Skip to main content
Erschienen in: Cancer and Metastasis Reviews 1-2/2009

01.06.2009

Tissue architecture and function: dynamic reciprocity via extra- and intra-cellular matrices

verfasst von: Ren Xu, Aaron Boudreau, Mina J. Bissell

Erschienen in: Cancer and Metastasis Reviews | Ausgabe 1-2/2009

Einloggen, um Zugang zu erhalten

Abstract

Mammary gland development, functional differentiation, and homeostasis are orchestrated and sustained by a balance of biochemical and biophysical cues from the organ’s microenvironment. The three-dimensional microenvironment of the mammary gland, predominantly ‘encoded’ by a collaboration between the extracellular matrix (ECM), hormones, and growth factors, sends signals from ECM receptors through the cytoskeletal intracellular matrix to nuclear and chromatin structures resulting in gene expression; the ECM in turn is regulated and remodeled by signals from the nucleus. In this chapter, we discuss how coordinated ECM deposition and remodeling is necessary for mammary gland development, how the ECM provides structural and biochemical cues necessary for tissue-specific function, and the role of the cytoskeleton in mediating the extra—to intracellular dialogue occurring between the nucleus and the microenvironment. When operating normally, the cytoskeletal-mediated dynamic and reciprocal integration of tissue architecture and function directs mammary gland development, tissue polarity, and ultimately, tissue-specific gene expression. Cancer occurs when these dynamic interactions go awry for an extended time.
Literatur
1.
Zurück zum Zitat Nelson, C. M., & Bissell, M. J. (2006). Of extracellular matrix, scaffolds, and signaling: tissue architecture regulates development, homeostasis, and cancer. Annual review of cell and developmental biology, 22, 287–309.PubMedCrossRef Nelson, C. M., & Bissell, M. J. (2006). Of extracellular matrix, scaffolds, and signaling: tissue architecture regulates development, homeostasis, and cancer. Annual review of cell and developmental biology, 22, 287–309.PubMedCrossRef
2.
Zurück zum Zitat Bissell, M. J., Hall, H. G., & Parry, G. (1982). How does the extracellular matrix direct gene expression? Journal of theoretical biology, 99, 31–68.PubMedCrossRef Bissell, M. J., Hall, H. G., & Parry, G. (1982). How does the extracellular matrix direct gene expression? Journal of theoretical biology, 99, 31–68.PubMedCrossRef
3.
Zurück zum Zitat Hynes, R. O. (2002). Integrins: bidirectional, allosteric signaling machines. Cell, 110, 673–687.PubMedCrossRef Hynes, R. O. (2002). Integrins: bidirectional, allosteric signaling machines. Cell, 110, 673–687.PubMedCrossRef
4.
Zurück zum Zitat Maxwell, C. A., McCarthy, J., & Turley, E. (2008). Cell-surface and mitotic-spindle RHAMM: moonlighting or dual oncogenic functions? Journal of Cell Science, 121, 925–932.PubMedCrossRef Maxwell, C. A., McCarthy, J., & Turley, E. (2008). Cell-surface and mitotic-spindle RHAMM: moonlighting or dual oncogenic functions? Journal of Cell Science, 121, 925–932.PubMedCrossRef
5.
Zurück zum Zitat Sanderson, R. D., Yang, Y., Suva, L. J., & Kelly, T. (2004). Heparan sulfate proteoglycans and heparanase–partners in osteolytic tumor growth and metastasis. Matrix biol, 23, 341–352.PubMedCrossRef Sanderson, R. D., Yang, Y., Suva, L. J., & Kelly, T. (2004). Heparan sulfate proteoglycans and heparanase–partners in osteolytic tumor growth and metastasis. Matrix biol, 23, 341–352.PubMedCrossRef
6.
Zurück zum Zitat Yurchenco, P. D., & Wadsworth, W. G. (2004). Assembly and tissue functions of early embryonic laminins and netrins. Current opinion in cell biology, 16, 572–579.PubMedCrossRef Yurchenco, P. D., & Wadsworth, W. G. (2004). Assembly and tissue functions of early embryonic laminins and netrins. Current opinion in cell biology, 16, 572–579.PubMedCrossRef
7.
Zurück zum Zitat Fata, J. E., Werb, Z., & Bissell, M. J. (2004). Regulation of mammary gland branching morphogenesis by the extracellular matrix and its remodeling enzymes. Breast cancer research, 6, 1–11.PubMed Fata, J. E., Werb, Z., & Bissell, M. J. (2004). Regulation of mammary gland branching morphogenesis by the extracellular matrix and its remodeling enzymes. Breast cancer research, 6, 1–11.PubMed
8.
Zurück zum Zitat Keely, P. J., Wu, J. E., & Santoro, S. A. (1995). The spatial and temporal expression of the alpha 2 beta 1 integrin and its ligands, collagen I, collagen IV, and laminin, suggest important roles in mouse mammary morphogenesis. Differentiation, 59, 1–13.PubMedCrossRef Keely, P. J., Wu, J. E., & Santoro, S. A. (1995). The spatial and temporal expression of the alpha 2 beta 1 integrin and its ligands, collagen I, collagen IV, and laminin, suggest important roles in mouse mammary morphogenesis. Differentiation, 59, 1–13.PubMedCrossRef
9.
Zurück zum Zitat Talhouk, R. S., Chin, J. R., Unemori, E. N., Werb, Z., & Bissell, M. J. (1991). Proteinases of the mammary gland: developmental regulation in vivo and vectorial secretion in culture. Development, 112, 439–449.PubMed Talhouk, R. S., Chin, J. R., Unemori, E. N., Werb, Z., & Bissell, M. J. (1991). Proteinases of the mammary gland: developmental regulation in vivo and vectorial secretion in culture. Development, 112, 439–449.PubMed
10.
Zurück zum Zitat Schedin, P., Mitrenga, T., McDaniel, S., & Kaeck, M. (2004). Mammary ECM composition and function are altered by reproductive state. Molecular carcinogenesis, 41, 207–220.PubMedCrossRef Schedin, P., Mitrenga, T., McDaniel, S., & Kaeck, M. (2004). Mammary ECM composition and function are altered by reproductive state. Molecular carcinogenesis, 41, 207–220.PubMedCrossRef
11.
