Skip to main content
Erschienen in: Cancer and Metastasis Reviews 3-4/2009

01.12.2009 | NON-THEMATIC REVIEW

MicroRNA function in cancer: oncogene or a tumor suppressor?

verfasst von: Sylvia K. Shenouda, Suresh K. Alahari

Erschienen in: Cancer and Metastasis Reviews | Ausgabe 3-4/2009

Einloggen, um Zugang zu erhalten

Abstract

MicroRNAs (miRNAs) are small noncoding, double-stranded RNA molecules that can mediate the expression of target genes with complementary sequences. About 5,300 human genes have been implicated as targets for miRNAs, making them one of the most abundant classes of regulatory genes in humans. MiRNAs recognize their target mRNAs based on sequence complementarity and act on them to cause the inhibition of protein translation by degradation of mRNA. Besides contributing to development and normal function, microRNAs have functions in various human diseases. Given the importance of miRNAs in regulating cellular differentiation and proliferation, it is not surprising that their misregulation is linked to cancer. In cancer, miRNAs function as regulatory molecules, acting as oncogenes or tumor suppressors. Amplification or overexpression of miRNAs can down-regulate tumor suppressors or other genes involved in cell differentiation, thereby contributing to tumor formation by stimulating proliferation, angiogenesis, and invasion; i.e., they act as oncogenes. Similarly, miRNAs can down-regulate different proteins with oncogenic activity; i.e., they act as tumor suppressors. This review will highlight the recent discoveries regarding miRNAs and their importance in cancer.
Literatur
1.
Zurück zum Zitat Lewis, B. P., Burge, C. B., & Bartel, D. P. (2005). Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell, 120(1), 15–20.CrossRefPubMed Lewis, B. P., Burge, C. B., & Bartel, D. P. (2005). Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell, 120(1), 15–20.CrossRefPubMed
2.
Zurück zum Zitat Rajewsky, N. (2006). microRNA target predictions in animals. Nature Genetics, 38(Suppl), S8–S13.CrossRefPubMed Rajewsky, N. (2006). microRNA target predictions in animals. Nature Genetics, 38(Suppl), S8–S13.CrossRefPubMed
3.
Zurück zum Zitat Lee, R. C., Feinbaum, R. L., & Ambros, V. (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 75(5), 843–854.CrossRefPubMed Lee, R. C., Feinbaum, R. L., & Ambros, V. (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 75(5), 843–854.CrossRefPubMed
4.
Zurück zum Zitat Reinhart, B. J., et al. (2000). The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature, 403(6772), 901–906.CrossRefPubMed Reinhart, B. J., et al. (2000). The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature, 403(6772), 901–906.CrossRefPubMed
5.
Zurück zum Zitat Pasquinelli, A. E., et al. (2000). Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature, 408(6808), 86–89.CrossRefPubMed Pasquinelli, A. E., et al. (2000). Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature, 408(6808), 86–89.CrossRefPubMed
6.
Zurück zum Zitat Lagos-Quintana, M., et al. (2001). Identification of novel genes coding for small expressed RNAs. Science, 294(5543), 853–858.CrossRefPubMed Lagos-Quintana, M., et al. (2001). Identification of novel genes coding for small expressed RNAs. Science, 294(5543), 853–858.CrossRefPubMed
7.
Zurück zum Zitat Lau, N. C., et al. (2001). An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science, 294(5543), 858–862.CrossRefPubMed Lau, N. C., et al. (2001). An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science, 294(5543), 858–862.CrossRefPubMed
8.
Zurück zum Zitat Lee, R. C., & Ambros, V. (2001). An extensive class of small RNAs in Caenorhabditis elegans. Science, 294(5543), 862–864.CrossRefPubMed Lee, R. C., & Ambros, V. (2001). An extensive class of small RNAs in Caenorhabditis elegans. Science, 294(5543), 862–864.CrossRefPubMed
9.
Zurück zum Zitat ALTMAN, L.K., 5 Pioneering Scientists Win Lasker Medical Prizes in New York Times. 2008 ALTMAN, L.K., 5 Pioneering Scientists Win Lasker Medical Prizes in New York Times. 2008
10.
Zurück zum Zitat Bagga, S., et al. (2005). Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell, 122(4), 553–563.CrossRefPubMed Bagga, S., et al. (2005). Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell, 122(4), 553–563.CrossRefPubMed
11.
