1681.PubMed Mungre, S., Enderle, K., Turk, B., Porras, A., Wu, Y. Q., Mumby, M. C., et al. (1994). Mutations which affect the inhibition of protein phosphatase 2A by simian virus 40 small-t antigen in vitro decrease viral transformation. Journal of Virology, 68(3), 1675–1681.PubMed
27.
Zurück zum Zitat Porras, A., Bennett, J., Howe, A., Tokos, K., Bouck, N., Henglein, B., et al. (1996). A novel simian virus 40 early-region domain mediates transactivation of the cyclin a promoter by small-t antigen and is required for transformation in small-t antigen-dependent assays. Journal of Virology, 70(10), 6902–6908.PubMed Porras, A., Bennett, J., Howe, A., Tokos, K., Bouck, N., Henglein, B., et al. (1996). A novel simian virus 40 early-region domain mediates transactivation of the cyclin a promoter by small-t antigen and is required for transformation in small-t antigen-dependent assays. Journal of Virology, 70(10), 6902–6908.PubMed
28.
Zurück zum Zitat Janssens, V., & Goris, J. (2001). Protein phosphatase 2A: A highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling. Biochemistry Journal, 353(Pt 3), 417–439.CrossRef Janssens, V., & Goris, J. (2001). Protein phosphatase 2A: A highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling. Biochemistry Journal, 353(Pt 3), 417–439.CrossRef
29.
Zurück zum Zitat Arino, J., Woon, C. W., Brautigan, D. L., Miller Jr., T. B., & Johnson, G. L. (1988). Human liver phosphatase 2A: cDNA and amino acid sequence of two catalytic subunit isotypes. Proceedings of the National Academy of Sciences of the United States of America, 85(12), 4252–4256.PubMedCrossRef Arino, J., Woon, C. W., Brautigan, D. L., Miller Jr., T. B., & Johnson, G. L. (1988). Human liver phosphatase 2A: cDNA and amino acid sequence of two catalytic subunit isotypes. Proceedings of the National Academy of Sciences of the United States of America, 85(12), 4252–4256.PubMedCrossRef
30.
Zurück zum Zitat Cohen, P. (1989). The structure and regulation of protein phosphatases. Annual Reviews of Biochemistry, 58, 453–508.CrossRef Cohen, P. (1989). The structure and regulation of protein phosphatases. Annual Reviews of Biochemistry, 58, 453–508.CrossRef
31.
Zurück zum Zitat Gotz, J., Probst, A., Mistl, C., Nitsch, R. M., & Ehler, E. (2000). Distinct role of protein phosphatase 2A subunit calpha in the regulation of E-cadherin and beta-catenin during development. Mechanisms of Development, 93(1–2), 83–93.PubMedCrossRef Gotz, J., Probst, A., Mistl, C., Nitsch, R. M., & Ehler, E. (2000). Distinct role of protein phosphatase 2A subunit calpha in the regulation of E-cadherin and beta-catenin during development. Mechanisms of Development, 93(1–2), 83–93.PubMedCrossRef
32.
Zurück zum Zitat Hemmings, B. A., Adams-Pearson, C., Maurer, F., Muller, P., Goris, J., Merlevede, W., et al. (1990). Alpha- and beta-forms of the 65-kda subunit of protein phosphatase 2A have a similar 39 amino acid repeating structure. Biochemistry, 29(13), 3166–3173.PubMedCrossRef Hemmings, B. A., Adams-Pearson, C., Maurer, F., Muller, P., Goris, J., Merlevede, W., et al. (1990). Alpha- and beta-forms of the 65-kda subunit of protein phosphatase 2A have a similar 39 amino acid repeating structure. Biochemistry, 29(13), 3166–3173.PubMedCrossRef
33.
Zurück zum Zitat Zhou, J., Pham, H. T., Ruediger, R., & Walter, G. (2003). Characterization of the Aalpha and Abeta subunit isoforms of protein phosphatase 2A: Differences in expression, subunit interaction, and evolution. Biochemical Journal, 369(Pt 2), 387–398.PubMedCrossRef Zhou, J., Pham, H. T., Ruediger, R., & Walter, G. (2003). Characterization of the Aalpha and Abeta subunit isoforms of protein phosphatase 2A: Differences in expression, subunit interaction, and evolution. Biochemical Journal, 369(Pt 2), 387–398.PubMedCrossRef
34.
Zurück zum Zitat Cho, U. S., & Xu, W. (2007). Crystal structure of a protein phosphatase 2A heterotrimeric holoenzyme. Nature, 445(7123), 53–57.PubMedCrossRef Cho, U. S., & Xu, W. (2007). Crystal structure of a protein phosphatase 2A heterotrimeric holoenzyme. Nature, 445(7123), 53–57.PubMedCrossRef
35.
Zurück zum Zitat Xu, Y., Xing, Y., Chen, Y., Chao, Y., Lin, Z., Fan, E., et al. (2006). Structure of the protein phosphatase 2A holoenzyme. Cell, 127(6), 1239–1251.PubMedCrossRef Xu, Y., Xing, Y., Chen, Y., Chao, Y., Lin, Z., Fan, E., et al. (2006). Structure of the protein phosphatase 2A holoenzyme. Cell, 127(6), 1239–1251.PubMedCrossRef
36.
Zurück zum Zitat Mayer, R. E., Hendrix, P., Cron, P., Matthies, R., Stone, S. R., Goris, J., et al. (1991). Structure of the 55-kda regulatory subunit of protein phosphatase 2A: Evidence for a neuronal-specific isoform. Biochemistry, 30(15), 3589–3597.PubMedCrossRef Mayer, R. E., Hendrix, P., Cron, P., Matthies, R., Stone, S. R., Goris, J., et al. (1991). Structure of the 55-kda regulatory subunit of protein phosphatase 2A: Evidence for a neuronal-specific isoform. Biochemistry, 30(15), 3589–3597.PubMedCrossRef
37.
Zurück zum Zitat Strack, S., Chang, D., Zaucha, J. A., Colbran, R. J., & Wadzinski, B. E. (1999). Cloning and characterization of b delta, a novel regulatory subunit of protein phosphatase 2A. FEBS Letters, 460(3), 462–466.PubMedCrossRef Strack, S., Chang, D., Zaucha, J. A., Colbran, R. J., & Wadzinski, B. E. (1999). Cloning and characterization of b delta, a novel regulatory subunit of protein phosphatase 2A. FEBS Letters, 460(3), 462–466.PubMedCrossRef
38.