Zurück zum Zitat Wicha, M. S., Liotta, L. A., Vonderhaar, B. K., & Kidwell, W. R. (1980). Effects of inhibition of basement membrane collagen deposition on rat mammary gland development. Developments in biologicals, 80, 253–256.CrossRef Wicha, M. S., Liotta, L. A., Vonderhaar, B. K., & Kidwell, W. R. (1980). Effects of inhibition of basement membrane collagen deposition on rat mammary gland development. Developments in biologicals, 80, 253–256.CrossRef
12.
Zurück zum Zitat Silberstein, G. B., & Daniel, C. W. (1982). Glycosaminoglycans in the basal lamina and extracellular matrix of the developing mouse mammary duct. Developmental biology, 90, 215–222.PubMedCrossRef Silberstein, G. B., & Daniel, C. W. (1982). Glycosaminoglycans in the basal lamina and extracellular matrix of the developing mouse mammary duct. Developmental biology, 90, 215–222.PubMedCrossRef
13.
Zurück zum Zitat Turley, E. A., Veiseh, M., Radisky, D. C., & Bissell, M. J. (2008). Mechanisms of disease: epithelial-mesenchymal transition–does cellular plasticity fuel neoplastic progression? Nat Clin Pract Oncol, 5, 280–290.PubMedCrossRef Turley, E. A., Veiseh, M., Radisky, D. C., & Bissell, M. J. (2008). Mechanisms of disease: epithelial-mesenchymal transition–does cellular plasticity fuel neoplastic progression? Nat Clin Pract Oncol, 5, 280–290.PubMedCrossRef
14.
Zurück zum Zitat Taddei, I., Deugnier, M. A., Faraldo, M. M., Petit, V., Bouvard, D., Medina, D., et al. (2008). Beta1 integrin deletion from the basal compartment of the mammary epithelium affects stem cells. Nature cell biology, 10, 716–722.PubMedCrossRef Taddei, I., Deugnier, M. A., Faraldo, M. M., Petit, V., Bouvard, D., Medina, D., et al. (2008). Beta1 integrin deletion from the basal compartment of the mammary epithelium affects stem cells. Nature cell biology, 10, 716–722.PubMedCrossRef
15.
Zurück zum Zitat Woodward, T. L., Mienaltowski, A. S., Modi, R. R., Bennett, J. M., & Haslam, S. Z. (2001). Fibronectin and the alpha(5)beta(1) integrin are under developmental and ovarian steroid regulation in the normal mouse mammary gland. Endocrinology, 142, 3214–3222.PubMedCrossRef Woodward, T. L., Mienaltowski, A. S., Modi, R. R., Bennett, J. M., & Haslam, S. Z. (2001). Fibronectin and the alpha(5)beta(1) integrin are under developmental and ovarian steroid regulation in the normal mouse mammary gland. Endocrinology, 142, 3214–3222.PubMedCrossRef
16.
Zurück zum Zitat Williams, C. M., Engler, A. J., Slone, R. D., Galante, L. L., & Schwarzbauer, J. E. (2008). Fibronectin expression modulates mammary epithelial cell proliferation during acinar differentiation. Cancer research, 68, 3185–3192.PubMedCrossRef Williams, C. M., Engler, A. J., Slone, R. D., Galante, L. L., & Schwarzbauer, J. E. (2008). Fibronectin expression modulates mammary epithelial cell proliferation during acinar differentiation. Cancer research, 68, 3185–3192.PubMedCrossRef
17.
Zurück zum Zitat Sandal, T., Valyi-Nagy, K., Spencer, V. A., Folberg, R., Bissell, M. J., & Maniotis, A. J. (2007). Epigenetic reversion of breast carcinoma phenotype is accompanied by changes in DNA sequestration as measured by AluI restriction enzyme. American journal of pathology, 170, 1739–1749.PubMedCrossRef Sandal, T., Valyi-Nagy, K., Spencer, V. A., Folberg, R., Bissell, M. J., & Maniotis, A. J. (2007). Epigenetic reversion of breast carcinoma phenotype is accompanied by changes in DNA sequestration as measured by AluI restriction enzyme. American journal of pathology, 170, 1739–1749.PubMedCrossRef
18.
Zurück zum Zitat Werb, Z., & Chin, J. R. (1998). Extracellular matrix remodeling during morphogenesis. Ann N Y Acad Sci, 857, 110–118.PubMedCrossRef Werb, Z., & Chin, J. R. (1998). Extracellular matrix remodeling during morphogenesis. Ann N Y Acad Sci, 857, 110–118.PubMedCrossRef
19.
Zurück zum Zitat Lochter, A., Sternlicht, M. D., Werb, Z., & Bissell, M. J. (1998). The significance of matrix metalloproteinases during early stages of tumor progression. Ann N Y Acad Sci, 857, 180–193.PubMedCrossRef Lochter, A., Sternlicht, M. D., Werb, Z., & Bissell, M. J. (1998). The significance of matrix metalloproteinases during early stages of tumor progression. Ann N Y Acad Sci, 857, 180–193.PubMedCrossRef
20.
Zurück zum Zitat Talhouk, R. S., Bissell, M. J., & Werb, Z. (1992). Coordinated expression of extracellular matrix-degrading proteinases and their inhibitors regulates mammary epithelial function during involution. Journal of cell biology, 118, 1271–1282.PubMedCrossRef Talhouk, R. S., Bissell, M. J., & Werb, Z. (1992). Coordinated expression of extracellular matrix-degrading proteinases and their inhibitors regulates mammary epithelial function during involution. Journal of cell biology, 118, 1271–1282.PubMedCrossRef
21.
Zurück zum Zitat Witty, J. P., Wright, J. H., & Matrisian, L. M. (1995). Matrix metalloproteinases are expressed during ductal and alveolar mammary morphogenesis, and misregulation of stromelysin-1 in transgenic mice induces unscheduled alveolar development. Molecular biology of the cell, 6, 1287–1303.PubMed Witty, J. P., Wright, J. H., & Matrisian, L. M. (1995). Matrix metalloproteinases are expressed during ductal and alveolar mammary morphogenesis, and misregulation of stromelysin-1 in transgenic mice induces unscheduled alveolar development. Molecular biology of the cell, 6, 1287–1303.PubMed
22.