Zurück zum Zitat Pillai, R. S. (2005). MicroRNA function: multiple mechanisms for a tiny RNA? RNA, 11(12), 1753–1761.CrossRefPubMed Pillai, R. S. (2005). MicroRNA function: multiple mechanisms for a tiny RNA? RNA, 11(12), 1753–1761.CrossRefPubMed
12.
Zurück zum Zitat Bernstein, E., et al. (2003). Dicer is essential for mouse development. Nature Genetics, 35(3), 215–217.CrossRefPubMed Bernstein, E., et al. (2003). Dicer is essential for mouse development. Nature Genetics, 35(3), 215–217.CrossRefPubMed
13.
Zurück zum Zitat Harris, K. S., et al. (2006). Dicer function is essential for lung epithelium morphogenesis. Proceedings of the National Academy of Sciences of the United States of America, 103(7), 2208–2213.CrossRefPubMed Harris, K. S., et al. (2006). Dicer function is essential for lung epithelium morphogenesis. Proceedings of the National Academy of Sciences of the United States of America, 103(7), 2208–2213.CrossRefPubMed
14.
Zurück zum Zitat Harfe, B. D., et al. (2005). The RNaseIII enzyme Dicer is required for morphogenesis but not patterning of the vertebrate limb. Proceedings of the National Academy of Sciences of the United States of America, 102(31), 10898–10903.CrossRefPubMed Harfe, B. D., et al. (2005). The RNaseIII enzyme Dicer is required for morphogenesis but not patterning of the vertebrate limb. Proceedings of the National Academy of Sciences of the United States of America, 102(31), 10898–10903.CrossRefPubMed
15.
Zurück zum Zitat O'Rourke, J. R., et al. (2007). Essential role for Dicer during skeletal muscle development. Developmental Biology, 311(2), 359–368.CrossRefPubMed O'Rourke, J. R., et al. (2007). Essential role for Dicer during skeletal muscle development. Developmental Biology, 311(2), 359–368.CrossRefPubMed
16.
Zurück zum Zitat Muljo, S. A., et al. (2005). Aberrant T cell differentiation in the absence of Dicer. Journal of Experimental Medicine, 202(2), 261–269.CrossRefPubMed Muljo, S. A., et al. (2005). Aberrant T cell differentiation in the absence of Dicer. Journal of Experimental Medicine, 202(2), 261–269.CrossRefPubMed
17.
Zurück zum Zitat Yi, R., et al. (2008). A skin microRNA promotes differentiation by repressing ‘stemness’. Nature, 452(7184), 225–229.CrossRefPubMed Yi, R., et al. (2008). A skin microRNA promotes differentiation by repressing ‘stemness’. Nature, 452(7184), 225–229.CrossRefPubMed
18.
Zurück zum Zitat Ashraf, S. I., & Kunes, S. (2006). A trace of silence: memory and microRNA at the synapse. Current Opinion in Neurobiology, 16(5), 535–539.CrossRefPubMed Ashraf, S. I., & Kunes, S. (2006). A trace of silence: memory and microRNA at the synapse. Current Opinion in Neurobiology, 16(5), 535–539.CrossRefPubMed
19.
Zurück zum Zitat Poy, M. N., et al. (2004). A pancreatic islet-specific microRNA regulates insulin secretion. Nature, 432(7014), 226–230.CrossRefPubMed Poy, M. N., et al. (2004). A pancreatic islet-specific microRNA regulates insulin secretion. Nature, 432(7014), 226–230.CrossRefPubMed
20.
Zurück zum Zitat Esau, C., et al. (2006). miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metabolic, 3(2), 87–98.CrossRef Esau, C., et al. (2006). miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metabolic, 3(2), 87–98.CrossRef
21.
Zurück zum Zitat Esau, C. C., & Monia, B. P. (2007). Therapeutic potential for microRNAs. Advanced drug delivery reviews, 59(2–3), 101–114.CrossRefPubMed Esau, C. C., & Monia, B. P. (2007). Therapeutic potential for microRNAs. Advanced drug delivery reviews, 59(2–3), 101–114.CrossRefPubMed
22.
Zurück zum Zitat Care, A., et al. (2007). MicroRNA-133 controls cardiac hypertrophy. Nature Medicine, 13(5), 613–618.CrossRefPubMed Care, A., et al. (2007). MicroRNA-133 controls cardiac hypertrophy. Nature Medicine, 13(5), 613–618.CrossRefPubMed
23.