Zurück zum Zitat Zolnierowicz, S., Csortos, C., Bondor, J., Verin, A., Mumby, M. C., & Depaoli-Roach, A. A. (1994). Diversity in the regulatory b-subunits of protein phosphatase 2A: Identification of a novel isoform highly expressed in brain. Biochemistry, 33(39), 11858–11867.PubMedCrossRef Zolnierowicz, S., Csortos, C., Bondor, J., Verin, A., Mumby, M. C., & Depaoli-Roach, A. A. (1994). Diversity in the regulatory b-subunits of protein phosphatase 2A: Identification of a novel isoform highly expressed in brain. Biochemistry, 33(39), 11858–11867.PubMedCrossRef
39.
Zurück zum Zitat Csortos, C., Zolnierowicz, S., Bako, E., Durbin, S. D., & Depaoli-Roach, A. A. (1996). High complexity in the expression of the B′ subunit of protein phosphatase 2A. Evidence for the existence of at least seven novel isoforms. Journal of Biological Chemistry, 271(5), 2578–2588.PubMedCrossRef Csortos, C., Zolnierowicz, S., Bako, E., Durbin, S. D., & Depaoli-Roach, A. A. (1996). High complexity in the expression of the B′ subunit of protein phosphatase 2A. Evidence for the existence of at least seven novel isoforms. Journal of Biological Chemistry, 271(5), 2578–2588.PubMedCrossRef
40.
Zurück zum Zitat Mccright, B., & Virshup, D. M. (1995). Identification of a new family of protein phosphatase 2A regulatory subunits. Journal of Biological Chemistry, 270(44), 26123–26128.PubMedCrossRef Mccright, B., & Virshup, D. M. (1995). Identification of a new family of protein phosphatase 2A regulatory subunits. Journal of Biological Chemistry, 270(44), 26123–26128.PubMedCrossRef
41.
Zurück zum Zitat Tehrani, M. A., Mumby, M. C., & Kamibayashi, C. (1996). Identification of a novel protein phosphatase 2A regulatory subunit highly expressed in muscle. Journal of Biological Chemistry, 271(9), 5164–5170.PubMedCrossRef Tehrani, M. A., Mumby, M. C., & Kamibayashi, C. (1996). Identification of a novel protein phosphatase 2A regulatory subunit highly expressed in muscle. Journal of Biological Chemistry, 271(9), 5164–5170.PubMedCrossRef
42.
Zurück zum Zitat Hendrix, P., Mayer-Jackel, R. E., Cron, P., Goris, J., Hofsteenge, J., Merlevede, W., et al. (1993). Structure and expression of a 72-kda regulatory subunit of protein phosphatase 2A. Evidence for different size forms produced by alternative splicing. Journal of Biological Chemistry, 268(20), 15267–15276.PubMed Hendrix, P., Mayer-Jackel, R. E., Cron, P., Goris, J., Hofsteenge, J., Merlevede, W., et al. (1993). Structure and expression of a 72-kda regulatory subunit of protein phosphatase 2A. Evidence for different size forms produced by alternative splicing. Journal of Biological Chemistry, 268(20), 15267–15276.PubMed
43.
Zurück zum Zitat Seger, Y. R., Garcia-Cao, M., Piccinin, S., Cunsolo, C. L., Doglioni, C., Blasco, M. A., et al. (2002). Transformation of normal human cells in the absence of telomerase activation. Cancer Cells, 2(5), 401–413.CrossRef Seger, Y. R., Garcia-Cao, M., Piccinin, S., Cunsolo, C. L., Doglioni, C., Blasco, M. A., et al. (2002). Transformation of normal human cells in the absence of telomerase activation. Cancer Cells, 2(5), 401–413.CrossRef
44.
Zurück zum Zitat Stevens, I., Janssens, V., Martens, E., Dilworth, S., Goris, J., & Van Hoof, C. (2003). Identification and characterization of B″-subunits of protein phosphatase 2A in Xenopus laevis oocytes and adult tissues. European Journal of Biochemistry, 270(2), 376–387.PubMedCrossRef Stevens, I., Janssens, V., Martens, E., Dilworth, S., Goris, J., & Van Hoof, C. (2003). Identification and characterization of B″-subunits of protein phosphatase 2A in Xenopus laevis oocytes and adult tissues. European Journal of Biochemistry, 270(2), 376–387.PubMedCrossRef
45.
Zurück zum Zitat Yan, Z., Fedorov, S. A., Mumby, M. C., & Williams, R. S. (2000). Pr48, a novel regulatory subunit of protein phosphatase 2A, interacts with cdc6 and modulates DNA replication in human cells. Molecular and Cellular Biology, 20(3), 1021–1029.PubMedCrossRef Yan, Z., Fedorov, S. A., Mumby, M. C., & Williams, R. S. (2000). Pr48, a novel regulatory subunit of protein phosphatase 2A, interacts with cdc6 and modulates DNA replication in human cells. Molecular and Cellular Biology, 20(3), 1021–1029.PubMedCrossRef
46.
Zurück zum Zitat Moreno, C. S., Ramachandran, S., Ashby, D. G., Laycock, N., Plattner, C. A., Chen, W., et al. (2004). Signaling and transcriptional changes critical for transformation of human cells by simian virus 40 small tumor antigen or protein phosphatase 2A B56gamma knockdown. Cancer Research, 64(19), 6978–6988.PubMedCrossRef Moreno, C. S., Ramachandran, S., Ashby, D. G., Laycock, N., Plattner, C. A., Chen, W., et al. (2004). Signaling and transcriptional changes critical for transformation of human cells by simian virus 40 small tumor antigen or protein phosphatase 2A B56gamma knockdown. Cancer Research, 64(19), 6978–6988.PubMedCrossRef
47.
Zurück zum Zitat Mccright, B., Brothman, A. R., & Virshup, D. M. (1996). Assignment of human protein phosphatase 2A regulatory subunit genes B56alpha, B56beta, B56gamma, B56delta, and B56epsilon (PPP2r5A–PPP2r5E), highly expressed in muscle and brain, to chromosome regions 1q41, 11q12, 3p21, 6p21.1, and 7p11.2 → p12. Genomics, 36(1), 168–170.PubMedCrossRef Mccright, B., Brothman, A. R., & Virshup, D. M. (1996). Assignment of human protein phosphatase 2A regulatory subunit genes B56alpha, B56beta, B56gamma, B56delta, and B56epsilon (PPP2r5A–PPP2r5E), highly expressed in muscle and brain, to chromosome regions 1q41, 11q12, 3p21, 6p21.1, and 7p11.2 → p12. Genomics, 36(1), 168–170.PubMedCrossRef
48.