Zurück zum Zitat Thomasset, N., Lochter, A., Sympson, C. J., Lund, L. R., Williams, D. R., Behrendtsen, O., et al. (1998). Expression of autoactivated stromelysin-1 in mammary glands of transgenic mice leads to a reactive stroma during early development. American journal of pathology, 153, 457–467.PubMed Thomasset, N., Lochter, A., Sympson, C. J., Lund, L. R., Williams, D. R., Behrendtsen, O., et al. (1998). Expression of autoactivated stromelysin-1 in mammary glands of transgenic mice leads to a reactive stroma during early development. American journal of pathology, 153, 457–467.PubMed
23.
Zurück zum Zitat Wiseman, B. S., Sternlicht, M. D., Lund, L. R., Alexander, C. M., Mott, J., Bissell, M. J., et al. (2003). Site-specific inductive and inhibitory activities of MMP-2 and MMP-3 orchestrate mammary gland branching morphogenesis. Journal of cell biology, 162, 1123–1133.PubMedCrossRef Wiseman, B. S., Sternlicht, M. D., Lund, L. R., Alexander, C. M., Mott, J., Bissell, M. J., et al. (2003). Site-specific inductive and inhibitory activities of MMP-2 and MMP-3 orchestrate mammary gland branching morphogenesis. Journal of cell biology, 162, 1123–1133.PubMedCrossRef
24.
Zurück zum Zitat Mori, H., Nelson, C. M., Alcaraz, J., Chen, C. S., Lo, A. T., Fata, J. E., et al. (Submitted). The catalytic and non-catalytic domains of MMP14 and stromal collagen density regulate signaling loops that direct invasion and branching of mammary epithelial cells. Mori, H., Nelson, C. M., Alcaraz, J., Chen, C. S., Lo, A. T., Fata, J. E., et al. (Submitted). The catalytic and non-catalytic domains of MMP14 and stromal collagen density regulate signaling loops that direct invasion and branching of mammary epithelial cells.
25.
Zurück zum Zitat Sympson, C. J., Talhouk, R. S., Alexander, C. M., Chin, J. R., Clift, S. M., Bissell, M. J., et al. (1994). Targeted expression of stromelysin-1 in mammary gland provides evidence for a role of proteinases in branching morphogenesis and the requirement for an intact basement membrane for tissue-specific gene expression. Journal of cell biology, 125, 681–693.PubMedCrossRef Sympson, C. J., Talhouk, R. S., Alexander, C. M., Chin, J. R., Clift, S. M., Bissell, M. J., et al. (1994). Targeted expression of stromelysin-1 in mammary gland provides evidence for a role of proteinases in branching morphogenesis and the requirement for an intact basement membrane for tissue-specific gene expression. Journal of cell biology, 125, 681–693.PubMedCrossRef
26.
Zurück zum Zitat Koshikawa, N., Minegishi, T., Sharabi, A., Quaranta, V., & Seiki, M. (2005). Membrane-type matrix metalloproteinase-1 (MT1-MMP) is a processing enzyme for human laminin gamma 2 chain. Journal of biological chemistry, 280, 88–93.PubMed Koshikawa, N., Minegishi, T., Sharabi, A., Quaranta, V., & Seiki, M. (2005). Membrane-type matrix metalloproteinase-1 (MT1-MMP) is a processing enzyme for human laminin gamma 2 chain. Journal of biological chemistry, 280, 88–93.PubMed
27.
Zurück zum Zitat Koshikawa, N., Schenk, S., Moeckel, G., Sharabi, A., Miyazaki, K., Gardner, H., et al. (2004). Proteolytic processing of laminin-5 by MT1-MMP in tissues and its effects on epithelial cell morphology. FASEB journal, 18, 364–366.PubMed Koshikawa, N., Schenk, S., Moeckel, G., Sharabi, A., Miyazaki, K., Gardner, H., et al. (2004). Proteolytic processing of laminin-5 by MT1-MMP in tissues and its effects on epithelial cell morphology. FASEB journal, 18, 364–366.PubMed
28.
Zurück zum Zitat Bissell, M. J., Rizki, A., & Mian, I. S. (2003). Tissue architecture: the ultimate regulator of breast epithelial function. Current opinion in cell biology, 15, 753–762.PubMedCrossRef Bissell, M. J., Rizki, A., & Mian, I. S. (2003). Tissue architecture: the ultimate regulator of breast epithelial function. Current opinion in cell biology, 15, 753–762.PubMedCrossRef
29.
Zurück zum Zitat Hagios, C., Lochter, A., & Bissell, M. J. (1998). Tissue architecture: the ultimate regulator of epithelial function? Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 353, 857–870.PubMedCrossRef Hagios, C., Lochter, A., & Bissell, M. J. (1998). Tissue architecture: the ultimate regulator of epithelial function? Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 353, 857–870.PubMedCrossRef
30.
Zurück zum Zitat Emerman, J. T., & Pitelka, D. R. (1977). Maintenance and induction of morphological differentiation in dissociated mammary epithelium on floating collagen membranes. In Vitro, 13, 316–328.PubMedCrossRef Emerman, J. T., & Pitelka, D. R. (1977). Maintenance and induction of morphological differentiation in dissociated mammary epithelium on floating collagen membranes. In Vitro, 13, 316–328.PubMedCrossRef
31.
Zurück zum Zitat Kleinman, H. K., McGarvey, M. L., Liotta, L. A., Robey, P. G., Tryggvason, K., & Martin, G. R. (1982). Isolation and characterization of type IV procollagen, laminin, and heparan sulfate proteoglycan from the EHS sarcoma. Biochemistry, 21, 6188–6193.PubMedCrossRef Kleinman, H. K., McGarvey, M. L., Liotta, L. A., Robey, P. G., Tryggvason, K., & Martin, G. R. (1982). Isolation and characterization of type IV procollagen, laminin, and heparan sulfate proteoglycan from the EHS sarcoma. Biochemistry, 21, 6188–6193.PubMedCrossRef
32.