Zurück zum Zitat Xiao, C., & Rajewsky, K. (2009). MicroRNA control in the immune system: basic principles. Cell, 136(1), 26–36.CrossRefPubMed Xiao, C., & Rajewsky, K. (2009). MicroRNA control in the immune system: basic principles. Cell, 136(1), 26–36.CrossRefPubMed
24.
Zurück zum Zitat Cameron, J. E., et al. (2008). Epstein-Barr virus latent membrane protein 1 induces cellular MicroRNA miR-146a, a modulator of lymphocyte signaling pathways. Journal of Virology, 82(4), 1946–1958.CrossRefPubMed Cameron, J. E., et al. (2008). Epstein-Barr virus latent membrane protein 1 induces cellular MicroRNA miR-146a, a modulator of lymphocyte signaling pathways. Journal of Virology, 82(4), 1946–1958.CrossRefPubMed
25.
Zurück zum Zitat Gottwein, E., et al. (2007). A viral microRNA functions as an orthologue of cellular miR-155. Nature, 450(7172), 1096–1099.CrossRefPubMed Gottwein, E., et al. (2007). A viral microRNA functions as an orthologue of cellular miR-155. Nature, 450(7172), 1096–1099.CrossRefPubMed
26.
Zurück zum Zitat Moschos, S. A., et al. (2007). Expression profiling in vivo demonstrates rapid changes in lung microRNA levels following lipopolysaccharide-induced inflammation but not in the anti-inflammatory action of glucocorticoids. BMC Genomics, 8, 240.CrossRefPubMed Moschos, S. A., et al. (2007). Expression profiling in vivo demonstrates rapid changes in lung microRNA levels following lipopolysaccharide-induced inflammation but not in the anti-inflammatory action of glucocorticoids. BMC Genomics, 8, 240.CrossRefPubMed
27.
Zurück zum Zitat Sonkoly, E., Stahle, M., & Pivarcsi, A. (2008). MicroRNAs and immunity: novel players in the regulation of normal immune function and inflammation. Seminars in Cancer Biology, 18(2), 131–140.CrossRefPubMed Sonkoly, E., Stahle, M., & Pivarcsi, A. (2008). MicroRNAs and immunity: novel players in the regulation of normal immune function and inflammation. Seminars in Cancer Biology, 18(2), 131–140.CrossRefPubMed
28.
Zurück zum Zitat Calin, G. A., et al. (2002). Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proceedings of the National Academy of Sciences of the United States of America, 99(24), 15524–15529.CrossRefPubMed Calin, G. A., et al. (2002). Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proceedings of the National Academy of Sciences of the United States of America, 99(24), 15524–15529.CrossRefPubMed
29.
Zurück zum Zitat Jiang, J., et al. (2005). Real-time expression profiling of microRNA precursors in human cancer cell lines. Nucleic Acids Research, 33(17), 5394–5403.CrossRefPubMed Jiang, J., et al. (2005). Real-time expression profiling of microRNA precursors in human cancer cell lines. Nucleic Acids Research, 33(17), 5394–5403.CrossRefPubMed
30.
Zurück zum Zitat Davison, T. S., Johnson, C. D., & Andruss, B. F. (2006). Analyzing micro-RNA expression using microarrays. Methods in Enzymology, 411, 14–34.CrossRefPubMed Davison, T. S., Johnson, C. D., & Andruss, B. F. (2006). Analyzing micro-RNA expression using microarrays. Methods in Enzymology, 411, 14–34.CrossRefPubMed
31.
Zurück zum Zitat Liang, Z., et al. (2007). Blockade of invasion and metastasis of breast cancer cells via targeting CXCR4 with an artificial microRNA. Biochemical and Biophysical Research Communications, 363(3), 542–546.CrossRefPubMed Liang, Z., et al. (2007). Blockade of invasion and metastasis of breast cancer cells via targeting CXCR4 with an artificial microRNA. Biochemical and Biophysical Research Communications, 363(3), 542–546.CrossRefPubMed
32.
Zurück zum Zitat Miska, E. A. (2005). How microRNAs control cell division, differentiation and death. Current Opinion in Genetics and Development, 15(5), 563–568.CrossRefPubMed Miska, E. A. (2005). How microRNAs control cell division, differentiation and death. Current Opinion in Genetics and Development, 15(5), 563–568.CrossRefPubMed
33.