Zurück zum Zitat Millward, T. A., Zolnierowicz, S., & Hemmings, B. A. (1999). Regulation of protein kinase cascades by protein phosphatase 2A. Trends in Biochemical Sciences, 24(5), 186–191.PubMedCrossRef Millward, T. A., Zolnierowicz, S., & Hemmings, B. A. (1999). Regulation of protein kinase cascades by protein phosphatase 2A. Trends in Biochemical Sciences, 24(5), 186–191.PubMedCrossRef
49.
Zurück zum Zitat Kong, M., Fox, C. J., Mu, J., Solt, L., Xu, A., Cinalli, R. M., et al. (2004). The PP2A-associated protein alpha4 is an essential inhibitor of apoptosis. Science, 306(5696), 695–698.PubMedCrossRef Kong, M., Fox, C. J., Mu, J., Solt, L., Xu, A., Cinalli, R. M., et al. (2004). The PP2A-associated protein alpha4 is an essential inhibitor of apoptosis. Science, 306(5696), 695–698.PubMedCrossRef
50.
Zurück zum Zitat Chao, Y., Xing, Y., Chen, Y., Xu, Y., Lin, Z., Li, Z., et al. (2006). Structure and mechanism of the phosphotyrosyl phosphatase activator. Molecular Cell, 23(4), 535–546.PubMedCrossRef Chao, Y., Xing, Y., Chen, Y., Xu, Y., Lin, Z., Li, Z., et al. (2006). Structure and mechanism of the phosphotyrosyl phosphatase activator. Molecular Cell, 23(4), 535–546.PubMedCrossRef
51.
Zurück zum Zitat Leulliot, N., Vicentini, G., Jordens, J., Quevillon-Cheruel, S., Schiltz, M., Barford, D., et al. (2006). Crystal structure of the PP2A phosphatase activator: Implications for its PP2A-specific PPiase activity. Molecular Cell, 23(3), 413–424.PubMedCrossRef Leulliot, N., Vicentini, G., Jordens, J., Quevillon-Cheruel, S., Schiltz, M., Barford, D., et al. (2006). Crystal structure of the PP2A phosphatase activator: Implications for its PP2A-specific PPiase activity. Molecular Cell, 23(3), 413–424.PubMedCrossRef
52.
Zurück zum Zitat Chen, Y., Xu, Y., Bao, Q., Xing, Y., Li, Z., Lin, Z., et al. (2007). Structural and biochemical insights into the regulation of protein phosphatase 2A by small t antigen of SV40. Nature Structural & Molecular Biology, 14(6), 527–534.CrossRef Chen, Y., Xu, Y., Bao, Q., Xing, Y., Li, Z., Lin, Z., et al. (2007). Structural and biochemical insights into the regulation of protein phosphatase 2A by small t antigen of SV40. Nature Structural & Molecular Biology, 14(6), 527–534.CrossRef
53.
Zurück zum Zitat Cho, U. S., Morrone, S., Sablina, A. A., Arroyo, J. D., Hahn, W. C., & Xu, W. (2007). Structural basis of PP2A inhibition by small t antigen. PLoS Biology, 5(8), e202.PubMedCrossRef Cho, U. S., Morrone, S., Sablina, A. A., Arroyo, J. D., Hahn, W. C., & Xu, W. (2007). Structural basis of PP2A inhibition by small t antigen. PLoS Biology, 5(8), e202.PubMedCrossRef
54.
Zurück zum Zitat Kamibayashi, C., Estes, R., Lickteig, R. L., Yang, S. I., Craft, C., & Mumby, M. C. (1994). Comparison of heterotrimeric protein phosphatase 2A containing different b subunits. Journal of Biological Chemistry, 269(31), 20139–20148.PubMed Kamibayashi, C., Estes, R., Lickteig, R. L., Yang, S. I., Craft, C., & Mumby, M. C. (1994). Comparison of heterotrimeric protein phosphatase 2A containing different b subunits. Journal of Biological Chemistry, 269(31), 20139–20148.PubMed
55.
Zurück zum Zitat Chen, W., Possemato, R., Campbell, K. T., Plattner, C. A., Pallas, D. C., & Hahn, W. C. (2004). Identification of specific PP2A complexes involved in human cell transformation. Cancer Cells, 5(2), 127–136.CrossRef Chen, W., Possemato, R., Campbell, K. T., Plattner, C. A., Pallas, D. C., & Hahn, W. C. (2004). Identification of specific PP2A complexes involved in human cell transformation. Cancer Cells, 5(2), 127–136.CrossRef
56.
Zurück zum Zitat Sontag, E., Fedorov, S., Kamibayashi, C., Robbins, D., Cobb, M., & Mumby, M. (1993). The interaction of SV40 small tumor antigen with protein phosphatase 2A stimulates the map kinase pathway and induces cell proliferation. Cell, 75(5), 887–897.PubMedCrossRef Sontag, E., Fedorov, S., Kamibayashi, C., Robbins, D., Cobb, M., & Mumby, M. (1993). The interaction of SV40 small tumor antigen with protein phosphatase 2A stimulates the map kinase pathway and induces cell proliferation. Cell, 75(5), 887–897.PubMedCrossRef
57.
Zurück zum Zitat Sontag, E., Sontag, J. M., & Garcia, A. (1997). Protein phosphatase 2A is a critical regulator of protein kinase c zeta signaling targeted by SV40 small t to promote cell growth and nf-kappab activation. EMBO Journal, 16(18), 5662–5671.PubMedCrossRef Sontag, E., Sontag, J. M., & Garcia, A. (1997). Protein phosphatase 2A is a critical regulator of protein kinase c zeta signaling targeted by SV40 small t to promote cell growth and nf-kappab activation. EMBO Journal, 16(18), 5662–5671.PubMedCrossRef
58.
Zurück zum Zitat Nunbhakdi-Craig, V., Craig, L., Machleidt, T., & Sontag, E. (2003). Simian virus 40 small tumor antigen induces deregulation of the actin cytoskeleton and tight junctions in kidney epithelial cells. Journal of Virology, 77(5), 2807–2818.PubMedCrossRef Nunbhakdi-Craig, V., Craig, L., Machleidt, T., & Sontag, E. (2003). Simian virus 40 small tumor antigen induces deregulation of the actin cytoskeleton and tight junctions in kidney epithelial cells. Journal of Virology, 77(5), 2807–2818.PubMedCrossRef
59.