Zurück zum Zitat Li, M. L., Aggeler, J., Farson, D. A., Hatier, C., Hassell, J., & Bissell, M. J. (1987). Influence of a reconstituted basement membrane and its components on casein gene expression and secretion in mouse mammary epithelial cells. Proceedings of the National Academy of Sciences of the United States of America, 84, 136–140.PubMedCrossRef Li, M. L., Aggeler, J., Farson, D. A., Hatier, C., Hassell, J., & Bissell, M. J. (1987). Influence of a reconstituted basement membrane and its components on casein gene expression and secretion in mouse mammary epithelial cells. Proceedings of the National Academy of Sciences of the United States of America, 84, 136–140.PubMedCrossRef
33.
Zurück zum Zitat Barcellos-Hoff, M. H., Aggeler, J., Ram, T. G., & Bissell, M. J. (1989). Functional differentiation and alveolar morphogenesis of primary mammary cultures on reconstituted basement membrane. Development, 105, 223–235.PubMed Barcellos-Hoff, M. H., Aggeler, J., Ram, T. G., & Bissell, M. J. (1989). Functional differentiation and alveolar morphogenesis of primary mammary cultures on reconstituted basement membrane. Development, 105, 223–235.PubMed
34.
Zurück zum Zitat Bissell, M. J., Kenny, P. A., & Radisky, D. C. (2005). Microenvironmental regulators of tissue structure and function also regulate tumor induction and progression: the role of extracellular matrix and its degrading enzymes. Cold Spring Harbor Symposia on Quantitative Biology, 70, 343–356.PubMedCrossRef Bissell, M. J., Kenny, P. A., & Radisky, D. C. (2005). Microenvironmental regulators of tissue structure and function also regulate tumor induction and progression: the role of extracellular matrix and its degrading enzymes. Cold Spring Harbor Symposia on Quantitative Biology, 70, 343–356.PubMedCrossRef
35.
Zurück zum Zitat Bissell, M. J., & Bilder, D. (2003). Polarity determination in breast tissue: desmosomal adhesion, myoepithelial cells, and laminin 1. Breast cancer research, 5, 117–119.PubMedCrossRef Bissell, M. J., & Bilder, D. (2003). Polarity determination in breast tissue: desmosomal adhesion, myoepithelial cells, and laminin 1. Breast cancer research, 5, 117–119.PubMedCrossRef
36.
Zurück zum Zitat Gudjonsson, T., Ronnov-Jessen, L., Villadsen, R., Rank, F., Bissell, M. J., & Petersen, O. W. (2002). Normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for polarity and basement membrane deposition. Journal of Cell Science, 115, 39–50.PubMed Gudjonsson, T., Ronnov-Jessen, L., Villadsen, R., Rank, F., Bissell, M. J., & Petersen, O. W. (2002). Normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for polarity and basement membrane deposition. Journal of Cell Science, 115, 39–50.PubMed
37.
Zurück zum Zitat Streuli, C. H., Bailey, N., & Bissell, M. J. (1991). Control of mammary epithelial differentiation: basement membrane induces tissue-specific gene expression in the absence of cell-cell interaction and morphological polarity. Journal of cell biology, 115, 1383–1395.PubMedCrossRef Streuli, C. H., Bailey, N., & Bissell, M. J. (1991). Control of mammary epithelial differentiation: basement membrane induces tissue-specific gene expression in the absence of cell-cell interaction and morphological polarity. Journal of cell biology, 115, 1383–1395.PubMedCrossRef
38.
Zurück zum Zitat Weir, M. L., Oppizzi, M. L., Henry, M. D., Onishi, A., Campbell, K. P., Bissell, M. J., et al. (2006). Dystroglycan loss disrupts polarity and beta-casein induction in mammary epithelial cells by perturbing laminin anchoring. Journal of Cell Science, 119, 4047–4058.PubMedCrossRef Weir, M. L., Oppizzi, M. L., Henry, M. D., Onishi, A., Campbell, K. P., Bissell, M. J., et al. (2006). Dystroglycan loss disrupts polarity and beta-casein induction in mammary epithelial cells by perturbing laminin anchoring. Journal of Cell Science, 119, 4047–4058.PubMedCrossRef
39.
Zurück zum Zitat Naylor, M. J., Li, N., Cheung, J., Lowe, E. T., Lambert, E., Marlow, R., et al. (2005). Ablation of beta1 integrin in mammary epithelium reveals a key role for integrin in glandular morphogenesis and differentiation. Journal of cell biology, 171, 717–728.PubMedCrossRef Naylor, M. J., Li, N., Cheung, J., Lowe, E. T., Lambert, E., Marlow, R., et al. (2005). Ablation of beta1 integrin in mammary epithelium reveals a key role for integrin in glandular morphogenesis and differentiation. Journal of cell biology, 171, 717–728.PubMedCrossRef
40.
Zurück zum Zitat Xu, R., Nelson, C. M., Muschler, J., Veiseh, M., Vonderhaar, B. K., Bissell, M. J. (2008). Sustained activation of STAT5 is essential for chromatin remodeling and maintenance of mammary-specific function. Journal of cell biology, In press. Xu, R., Nelson, C. M., Muschler, J., Veiseh, M., Vonderhaar, B. K., Bissell, M. J. (2008). Sustained activation of STAT5 is essential for chromatin remodeling and maintenance of mammary-specific function. Journal of cell biology, In press.
41.
Zurück zum Zitat Ben-Jonathan, N., Mershon, J. L., Allen, D. L., & Steinmetz, R. W. (1996). Extrapituitary prolactin: distribution, regulation, functions, and clinical aspects. Endocrine reviews, 17, 639–669.PubMed Ben-Jonathan, N., Mershon, J. L., Allen, D. L., & Steinmetz, R. W. (1996). Extrapituitary prolactin: distribution, regulation, functions, and clinical aspects. Endocrine reviews, 17, 639–669.PubMed
42.
Zurück zum Zitat Lin, C. Q., Dempsey, P. J., Coffey, R. J., & Bissell, M. J. (1995). Extracellular matrix regulates whey acidic protein gene expression by suppression of TGF-alpha in mouse mammary epithelial cells: studies in culture and in transgenic mice. Journal of cell biology, 129, 1115–1126.PubMedCrossRef Lin, C. Q., Dempsey, P. J., Coffey, R. J., & Bissell, M. J. (1995). Extracellular matrix regulates whey acidic protein gene expression by suppression of TGF-alpha in mouse mammary epithelial cells: studies in culture and in transgenic mice. Journal of cell biology, 129, 1115–1126.PubMedCrossRef
43.