Zurück zum Zitat Lee, Y. S., et al. (2005). Depletion of human micro-RNA miR-125b reveals that it is critical for the proliferation of differentiated cells but not for the down-regulation of putative targets during differentiation. Journal of Biological Chemistry, 280(17), 16635–16641.CrossRefPubMed Lee, Y. S., et al. (2005). Depletion of human micro-RNA miR-125b reveals that it is critical for the proliferation of differentiated cells but not for the down-regulation of putative targets during differentiation. Journal of Biological Chemistry, 280(17), 16635–16641.CrossRefPubMed
34.
Zurück zum Zitat Roldo, C., et al. (2006). MicroRNA expression abnormalities in pancreatic endocrine and acinar tumors are associated with distinctive pathologic features and clinical behavior. Journal of Clinical Oncology, 24(29), 4677–4684.CrossRefPubMed Roldo, C., et al. (2006). MicroRNA expression abnormalities in pancreatic endocrine and acinar tumors are associated with distinctive pathologic features and clinical behavior. Journal of Clinical Oncology, 24(29), 4677–4684.CrossRefPubMed
35.
Zurück zum Zitat Dillhoff, M., et al. (2008). MicroRNA-21 is overexpressed in pancreatic cancer and a potential predictor of survival. Journal of Gastrointestinal Surgery, 12(12), 2171–2176.CrossRefPubMed Dillhoff, M., et al. (2008). MicroRNA-21 is overexpressed in pancreatic cancer and a potential predictor of survival. Journal of Gastrointestinal Surgery, 12(12), 2171–2176.CrossRefPubMed
36.
Zurück zum Zitat Gironella, M., et al. (2007). Tumor protein 53-induced nuclear protein 1 expression is repressed by miR-155, and its restoration inhibits pancreatic tumor development. Proceedings of the National Academy of Sciences of the United States of America, 104(41), 16170–16175.CrossRefPubMed Gironella, M., et al. (2007). Tumor protein 53-induced nuclear protein 1 expression is repressed by miR-155, and its restoration inhibits pancreatic tumor development. Proceedings of the National Academy of Sciences of the United States of America, 104(41), 16170–16175.CrossRefPubMed
37.
Zurück zum Zitat Burk, U., et al. (2008). A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Reports, 9(6), 582–589.CrossRefPubMed Burk, U., et al. (2008). A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Reports, 9(6), 582–589.CrossRefPubMed
38.
Zurück zum Zitat Nakajima, G., et al. (2006). Non-coding microRNAs hsa-let-7g and hsa-miR-181b are associated with Chemoresponse to S-1 in Colon Cancer. Cancer Genomics Proteomics, 3(5), 317–324.PubMed Nakajima, G., et al. (2006). Non-coding microRNAs hsa-let-7g and hsa-miR-181b are associated with Chemoresponse to S-1 in Colon Cancer. Cancer Genomics Proteomics, 3(5), 317–324.PubMed
39.
Zurück zum Zitat Lanza, G., et al. (2007). mRNA/microRNA gene expression profile in microsatellite unstable colorectal cancer. Molecular Cancer, 6, 54.CrossRefPubMed Lanza, G., et al. (2007). mRNA/microRNA gene expression profile in microsatellite unstable colorectal cancer. Molecular Cancer, 6, 54.CrossRefPubMed
40.
Zurück zum Zitat Asangani, I. A., et al. (2008). MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene, 27(15), 2128–2136.CrossRefPubMed Asangani, I. A., et al. (2008). MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene, 27(15), 2128–2136.CrossRefPubMed
41.
Zurück zum Zitat Hayashita, Y., et al. (2005). A polycistronic microRNA cluster, miR-17–92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Research, 65(21), 9628–9632.CrossRefPubMed Hayashita, Y., et al. (2005). A polycistronic microRNA cluster, miR-17–92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Research, 65(21), 9628–9632.CrossRefPubMed
42.
Zurück zum Zitat Matsubara, H., et al. (2007). Apoptosis induction by antisense oligonucleotides against miR-17–5p and miR-20a in lung cancers overexpressing miR-17–92. Oncogene, 26(41), 6099–6105.CrossRefPubMed Matsubara, H., et al. (2007). Apoptosis induction by antisense oligonucleotides against miR-17–5p and miR-20a in lung cancers overexpressing miR-17–92. Oncogene, 26(41), 6099–6105.CrossRefPubMed
43.