Zurück zum Zitat Howe, A. K., Gaillard, S., Bennett, J. S., & Rundell, K. (1998). Cell cycle progression in monkey cells expressing simian virus 40 small t antigen from adenovirus vectors. Journal of Virology, 72(12), 9637–9644.PubMed Howe, A. K., Gaillard, S., Bennett, J. S., & Rundell, K. (1998). Cell cycle progression in monkey cells expressing simian virus 40 small t antigen from adenovirus vectors. Journal of Virology, 72(12), 9637–9644.PubMed
60.
Zurück zum Zitat Dougherty, M. K., Muller, J., Ritt, D. A., Zhou, M., Zhou, X. Z., Copeland, T. D., et al. (2005). Regulation of raf-1 by direct feedback phosphorylation. Molecular Cell, 17(2), 215–224.PubMedCrossRef Dougherty, M. K., Muller, J., Ritt, D. A., Zhou, M., Zhou, X. Z., Copeland, T. D., et al. (2005). Regulation of raf-1 by direct feedback phosphorylation. Molecular Cell, 17(2), 215–224.PubMedCrossRef
61.
Zurück zum Zitat Frost, J. A., Alberts, A. S., Sontag, E., Guan, K., Mumby, M. C., & Feramisco, J. R. (1994). Simian virus 40 small t antigen cooperates with mitogen-activated kinases to stimulate ap-1 activity. Molecular and Cellular Biology, 14(9), 6244–6252.PubMed Frost, J. A., Alberts, A. S., Sontag, E., Guan, K., Mumby, M. C., & Feramisco, J. R. (1994). Simian virus 40 small t antigen cooperates with mitogen-activated kinases to stimulate ap-1 activity. Molecular and Cellular Biology, 14(9), 6244–6252.PubMed
62.
Zurück zum Zitat Ory, S., Zhou, M., Conrads, T. P., Veenstra, T. D., & Morrison, D. K. (2003). Protein phosphatase 2A positively regulates ras signaling by dephosphorylating ksr1 and raf-1 on critical 14-3-3 binding sites. Current Biology, 13(16), 1356–1364.PubMedCrossRef Ory, S., Zhou, M., Conrads, T. P., Veenstra, T. D., & Morrison, D. K. (2003). Protein phosphatase 2A positively regulates ras signaling by dephosphorylating ksr1 and raf-1 on critical 14-3-3 binding sites. Current Biology, 13(16), 1356–1364.PubMedCrossRef
63.
Zurück zum Zitat Alberts, A. S., Deng, T., Lin, A., Meinkoth, J. L., Schonthal, A., Mumby, M. C., et al. (1993). Protein phosphatase 2A potentates activity of promoters containing AP-1-binding elements. Molecular and Cellular Biology, 13(4), 2104–2112.PubMed Alberts, A. S., Deng, T., Lin, A., Meinkoth, J. L., Schonthal, A., Mumby, M. C., et al. (1993). Protein phosphatase 2A potentates activity of promoters containing AP-1-binding elements. Molecular and Cellular Biology, 13(4), 2104–2112.PubMed
64.
Zurück zum Zitat Sears, R., Leone, G., Degregori, J., & Nevins, J. R. (1999). Ras enhances myc protein stability. Molecular Cell, 3(2), 169–179.PubMedCrossRef Sears, R., Leone, G., Degregori, J., & Nevins, J. R. (1999). Ras enhances myc protein stability. Molecular Cell, 3(2), 169–179.PubMedCrossRef
65.
Zurück zum Zitat Yeh, E., Cunningham, M., Arnold, H., Chasse, D., Monteith, T., Ivaldi, G., et al. (2004). A signalling pathway controlling c-myc degradation that impacts oncogenic transformation of human cells. Nature Cell Biology, 6(4), 308–318.PubMedCrossRef Yeh, E., Cunningham, M., Arnold, H., Chasse, D., Monteith, T., Ivaldi, G., et al. (2004). A signalling pathway controlling c-myc degradation that impacts oncogenic transformation of human cells. Nature Cell Biology, 6(4), 308–318.PubMedCrossRef
66.
Zurück zum Zitat Arnold, H. K., & Sears, R. C. (2006). Protein phosphatase 2A regulatory subunit B56alpha associates with c-myc and negatively regulates c-myc accumulation. Molecular and Cellular Biology, 26(7), 2832–2844.PubMedCrossRef Arnold, H. K., & Sears, R. C. (2006). Protein phosphatase 2A regulatory subunit B56alpha associates with c-myc and negatively regulates c-myc accumulation. Molecular and Cellular Biology, 26(7), 2832–2844.PubMedCrossRef
67.
Zurück zum Zitat Garcia, A., Cereghini, S., & Sontag, E. (2000). Protein phosphatase 2A and phosphatidylinositol 3-kinase regulate the activity of SP1-responsive promoters. Journal of Biological Chemistry, 275(13), 9385–9389.PubMedCrossRef Garcia, A., Cereghini, S., & Sontag, E. (2000). Protein phosphatase 2A and phosphatidylinositol 3-kinase regulate the activity of SP1-responsive promoters. Journal of Biological Chemistry, 275(13), 9385–9389.PubMedCrossRef
68.
Zurück zum Zitat Skoczylas, C., Henglein, B., & Rundell, K. (2005). PP2A-dependent transactivation of the cyclin a promoter by SV40 st is mediated by a cell cycle-regulated E2F site. Virology, 332(2), 596–601.PubMedCrossRef Skoczylas, C., Henglein, B., & Rundell, K. (2005). PP2A-dependent transactivation of the cyclin a promoter by SV40 st is mediated by a cell cycle-regulated E2F site. Virology, 332(2), 596–601.PubMedCrossRef
69.
Zurück zum Zitat Watanabe, G., Howe, A., Lee, R. J., Albanese, C., Shu, I. W., Karnezis, A. N., et al. (1996). Induction of cyclin D1 by simian virus 40 small tumor antigen. Proceedings of the National Academy of Sciences of the United States of America, 93(23), 12861–12866.PubMedCrossRef Watanabe, G., Howe, A., Lee, R. J., Albanese, C., Shu, I. W., Karnezis, A. N., et al. (1996). Induction of cyclin D1 by simian virus 40 small tumor antigen. Proceedings of the National Academy of Sciences of the United States of America, 93(23), 12861–12866.PubMedCrossRef
70.