Zurück zum Zitat Chen, L. H., & Bissell, M. J. (1989). A novel regulatory mechanism for whey acidic protein gene expression. Cell regulation, 1, 45–54.PubMed Chen, L. H., & Bissell, M. J. (1989). A novel regulatory mechanism for whey acidic protein gene expression. Cell regulation, 1, 45–54.PubMed
44.
Zurück zum Zitat Vermeer, P. D., Einwalter, L. A., Moninger, T. O., Rokhlina, T., Kern, J. A., Zabner, J., et al. (2003). Segregation of receptor and ligand regulates activation of epithelial growth factor receptor. Nature, 422, 322–326.PubMedCrossRef Vermeer, P. D., Einwalter, L. A., Moninger, T. O., Rokhlina, T., Kern, J. A., Zabner, J., et al. (2003). Segregation of receptor and ligand regulates activation of epithelial growth factor receptor. Nature, 422, 322–326.PubMedCrossRef
45.
Zurück zum Zitat Liu, H., Radisky, D. C., Wang, F., & Bissell, M. J. (2004). Polarity and proliferation are controlled by distinct signaling pathways downstream of PI3-kinase in breast epithelial tumor cells. Journal of cell biology, 164, 603–612.PubMedCrossRef Liu, H., Radisky, D. C., Wang, F., & Bissell, M. J. (2004). Polarity and proliferation are controlled by distinct signaling pathways downstream of PI3-kinase in breast epithelial tumor cells. Journal of cell biology, 164, 603–612.PubMedCrossRef
46.
Zurück zum Zitat Xu, R., Spencer, V. A., & Bissell, M. J. (2007). Extracellular matrix-regulated gene expression requires cooperation of SWI/SNF and transcription factors. Journal of biological chemistry, 282, 14992–14999.PubMedCrossRef Xu, R., Spencer, V. A., & Bissell, M. J. (2007). Extracellular matrix-regulated gene expression requires cooperation of SWI/SNF and transcription factors. Journal of biological chemistry, 282, 14992–14999.PubMedCrossRef
47.
Zurück zum Zitat Streuli, C. H., Schmidhauser, C., Bailey, N., Yurchenco, P., Skubitz, A. P., Roskelley, C., et al. (1995). Laminin mediates tissue-specific gene expression in mammary epithelia. Journal of cell biology, 129, 591–603.PubMedCrossRef Streuli, C. H., Schmidhauser, C., Bailey, N., Yurchenco, P., Skubitz, A. P., Roskelley, C., et al. (1995). Laminin mediates tissue-specific gene expression in mammary epithelia. Journal of cell biology, 129, 591–603.PubMedCrossRef
48.
Zurück zum Zitat Schmidhauser, C., Casperson, G. F., Myers, C. A., Sanzo, K. T., Bolten, S., & Bissell, M. J. (1992). A novel transcriptional enhancer is involved in the prolactin—and extracellular matrix-dependent regulation of beta-casein gene expression. Molecular biology of the cell, 3, 699–709.PubMed Schmidhauser, C., Casperson, G. F., Myers, C. A., Sanzo, K. T., Bolten, S., & Bissell, M. J. (1992). A novel transcriptional enhancer is involved in the prolactin—and extracellular matrix-dependent regulation of beta-casein gene expression. Molecular biology of the cell, 3, 699–709.PubMed
49.
Zurück zum Zitat Myers, C. A., Schmidhauser, C., Mellentin-Michelotti, J., Fragoso, G., Roskelley, C. D., Casperson, G., et al. (1998). Characterization of BCE-1, a transcriptional enhancer regulated by prolactin and extracellular matrix and modulated by the state of histone acetylation. Molecular and cellular biology, 18, 2184–2195.PubMed Myers, C. A., Schmidhauser, C., Mellentin-Michelotti, J., Fragoso, G., Roskelley, C. D., Casperson, G., et al. (1998). Characterization of BCE-1, a transcriptional enhancer regulated by prolactin and extracellular matrix and modulated by the state of histone acetylation. Molecular and cellular biology, 18, 2184–2195.PubMed
50.
Zurück zum Zitat Clayton, D. F., Harrelson, A. L., & Darnell Jr., J. E. (1985). Dependence of liver-specific transcription on tissue organization. Molecular and cellular biology, 5, 2623–2632.PubMed Clayton, D. F., Harrelson, A. L., & Darnell Jr., J. E. (1985). Dependence of liver-specific transcription on tissue organization. Molecular and cellular biology, 5, 2623–2632.PubMed
51.
Zurück zum Zitat Streuli, C. H., Edwards, G. M., Delcommenne, M., Whitelaw, C. B., Burdon, T. G., Schindler, C., et al. (1995). Stat5 as a target for regulation by extracellular matrix. Journal of biological chemistry, 270, 21639–21644.PubMedCrossRef Streuli, C. H., Edwards, G. M., Delcommenne, M., Whitelaw, C. B., Burdon, T. G., Schindler, C., et al. (1995). Stat5 as a target for regulation by extracellular matrix. Journal of biological chemistry, 270, 21639–21644.PubMedCrossRef
52.
Zurück zum Zitat Lelievre, S. A., Weaver, V. M., Nickerson, J. A., Larabell, C. A., Bhaumik, A., Petersen, O. W., et al. (1998). Tissue phenotype depends on reciprocal interactions between the extracellular matrix and the structural organization of the nucleus. Proceedings of the National Academy of Sciences of the United States of America, 95, 14711–14716.PubMedCrossRef Lelievre, S. A., Weaver, V. M., Nickerson, J. A., Larabell, C. A., Bhaumik, A., Petersen, O. W., et al. (1998). Tissue phenotype depends on reciprocal interactions between the extracellular matrix and the structural organization of the nucleus. Proceedings of the National Academy of Sciences of the United States of America, 95, 14711–14716.PubMedCrossRef
53.
Zurück zum Zitat Weaver, V. M., Lelievre, S., Lakins, J. N., Chrenek, M. A., Jones, J. C., Giancotti, F., et al. (2002). beta4 integrin-dependent formation of polarized three-dimensional architecture confers resistance to apoptosis in normal and malignant mammary epithelium. Cancer Cell, 2, 205–216.PubMedCrossRef Weaver, V. M., Lelievre, S., Lakins, J. N., Chrenek, M. A., Jones, J. C., Giancotti, F., et al. (2002). beta4 integrin-dependent formation of polarized three-dimensional architecture confers resistance to apoptosis in normal and malignant mammary epithelium. Cancer Cell, 2, 205–216.PubMedCrossRef
54.