Zurück zum Zitat Wheat, W. H., Roesler, W. J., & Klemm, D. J. (1994). Simian virus 40 small tumor antigen inhibits dephosphorylation of protein kinase a-phosphorylated CREB and regulates CREB transcriptional stimulation. Molecular and Cellular Biology, 14(9), 5881–5890.PubMed Wheat, W. H., Roesler, W. J., & Klemm, D. J. (1994). Simian virus 40 small tumor antigen inhibits dephosphorylation of protein kinase a-phosphorylated CREB and regulates CREB transcriptional stimulation. Molecular and Cellular Biology, 14(9), 5881–5890.PubMed
71.
Zurück zum Zitat Didonato, J. A., Hayakawa, M., Rothwarf, D. M., Zandi, E., & Karin, M. (1997). A cytokine-responsive Ikappab kinase that activates the transcription factor NF-kappab. Nature, 388(6642), 548–554.PubMedCrossRef Didonato, J. A., Hayakawa, M., Rothwarf, D. M., Zandi, E., & Karin, M. (1997). A cytokine-responsive Ikappab kinase that activates the transcription factor NF-kappab. Nature, 388(6642), 548–554.PubMedCrossRef
72.
Zurück zum Zitat Zhao, J. J., Gjoerup, O. V., Subramanian, R. R., Cheng, Y., Chen, W., Roberts, T. M., et al. (2003). Human mammary epithelial cell transformation through the activation of phosphatidylinositol 3-kinase. Cancer Cells, 3(5), 483–495.CrossRef Zhao, J. J., Gjoerup, O. V., Subramanian, R. R., Cheng, Y., Chen, W., Roberts, T. M., et al. (2003). Human mammary epithelial cell transformation through the activation of phosphatidylinositol 3-kinase. Cancer Cells, 3(5), 483–495.CrossRef
73.
Zurück zum Zitat Andjelkovic, M., Jakubowicz, T., Cron, P., Ming, X. F., Han, J. W., & Hemmings, B. A. (1996). Activation and phosphorylation of a pleckstrin homology domain containing protein kinase (rac-PK/PKB) promoted by serum and protein phosphatase inhibitors. Proceedings of the Society for Experimental Biology and Medicine, 93(12), 5699–5704. Andjelkovic, M., Jakubowicz, T., Cron, P., Ming, X. F., Han, J. W., & Hemmings, B. A. (1996). Activation and phosphorylation of a pleckstrin homology domain containing protein kinase (rac-PK/PKB) promoted by serum and protein phosphatase inhibitors. Proceedings of the Society for Experimental Biology and Medicine, 93(12), 5699–5704.
74.
Zurück zum Zitat Yuan, H., Veldman, T., Rundell, K., & Schlegel, R. (2002). Simian virus 40 small tumor antigen activates akt and telomerase and induces anchorage-independent growth of human epithelial cells. Journal of Virology, 76(21), 10685–10691.PubMedCrossRef Yuan, H., Veldman, T., Rundell, K., & Schlegel, R. (2002). Simian virus 40 small tumor antigen activates akt and telomerase and induces anchorage-independent growth of human epithelial cells. Journal of Virology, 76(21), 10685–10691.PubMedCrossRef
75.
Zurück zum Zitat Ballou, L. M., Jiang, Y. P., Du, G., Frohman, M. A., & Lin, R. Z. (2003). Ca(2+)- and phospholipase D-dependent and -independent pathways activate mTOR signaling. FEBS Letters, 550(1–3), 51–56.PubMedCrossRef Ballou, L. M., Jiang, Y. P., Du, G., Frohman, M. A., & Lin, R. Z. (2003). Ca(2+)- and phospholipase D-dependent and -independent pathways activate mTOR signaling. FEBS Letters, 550(1–3), 51–56.PubMedCrossRef
76.
Zurück zum Zitat Westphal, R. S., Coffee Jr., R. L., Marotta, A., Pelech, S. L., & Wadzinski, B. E. (1999). Identification of kinase-phosphatase signaling modules composed of p70 S6 kinase-protein phosphatase 2A (PP2A) and p21-activated kinase-PP2A. Journal of Biological Chemistry, 274(2), 687–692.PubMedCrossRef Westphal, R. S., Coffee Jr., R. L., Marotta, A., Pelech, S. L., & Wadzinski, B. E. (1999). Identification of kinase-phosphatase signaling modules composed of p70 S6 kinase-protein phosphatase 2A (PP2A) and p21-activated kinase-PP2A. Journal of Biological Chemistry, 274(2), 687–692.PubMedCrossRef
77.
Zurück zum Zitat Sontag, J. M., & Sontag, E. (2006). Regulation of cell adhesion by PP2A and SV40 small tumor antigen: An important link to cell transformation. Cellular and Molecular Life Science, 63(24), 2979–2991.CrossRef Sontag, J. M., & Sontag, E. (2006). Regulation of cell adhesion by PP2A and SV40 small tumor antigen: An important link to cell transformation. Cellular and Molecular Life Science, 63(24), 2979–2991.CrossRef
78.
Zurück zum Zitat Graessmann, A., Graessmann, M., Tjian, R., & Topp, W. C. (1980). Simian virus 40 small-t protein is required for loss of actin cable networks in rat cells. Journal of Virology, 33(3), 1182–1191.PubMed Graessmann, A., Graessmann, M., Tjian, R., & Topp, W. C. (1980). Simian virus 40 small-t protein is required for loss of actin cable networks in rat cells. Journal of Virology, 33(3), 1182–1191.PubMed
79.
Zurück zum Zitat Suzuki, K., Chikamatsu, Y., & Takahashi, K. (2005). Requirement of protein phosphatase 2A for recruitment of IQGAP1 to rac-bound beta1 integrin. Journal of Cell Physiology, 203(3), 487–492.CrossRef Suzuki, K., Chikamatsu, Y., & Takahashi, K. (2005). Requirement of protein phosphatase 2A for recruitment of IQGAP1 to rac-bound beta1 integrin. Journal of Cell Physiology, 203(3), 487–492.CrossRef
80.
Zurück zum Zitat Colella, S., Ohgaki, H., Ruediger, R., Yang, F., Nakamura, M., Fujisawa, H., et al. (2001). Reduced expression of the Aalpha subunit of protein phosphatase 2A in human gliomas in the absence of mutations in the Aalpha and Abeta subunit genes. International Journal of Cancer, 93(6), 798–804.CrossRef Colella, S., Ohgaki, H., Ruediger, R., Yang, F., Nakamura, M., Fujisawa, H., et al. (2001). Reduced expression of the Aalpha subunit of protein phosphatase 2A in human gliomas in the absence of mutations in the Aalpha and Abeta subunit genes. International Journal of Cancer, 93(6), 798–804.CrossRef
81.