Zurück zum Zitat Kaminker, P., Plachot, C., Kim, S. H., Chung, P., Crippen, D., Petersen, O. W., et al. (2005). Higher-order nuclear organization in growth arrest of human mammary epithelial cells: a novel role for telomere-associated protein TIN2. Journal of Cell Science, 118, 1321–1330.PubMedCrossRef Kaminker, P., Plachot, C., Kim, S. H., Chung, P., Crippen, D., Petersen, O. W., et al. (2005). Higher-order nuclear organization in growth arrest of human mammary epithelial cells: a novel role for telomere-associated protein TIN2. Journal of Cell Science, 118, 1321–1330.PubMedCrossRef
55.
Zurück zum Zitat Berrier, A. L., & Yamada, K. M. (2007). Cell-matrix adhesion. Journal of cellular physiology, 213, 565–573.PubMedCrossRef Berrier, A. L., & Yamada, K. M. (2007). Cell-matrix adhesion. Journal of cellular physiology, 213, 565–573.PubMedCrossRef
56.
Zurück zum Zitat Zhang, Q., Skepper, J. N., Yang, F., Davies, J. D., Hegyi, L., Roberts, R. G., et al. (2001). Nesprins: a novel family of spectrin-repeat-containing proteins that localize to the nuclear membrane in multiple tissues. Journal of Cell Science, 114, 4485–4498.PubMed Zhang, Q., Skepper, J. N., Yang, F., Davies, J. D., Hegyi, L., Roberts, R. G., et al. (2001). Nesprins: a novel family of spectrin-repeat-containing proteins that localize to the nuclear membrane in multiple tissues. Journal of Cell Science, 114, 4485–4498.PubMed
57.
Zurück zum Zitat Hetzer, M. W., Walther, T. C., & Mattaj, I. W. (2005). Pushing the envelope: structure, function, and dynamics of the nuclear periphery. Annual review of cell and developmental biology, 21, 347–380.PubMedCrossRef Hetzer, M. W., Walther, T. C., & Mattaj, I. W. (2005). Pushing the envelope: structure, function, and dynamics of the nuclear periphery. Annual review of cell and developmental biology, 21, 347–380.PubMedCrossRef
58.
Zurück zum Zitat Maniotis, A. J., Chen, C. S., & Ingber, D. E. (1997). Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. Proceedings of the National Academy of Sciences of the United States of America, 94, 849–854.PubMedCrossRef Maniotis, A. J., Chen, C. S., & Ingber, D. E. (1997). Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. Proceedings of the National Academy of Sciences of the United States of America, 94, 849–854.PubMedCrossRef
59.
Zurück zum Zitat Le Beyec, J., Xu, R., Lee, S. Y., Nelson, C. M., Rizki, A., Alcaraz, J., et al. (2007). Cell shape regulates global histone acetylation in human mammary epithelial cells. Experimental cell research, 313, 3066–3075.PubMedCrossRef Le Beyec, J., Xu, R., Lee, S. Y., Nelson, C. M., Rizki, A., Alcaraz, J., et al. (2007). Cell shape regulates global histone acetylation in human mammary epithelial cells. Experimental cell research, 313, 3066–3075.PubMedCrossRef
60.
Zurück zum Zitat Muschler, J., Lochter, A., Roskelley, C. D., Yurchenco, P., & Bissell, M. J. (1999). Division of labor among the alpha6beta4 integrin, beta1 integrins, and an E3 laminin receptor to signal morphogenesis and beta-casein expression in mammary epithelial cells. Molecular biology of the cell, 10, 2817–2828.PubMed Muschler, J., Lochter, A., Roskelley, C. D., Yurchenco, P., & Bissell, M. J. (1999). Division of labor among the alpha6beta4 integrin, beta1 integrins, and an E3 laminin receptor to signal morphogenesis and beta-casein expression in mammary epithelial cells. Molecular biology of the cell, 10, 2817–2828.PubMed
61.
Zurück zum Zitat Roskelley, C. D., Desprez, P. Y., & Bissell, M. J. (1994). Extracellular matrix-dependent tissue-specific gene expression in mammary epithelial cells requires both physical and biochemical signal transduction. Proceedings of the National Academy of Sciences of the United States of America, 91, 12378–12382.PubMedCrossRef Roskelley, C. D., Desprez, P. Y., & Bissell, M. J. (1994). Extracellular matrix-dependent tissue-specific gene expression in mammary epithelial cells requires both physical and biochemical signal transduction. Proceedings of the National Academy of Sciences of the United States of America, 91, 12378–12382.PubMedCrossRef
62.
Zurück zum Zitat McNally, J. G., Muller, W. G., Walker, D., Wolford, R., & Hager, G. L. (2000). The glucocorticoid receptor: rapid exchange with regulatory sites in living cells. Science, 287, 1262–1265.PubMedCrossRef McNally, J. G., Muller, W. G., Walker, D., Wolford, R., & Hager, G. L. (2000). The glucocorticoid receptor: rapid exchange with regulatory sites in living cells. Science, 287, 1262–1265.PubMedCrossRef
63.
Zurück zum Zitat Metivier, R., Penot, G., Hubner, M. R., Reid, G., Brand, H., Kos, M., et al. (2003). Estrogen receptor-alpha directs ordered, cyclical, and combinatorial recruitment of cofactors on a natural target promoter. Cell, 115, 751–763.PubMedCrossRef Metivier, R., Penot, G., Hubner, M. R., Reid, G., Brand, H., Kos, M., et al. (2003). Estrogen receptor-alpha directs ordered, cyclical, and combinatorial recruitment of cofactors on a natural target promoter. Cell, 115, 751–763.PubMedCrossRef
64.
Zurück zum Zitat Zoubiane, G. S., Valentijn, A., Lowe, E. T., Akhtar, N., Bagley, S., Gilmore, A. P., et al. (2004). A role for the cytoskeleton in prolactin-dependent mammary epithelial cell differentiation. Journal of Cell Science, 117, 271–280.PubMedCrossRef Zoubiane, G. S., Valentijn, A., Lowe, E. T., Akhtar, N., Bagley, S., Gilmore, A. P., et al. (2004). A role for the cytoskeleton in prolactin-dependent mammary epithelial cell differentiation. Journal of Cell Science, 117, 271–280.PubMedCrossRef
65.
Zurück zum Zitat Akhtar, N., & Streuli, C. H. (2006). Rac1 links integrin-mediated adhesion to the control of lactational differentiation in mammary epithelia. Journal of Cell Biology, 173, 781–793.PubMedCrossRef Akhtar, N., & Streuli, C. H. (2006). Rac1 links integrin-mediated adhesion to the control of lactational differentiation in mammary epithelia. Journal of Cell Biology, 173, 781–793.PubMedCrossRef
66.
Zurück zum Zitat Jou, T. S., & Nelson, W. J. (1998). Effects of regulated expression of mutant RhoA and Rac1 small GTPases on the development of epithelial (MDCK) cell polarity. Journal of Cell Biology, 142, 85–100.PubMedCrossRef Jou, T. S., & Nelson, W. J. (1998). Effects of regulated expression of mutant RhoA and Rac1 small GTPases on the development of epithelial (MDCK) cell polarity. Journal of Cell Biology, 142, 85–100.PubMedCrossRef
67.
Zurück zum Zitat Jaffe, A. B., & Hall, A. (2005). Rho GTPases: biochemistry and biology. Annual review of cell and developmental biology, 21, 247–269.PubMedCrossRef Jaffe, A. B., & Hall, A. (2005). Rho GTPases: biochemistry and biology. Annual review of cell and developmental biology, 21, 247–269.PubMedCrossRef
68.
Zurück zum Zitat Kheradmand, F., Werner, E., Tremble, P., Symons, M., & Werb, Z. (1998). Role of Rac1 and oxygen radicals in collagenase-1 expression induced by cell shape change. Science, 280, 898–902.PubMedCrossRef Kheradmand, F., Werner, E., Tremble, P., Symons, M., & Werb, Z. (1998). Role of Rac1 and oxygen radicals in collagenase-1 expression induced by cell shape change. Science, 280, 898–902.PubMedCrossRef
69.
Zurück zum Zitat Engler, A. J., Sen, S., Sweeney, H. L., & Discher, D. E. (2006). Matrix elasticity directs stem cell lineage specification. Cell, 126, 677–689.PubMedCrossRef Engler, A. J., Sen, S., Sweeney, H. L., & Discher, D. E. (2006). Matrix elasticity directs stem cell lineage specification. Cell, 126, 677–689.PubMedCrossRef
70.
Zurück zum Zitat Paszek, M. J., Zahir, N., Johnson, K. R., Lakins, J. N., Rozenberg, G. I., Gefen, A., et al. (2005). Tensional homeostasis and the malignant phenotype. Cancer Cell, 8, 241–254.PubMedCrossRef Paszek, M. J., Zahir, N., Johnson, K. R., Lakins, J. N., Rozenberg, G. I., Gefen, A., et al. (2005). Tensional homeostasis and the malignant phenotype. Cancer Cell, 8, 241–254.PubMedCrossRef
71.
Zurück zum Zitat Lee, E. Y., Parry, G., & Bissell, M. J. (1984). Modulation of secreted proteins of mouse mammary epithelial cells by the collagenous substrata. Journal of Cell Biology, 98, 146–155.PubMedCrossRef Lee, E. Y., Parry, G., & Bissell, M. J. (1984). Modulation of secreted proteins of mouse mammary epithelial cells by the collagenous substrata. Journal of Cell Biology, 98, 146–155.PubMedCrossRef
72.
Zurück zum Zitat Alcaraz, J., Xu, R., Mori, H., Nelson, C. M., Mroue, R., Spencer, V. A., et al. (2008). Laminin and biomimetic extracellular elasticity enhance functional differentiation in mammary epithelia. EMBO journal, 27, 2829–2838.PubMedCrossRef Alcaraz, J., Xu, R., Mori, H., Nelson, C. M., Mroue, R., Spencer, V. A., et al. (2008). Laminin and biomimetic extracellular elasticity enhance functional differentiation in mammary epithelia. EMBO journal, 27, 2829–2838.PubMedCrossRef
73.
Zurück zum Zitat Wozniak, M. A., Desai, R., Solski, P. A., Der, C. J., & Keely, P. J. (2003). ROCK-generated contractility regulates breast epithelial cell differentiation in response to the physical properties of a three-dimensional collagen matrix. Journal of Cell Biology, 163, 583–595.PubMedCrossRef Wozniak, M. A., Desai, R., Solski, P. A., Der, C. J., & Keely, P. J. (2003). ROCK-generated contractility regulates breast epithelial cell differentiation in response to the physical properties of a three-dimensional collagen matrix. Journal of Cell Biology, 163, 583–595.PubMedCrossRef
74.
Zurück zum Zitat Alcaraz, J., Nelson, C. M., & Bissell, M. J. (2004). Biomechanical approaches for studying integration of tissue structure and function in mammary epithelia. Journal of mammary gland biology and neoplasia, 9, 361–374.PubMedCrossRef Alcaraz, J., Nelson, C. M., & Bissell, M. J. (2004). Biomechanical approaches for studying integration of tissue structure and function in mammary epithelia. Journal of mammary gland biology and neoplasia, 9, 361–374.PubMedCrossRef
75.
Zurück zum Zitat Baneyx, G., Baugh, L., & Vogel, V. (2002). Fibronectin extension and unfolding within cell matrix fibrils controlled by cytoskeletal tension. Proceedings of the National Academy of Sciences of the United States of America, 99, 5139–5143.PubMedCrossRef Baneyx, G., Baugh, L., & Vogel, V. (2002). Fibronectin extension and unfolding within cell matrix fibrils controlled by cytoskeletal tension. Proceedings of the National Academy of Sciences of the United States of America, 99, 5139–5143.PubMedCrossRef
76.