Zurück zum Zitat Suzuki, K., & Takahashi, K. (2003). Reduced expression of the regulatory a subunit of serine/threonine protein phosphatase 2A in human breast cancer MCF-7 cells. International Journal of Oncology, 23(5), 1263–1268.PubMed Suzuki, K., & Takahashi, K. (2003). Reduced expression of the regulatory a subunit of serine/threonine protein phosphatase 2A in human breast cancer MCF-7 cells. International Journal of Oncology, 23(5), 1263–1268.PubMed
82.
Zurück zum Zitat Chen, W., Arroyo, J. D., Timmons, J. C., Possemato, R., & Hahn, W. C. (2005). Cancer-associated PP2A Aalpha subunits induce functional haploinsufficiency and tumorigenicity. Cancer Research, 65(18), 8183–8192.PubMedCrossRef Chen, W., Arroyo, J. D., Timmons, J. C., Possemato, R., & Hahn, W. C. (2005). Cancer-associated PP2A Aalpha subunits induce functional haploinsufficiency and tumorigenicity. Cancer Research, 65(18), 8183–8192.PubMedCrossRef
83.
Zurück zum Zitat Sablina, A. A., Chen, W., Arroyo, J. D., Corral, L., Hector, M., Bulmer, S. E., et al. (2007). The tumor suppressor PP2A Abeta regulates the RalA GTPase. Cell, 129(5), 969–982.PubMedCrossRef Sablina, A. A., Chen, W., Arroyo, J. D., Corral, L., Hector, M., Bulmer, S. E., et al. (2007). The tumor suppressor PP2A Abeta regulates the RalA GTPase. Cell, 129(5), 969–982.PubMedCrossRef
84.
Zurück zum Zitat Li, X., Scuderi, A., Letsou, A., & Virshup, D. M. (2002). B56-associated protein phosphatase 2A is required for survival and protects from apoptosis in drosophila melanogaster. Molecular and Cellular Biology, 22(11), 3674–3684.PubMedCrossRef Li, X., Scuderi, A., Letsou, A., & Virshup, D. M. (2002). B56-associated protein phosphatase 2A is required for survival and protects from apoptosis in drosophila melanogaster. Molecular and Cellular Biology, 22(11), 3674–3684.PubMedCrossRef
85.
Zurück zum Zitat Strack, S., Cribbs, J. T., & Gomez, L. (2004). Critical role for protein phosphatase 2A heterotrimers in mammalian cell survival. Journal of Biological Chemistry, 279(46), 47732–47739.PubMedCrossRef Strack, S., Cribbs, J. T., & Gomez, L. (2004). Critical role for protein phosphatase 2A heterotrimers in mammalian cell survival. Journal of Biological Chemistry, 279(46), 47732–47739.PubMedCrossRef
86.
Zurück zum Zitat Francia, G., Mitchell, S. D., Moss, S. E., Hanby, A. M., Marshall, J. F., & Hart, I. R. (1996). Identification by differential display of annexin-vi, a gene differentially expressed during melanoma progression. Cancer Research, 56(17), 3855–3858.PubMed Francia, G., Mitchell, S. D., Moss, S. E., Hanby, A. M., Marshall, J. F., & Hart, I. R. (1996). Identification by differential display of annexin-vi, a gene differentially expressed during melanoma progression. Cancer Research, 56(17), 3855–3858.PubMed
87.
Zurück zum Zitat Deichmann, M., Polychronidis, M., Wacker, J., Thome, M., & Naher, H. (2001). The protein phosphatase 2A subunit B56gamma gene is identified to be differentially expressed in malignant melanomas by subtractive suppression hybridization. Melanoma Research, 11(6), 577–585.PubMedCrossRef Deichmann, M., Polychronidis, M., Wacker, J., Thome, M., & Naher, H. (2001). The protein phosphatase 2A subunit B56gamma gene is identified to be differentially expressed in malignant melanomas by subtractive suppression hybridization. Melanoma Research, 11(6), 577–585.PubMedCrossRef
88.
Zurück zum Zitat Polakis, P. (2000). Wnt signaling and cancer. Genes and Development, 14(15), 1837–1851.PubMed Polakis, P. (2000). Wnt signaling and cancer. Genes and Development, 14(15), 1837–1851.PubMed
89.
Zurück zum Zitat Li, H. H., Cai, X., Shouse, G. P., Piluso, L. G., & Liu, X. (2007). A specific PP2A regulatory subunit, B56gamma, mediates DNA damage-induced dephosphorylation of p53 at Thr55. EMBO Journal, 26(2), 402–411.PubMedCrossRef Li, H. H., Cai, X., Shouse, G. P., Piluso, L. G., & Liu, X. (2007). A specific PP2A regulatory subunit, B56gamma, mediates DNA damage-induced dephosphorylation of p53 at Thr55. EMBO Journal, 26(2), 402–411.PubMedCrossRef
90.
Zurück zum Zitat Okamoto, K., Li, H., Jensen, M. R., Zhang, T., Taya, Y., Thorgeirsson, S. S., & Prives, C. (2002). Cyclin g recruits PP2A to dephosphorylate Mdm2. Molecular Cell, 9(4), 761–771.PubMedCrossRef Okamoto, K., Li, H., Jensen, M. R., Zhang, T., Taya, Y., Thorgeirsson, S. S., & Prives, C. (2002). Cyclin g recruits PP2A to dephosphorylate Mdm2. Molecular Cell, 9(4), 761–771.PubMedCrossRef
91.
Zurück zum Zitat Wei, W., Jobling, W. A., Chen, W., Hahn, W. C., & Sedivy, J. M. (2003). Abolition of cyclin-dependent kinase inhibitor p16ink4a and p21cip1/waf1 functions permits ras-induced anchorage-independent growth in telomerase-immortalized human fibroblasts. Molecular and Cellular Biology, 23(8), 2859–2870.PubMedCrossRef Wei, W., Jobling, W. A., Chen, W., Hahn, W. C., & Sedivy, J. M. (2003). Abolition of cyclin-dependent kinase inhibitor p16ink4a and p21cip1/waf1 functions permits ras-induced anchorage-independent growth in telomerase-immortalized human fibroblasts. Molecular and Cellular Biology, 23(8), 2859–2870.PubMedCrossRef
92.
Zurück zum Zitat Camonis, J. H., & White, M. A. (2005). Ral GTPases: Corrupting the exocyst in cancer cells. Trends in Cell Biology, 15(6), 327–332.PubMedCrossRef Camonis, J. H., & White, M. A. (2005). Ral GTPases: Corrupting the exocyst in cancer cells. Trends in Cell Biology, 15(6), 327–332.PubMedCrossRef
93.
Zurück zum Zitat Feig, L. A. (2003). Ral-GTPases: Approaching their 15 minutes of fame. Trends in Cell Biology, 13(8), 419–425.PubMedCrossRef Feig, L. A. (2003). Ral-GTPases: Approaching their 15 minutes of fame. Trends in Cell Biology, 13(8), 419–425.PubMedCrossRef
94.
Zurück zum Zitat Feinstein, E. (2005). Ral-GTPases: Good chances for a long-lasting fame. Oncogene, 24(3), 326–328.PubMedCrossRef Feinstein, E. (2005). Ral-GTPases: Good chances for a long-lasting fame. Oncogene, 24(3), 326–328.PubMedCrossRef
95.
Zurück zum Zitat Goi, T., Shipitsin, M., Lu, Z., Foster, D. A., Klinz, S. G., & Feig, L. A. (2000). An egf receptor/ral-GTPase signaling cascade regulates c-src activity and substrate specificity. EMBO Journal, 19(4), 623–630.PubMedCrossRef Goi, T., Shipitsin, M., Lu, Z., Foster, D. A., Klinz, S. G., & Feig, L. A. (2000). An egf receptor/ral-GTPase signaling cascade regulates c-src activity and substrate specificity. EMBO Journal, 19(4), 623–630.PubMedCrossRef
96.
Zurück zum Zitat Jiang, H., Luo, J. Q., Urano, T., Frankel, P., Lu, Z., Foster, D. A., & Feig, L. A. (1995). Involvement of ral GTPase in v-src-induced phospholipase D activation. Nature, 378(6555), 409–412.PubMedCrossRef Jiang, H., Luo, J. Q., Urano, T., Frankel, P., Lu, Z., Foster, D. A., & Feig, L. A. (1995). Involvement of ral GTPase in v-src-induced phospholipase D activation. Nature, 378(6555), 409–412.PubMedCrossRef
97.
Zurück zum Zitat Moskalenko, S., Henry, D. O., Rosse, C., Mirey, G., Camonis, J. H., & White, M. A. (2002). The exocyst is a ral effector complex. Nature Cell Biology, 4(1), 66–72.PubMedCrossRef Moskalenko, S., Henry, D. O., Rosse, C., Mirey, G., Camonis, J. H., & White, M. A. (2002). The exocyst is a ral effector complex. Nature Cell Biology, 4(1), 66–72.PubMedCrossRef
98.
Zurück zum Zitat Adler, H. T., Nallaseth, F. S., Walter, G., & Tkachuk, D. C. (1997). Hrx leukemic fusion proteins form a heterocomplex with the leukemia-associated protein SET and protein phosphatase 2A. Journal of Biological Chemistry, 272(45), 28407–28414.PubMedCrossRef Adler, H. T., Nallaseth, F. S., Walter, G., & Tkachuk, D. C. (1997). Hrx leukemic fusion proteins form a heterocomplex with the leukemia-associated protein SET and protein phosphatase 2A. Journal of Biological Chemistry, 272(45), 28407–28414.PubMedCrossRef
99.
Zurück zum Zitat Gildea, J. J., Harding, M. A., Seraj, M. J., Gulding, K. M., & Theodorescu, D. (2002). The role of RalA in epidermal growth factor receptor-regulated cell motility. Cancer Research, 62(4), 982–985.PubMed Gildea, J. J., Harding, M. A., Seraj, M. J., Gulding, K. M., & Theodorescu, D. (2002). The role of RalA in epidermal growth factor receptor-regulated cell motility. Cancer Research, 62(4), 982–985.PubMed
100.
Zurück zum Zitat Ohta, Y., Suzuki, N., Nakamura, S., Hartwig, J. H., & Stossel, T. P. (1999). The small GTPase RalA targets filamin to induce filopodia. Proceedings of the Society for Experimental Biology and Medicine, 96(5), 2122–2128. Ohta, Y., Suzuki, N., Nakamura, S., Hartwig, J. H., & Stossel, T. P. (1999). The small GTPase RalA targets filamin to induce filopodia. Proceedings of the Society for Experimental Biology and Medicine, 96(5), 2122–2128.
101.
Zurück zum Zitat Tchevkina, E., Agapova, L., Dyakova, N., Martinjuk, A., Komelkov, A., & Tatosyan, A. (2005). The small G-protein RalA stimulates metastasis of transformed cells. Oncogene, 24(3), 329–335.PubMedCrossRef Tchevkina, E., Agapova, L., Dyakova, N., Martinjuk, A., Komelkov, A., & Tatosyan, A. (2005). The small G-protein RalA stimulates metastasis of transformed cells. Oncogene, 24(3), 329–335.PubMedCrossRef
102.
Zurück zum Zitat Chien, Y., & White, M. A. (2003). Ral GTPases are linchpin modulators of human tumor-cell proliferation and survival. EMBO Reports, 4(8), 800–806.PubMedCrossRef Chien, Y., & White, M. A. (2003). Ral GTPases are linchpin modulators of human tumor-cell proliferation and survival. EMBO Reports, 4(8), 800–806.PubMedCrossRef
103.
Zurück zum Zitat Lim, K. H., Baines, A. T., Fiordalisi, J. J., Shipitsin, M., Feig, L. A., Cox, A. D., et al. (2005). Activation of RalA is critical for ras-induced tumorigenesis of human cells. Cancer Cells, 7(6), 533–545.CrossRef Lim, K. H., Baines, A. T., Fiordalisi, J. J., Shipitsin, M., Feig, L. A., Cox, A. D., et al. (2005). Activation of RalA is critical for ras-induced tumorigenesis of human cells. Cancer Cells, 7(6), 533–545.CrossRef
104.
Zurück zum Zitat Panner, A., Nakamura, J. L., Parsa, A. T., Rodriguez-Viciana, P., Berger, M. S., Stokoe, D., et al. (2006). mTOR-independent translational control of the extrinsic cell death pathway by RalA. Molecular and Cellular Biology, 26(20), 7345–7357.PubMedCrossRef Panner, A., Nakamura, J. L., Parsa, A. T., Rodriguez-Viciana, P., Berger, M. S., Stokoe, D., et al. (2006). mTOR-independent translational control of the extrinsic cell death pathway by RalA. Molecular and Cellular Biology, 26(20), 7345–7357.PubMedCrossRef
105.