Zurück zum Zitat Feral, C. C., Zijlstra, A., Tkachenko, E., Prager, G., Gardel, M. L., Slepak, M., et al. (2007). CD98hc (SLC3A2) participates in fibronectin matrix assembly by mediating integrin signaling. Journal of Cell Biology, 178, 701–711.PubMedCrossRef Feral, C. C., Zijlstra, A., Tkachenko, E., Prager, G., Gardel, M. L., Slepak, M., et al. (2007). CD98hc (SLC3A2) participates in fibronectin matrix assembly by mediating integrin signaling. Journal of Cell Biology, 178, 701–711.PubMedCrossRef
77.
Zurück zum Zitat Lambert, C. A., Colige, A. C., Munaut, C., Lapiere, C. M., & Nusgens, B. V. (2001). Distinct pathways in the over-expression of matrix metalloproteinases in human fibroblasts by relaxation of mechanical tension. Matrix Biol, 20, 397–408.PubMedCrossRef Lambert, C. A., Colige, A. C., Munaut, C., Lapiere, C. M., & Nusgens, B. V. (2001). Distinct pathways in the over-expression of matrix metalloproteinases in human fibroblasts by relaxation of mechanical tension. Matrix Biol, 20, 397–408.PubMedCrossRef
78.
Zurück zum Zitat Chang, H. Y., Chi, J. T., Dudoit, S., Bondre, C., van de Rijn, M., Botstein, D., et al. (2002). Diversity, topographic differentiation, and positional memory in human fibroblasts. Proceedings of the National Academy of Sciences of the United States of America, 99, 12877–12882.PubMedCrossRef Chang, H. Y., Chi, J. T., Dudoit, S., Bondre, C., van de Rijn, M., Botstein, D., et al. (2002). Diversity, topographic differentiation, and positional memory in human fibroblasts. Proceedings of the National Academy of Sciences of the United States of America, 99, 12877–12882.PubMedCrossRef
79.
Zurück zum Zitat Boulanger, C. A., Mack, D. L., Booth, B. W., & Smith, G. H. (2007). Interaction with the mammary microenvironment redirects spermatogenic cell fate in vivo. Proceedings of the National Academy of Sciences of the United States of America, 104, 3871–3876.PubMedCrossRef Boulanger, C. A., Mack, D. L., Booth, B. W., & Smith, G. H. (2007). Interaction with the mammary microenvironment redirects spermatogenic cell fate in vivo. Proceedings of the National Academy of Sciences of the United States of America, 104, 3871–3876.PubMedCrossRef
80.
Zurück zum Zitat Booth, B. W., Mack, D. L., Androutsellis-Theotokis, A., McKay, R. D., Boulanger, C. A., & Smith, G. H. (2008). The mammary microenvironment alters the differentiation repertoire of neural stem cells. Proceedings of the National Academy of Sciences of the United States of America, 105, 14891–14896.PubMedCrossRef Booth, B. W., Mack, D. L., Androutsellis-Theotokis, A., McKay, R. D., Boulanger, C. A., & Smith, G. H. (2008). The mammary microenvironment alters the differentiation repertoire of neural stem cells. Proceedings of the National Academy of Sciences of the United States of America, 105, 14891–14896.PubMedCrossRef
81.
Zurück zum Zitat Bissell, M. J., & Inman, J. (2008). Reprogramming stem cells is a microenvironmental task. Proceedings of the National Academy of Sciences of the United States of America, 105, 15637–15638.PubMedCrossRef Bissell, M. J., & Inman, J. (2008). Reprogramming stem cells is a microenvironmental task. Proceedings of the National Academy of Sciences of the United States of America, 105, 15637–15638.PubMedCrossRef
82.
Zurück zum Zitat Sternlicht, M. D., Lochter, A., Sympson, C. J., Huey, B., Rougier, J. P., Gray, J. W., Pinkel, D., et al. (1999). The stromal proteinase MMP3/stromelysin-1 promotes mammary carcinogenesis. Cell, 98, 137–146.PubMedCrossRef Sternlicht, M. D., Lochter, A., Sympson, C. J., Huey, B., Rougier, J. P., Gray, J. W., Pinkel, D., et al. (1999). The stromal proteinase MMP3/stromelysin-1 promotes mammary carcinogenesis. Cell, 98, 137–146.PubMedCrossRef
83.
Zurück zum Zitat Ha, H. Y., Moon, H. B., Nam, M. S., Lee, J. W., Ryoo, Z. Y., Lee, T. H., et al. (2001). Overexpression of membrane-type matrix me0talloproteinase-1 gene induces mammary gland abnormalities and adenocarcinoma in transgenic mice. Cancer research, 61, 984–990.PubMed Ha, H. Y., Moon, H. B., Nam, M. S., Lee, J. W., Ryoo, Z. Y., Lee, T. H., et al. (2001). Overexpression of membrane-type matrix me0talloproteinase-1 gene induces mammary gland abnormalities and adenocarcinoma in transgenic mice. Cancer research, 61, 984–990.PubMed
84.
Zurück zum Zitat Radisky, D. C., Levy, D. D., Littlepage, L. E., Liu, H., Nelson, C. M., Fata, J. E., et al. (2005). Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability. Nature, 436, 123–127.PubMedCrossRef Radisky, D. C., Levy, D. D., Littlepage, L. E., Liu, H., Nelson, C. M., Fata, J. E., et al. (2005). Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability. Nature, 436, 123–127.PubMedCrossRef
85.
Zurück zum Zitat McCawley, L. J., Wright, J., LaFleur, B. J., Crawford, H. C., & Matrisian, L. M. (2008). Keratinocyte expression of MMP3 enhances differentiation and prevents tumor establishment. American journal of pathology, 173, 1528–1539.PubMedCrossRef McCawley, L. J., Wright, J., LaFleur, B. J., Crawford, H. C., & Matrisian, L. M. (2008). Keratinocyte expression of MMP3 enhances differentiation and prevents tumor establishment. American journal of pathology, 173, 1528–1539.PubMedCrossRef
Metadaten
Titel
Tissue architecture and function: dynamic reciprocity via extra- and intra-cellular matrices
verfasst von
Ren Xu
Aaron Boudreau
Mina J. Bissell
Publikationsdatum
01.06.2009
Verlag
Springer US
Erschienen in
Cancer and Metastasis Reviews / Ausgabe 1-2/2009
Print ISSN: 0167-7659
Elektronische ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-008-9178-z

Weitere Artikel der Ausgabe 1-2/2009

Cancer and Metastasis Reviews 1-2/2009 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.