Zurück zum Zitat Li, M., Makkinje, A., & Damuni, Z. (1996). The myeloid leukemia-associated protein set is a potent inhibitor of protein phosphatase 2A. Journal of Biological Chemistry, 271(19), 11059–11062.PubMedCrossRef Li, M., Makkinje, A., & Damuni, Z. (1996). The myeloid leukemia-associated protein set is a potent inhibitor of protein phosphatase 2A. Journal of Biological Chemistry, 271(19), 11059–11062.PubMedCrossRef
106.
Zurück zum Zitat Seo, S. B., Mcnamara, P., Heo, S., Turner, A., Lane, W. S., & Chakravarti, D. (2001). Regulation of histone acetylation and transcription by INHAT, a human cellular complex containing the SET oncoprotein. Cell, 104(1), 119–130.PubMedCrossRef Seo, S. B., Mcnamara, P., Heo, S., Turner, A., Lane, W. S., & Chakravarti, D. (2001). Regulation of histone acetylation and transcription by INHAT, a human cellular complex containing the SET oncoprotein. Cell, 104(1), 119–130.PubMedCrossRef
107.
Zurück zum Zitat Canela, N., Rodriguez-Vilarrupla, A., Estanyol, J. M., Diaz, C., Pujol, M. J., Agell, N., et al. (2003). The set protein regulates G2/M transition by modulating cyclin B-cyclin-dependent kinase 1 activity. Journal of Biological Chemistry, 278(2), 1158–1164.PubMedCrossRef Canela, N., Rodriguez-Vilarrupla, A., Estanyol, J. M., Diaz, C., Pujol, M. J., Agell, N., et al. (2003). The set protein regulates G2/M transition by modulating cyclin B-cyclin-dependent kinase 1 activity. Journal of Biological Chemistry, 278(2), 1158–1164.PubMedCrossRef
108.
Zurück zum Zitat Kumar, R. N., Radhakrishnan, R., Ha, J. H., & Dhanasekaran, N. (2004). Proteome analysis of NIH3T3 cells transformed by activated Galpha12: Regulation of leukemia-associated protein set. Journal of Proteome Research, 3(6), 1177–1183.PubMedCrossRef Kumar, R. N., Radhakrishnan, R., Ha, J. H., & Dhanasekaran, N. (2004). Proteome analysis of NIH3T3 cells transformed by activated Galpha12: Regulation of leukemia-associated protein set. Journal of Proteome Research, 3(6), 1177–1183.PubMedCrossRef
109.
Zurück zum Zitat Carlson, S. G., Eng, E., Kim, E. G., Perlman, E. J., Copeland, T. D., & Ballermann, B. J. (1998). Expression of set, an inhibitor of protein phosphatase 2A, in renal development and Wilms’ tumor. Journal of the American Society of Nephrology, 9(10), 1873–1880.PubMed Carlson, S. G., Eng, E., Kim, E. G., Perlman, E. J., Copeland, T. D., & Ballermann, B. J. (1998). Expression of set, an inhibitor of protein phosphatase 2A, in renal development and Wilms’ tumor. Journal of the American Society of Nephrology, 9(10), 1873–1880.PubMed
110.
Zurück zum Zitat Fornerod, M., Boer, J., Van Baal, S., Jaegle, M., Von Lindern, M., Murti, K. G., et al. (1995). Relocation of the carboxyterminal part of CAN from the nuclear envelope to the nucleus as a result of leukemia-specific chromosome rearrangements. Oncogene, 10(9), 1739–1748.PubMed Fornerod, M., Boer, J., Van Baal, S., Jaegle, M., Von Lindern, M., Murti, K. G., et al. (1995). Relocation of the carboxyterminal part of CAN from the nuclear envelope to the nucleus as a result of leukemia-specific chromosome rearrangements. Oncogene, 10(9), 1739–1748.PubMed
111.
Zurück zum Zitat Von Lindern, M., Van Baal, S., Wiegant, J., Raap, A., Hagemeijer, A., & Grosveld, G. (1992). Can, a putative oncogene associated with myeloid leukemogenesis, may be activated by fusion of its 3′ half to different genes: Characterization of the set gene. Molecular and Cellular Biology, 12(8), 3346–3355. Von Lindern, M., Van Baal, S., Wiegant, J., Raap, A., Hagemeijer, A., & Grosveld, G. (1992). Can, a putative oncogene associated with myeloid leukemogenesis, may be activated by fusion of its 3′ half to different genes: Characterization of the set gene. Molecular and Cellular Biology, 12(8), 3346–3355.
112.
Zurück zum Zitat Fan, Z., Beresford, P. J., Oh, D. Y., Zhang, D., & Lieberman, J. (2003). Tumor suppressor NM23-H1 is a granzyme A-activated DNAase during CTL-mediated apoptosis, and the nucleosome assembly protein set is its inhibitor. Cell, 112(5), 659–672.PubMedCrossRef Fan, Z., Beresford, P. J., Oh, D. Y., Zhang, D., & Lieberman, J. (2003). Tumor suppressor NM23-H1 is a granzyme A-activated DNAase during CTL-mediated apoptosis, and the nucleosome assembly protein set is its inhibitor. Cell, 112(5), 659–672.PubMedCrossRef
113.
Zurück zum Zitat Junttila, M. R., Puustinen, P., Niemela, M., Ahola, R., Arnold, H., Bottzauw, T., et al. (2007). CIP2A inhibits PP2A in human malignancies. Cell, 130(1), 51–62.PubMedCrossRef Junttila, M. R., Puustinen, P., Niemela, M., Ahola, R., Arnold, H., Bottzauw, T., et al. (2007). CIP2A inhibits PP2A in human malignancies. Cell, 130(1), 51–62.PubMedCrossRef
Metadaten
Titel
SV40 small T antigen and PP2A phosphatase in cell transformation
verfasst von
Anna A. Sablina
William C. Hahn
Publikationsdatum
01.06.2008
Verlag
Springer US
Erschienen in
Cancer and Metastasis Reviews / Ausgabe 2/2008
Print ISSN: 0167-7659
Elektronische ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-008-9116-0

Weitere Artikel der Ausgabe 2/2008

Cancer and Metastasis Reviews 2/2008 Zur Ausgabe

PREFACE

Preface

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.