Zurück zum Zitat Chang, T. C., et al. (2007). Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Molecular Cell, 26(5), 745–752.CrossRefPubMed Chang, T. C., et al. (2007). Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Molecular Cell, 26(5), 745–752.CrossRefPubMed
44.
Zurück zum Zitat Lodygin, D., et al. (2008). Inactivation of miR-34a by aberrant CpG methylation in multiple types of cancer. Cell Cycle, 7(16), 2591–2600.PubMed Lodygin, D., et al. (2008). Inactivation of miR-34a by aberrant CpG methylation in multiple types of cancer. Cell Cycle, 7(16), 2591–2600.PubMed
45.
Zurück zum Zitat Michael, M. Z., et al. (2003). Reduced accumulation of specific microRNAs in colorectal neoplasia. Molecular Cancer Research, 1(12), 882–891.PubMed Michael, M. Z., et al. (2003). Reduced accumulation of specific microRNAs in colorectal neoplasia. Molecular Cancer Research, 1(12), 882–891.PubMed
46.
Zurück zum Zitat Akao, Y., Nakagawa, Y., & Naoe, T. (2006). MicroRNAs 143 and 145 are possible common onco-microRNAs in human cancers. Oncology Reports, 16(4), 845–850.PubMed Akao, Y., Nakagawa, Y., & Naoe, T. (2006). MicroRNAs 143 and 145 are possible common onco-microRNAs in human cancers. Oncology Reports, 16(4), 845–850.PubMed
47.
Zurück zum Zitat Shi, B., et al. (2007). Micro RNA 145 targets the insulin receptor substrate-1 and inhibits the growth of colon cancer cells. Journal of Biological Chemistry, 282(45), 32582–32590.CrossRefPubMed Shi, B., et al. (2007). Micro RNA 145 targets the insulin receptor substrate-1 and inhibits the growth of colon cancer cells. Journal of Biological Chemistry, 282(45), 32582–32590.CrossRefPubMed
48.
Zurück zum Zitat Akao, Y., Nakagawa, Y., & Naoe, T. (2006). Let-7 microRNA functions as a potential growth suppressor in human colon cancer cells. Biological and Pharmaceutical Bulletin, 29(5), 903–906.CrossRefPubMed Akao, Y., Nakagawa, Y., & Naoe, T. (2006). Let-7 microRNA functions as a potential growth suppressor in human colon cancer cells. Biological and Pharmaceutical Bulletin, 29(5), 903–906.CrossRefPubMed
49.
Zurück zum Zitat Takamizawa, J., et al. (2004). Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Research, 64(11), 3753–3756.CrossRefPubMed Takamizawa, J., et al. (2004). Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Research, 64(11), 3753–3756.CrossRefPubMed
50.
Zurück zum Zitat Johnson, S. M., et al. (2005). RAS is regulated by the let-7 microRNA family. Cell, 120(5), 635–647.CrossRefPubMed Johnson, S. M., et al. (2005). RAS is regulated by the let-7 microRNA family. Cell, 120(5), 635–647.CrossRefPubMed
51.
Zurück zum Zitat Johnson, C. D., et al. (2007). The let-7 microRNA represses cell proliferation pathways in human cells. Cancer Research, 67(16), 7713–7722.CrossRefPubMed Johnson, C. D., et al. (2007). The let-7 microRNA represses cell proliferation pathways in human cells. Cancer Research, 67(16), 7713–7722.CrossRefPubMed
52.
Zurück zum Zitat Lee, Y. S., & Dutta, A. (2007). The tumor suppressor microRNA let-7 represses the HMGA2 oncogene. Genes and Development, 21(9), 1025–1030.CrossRefPubMed Lee, Y. S., & Dutta, A. (2007). The tumor suppressor microRNA let-7 represses the HMGA2 oncogene. Genes and Development, 21(9), 1025–1030.CrossRefPubMed
53.
Zurück zum Zitat Bommer, G. T., et al. (2007). p53-mediated activation of miRNA34 candidate tumor-suppressor genes. Current Biology, 17(15), 1298–1307.CrossRefPubMed Bommer, G. T., et al. (2007). p53-mediated activation of miRNA34 candidate tumor-suppressor genes. Current Biology, 17(15), 1298–1307.CrossRefPubMed
54.
Zurück zum Zitat Calin, G. A., & Croce, C. M. (2006). MicroRNA-cancer connection: the beginning of a new tale. Cancer Research, 66(15), 7390–7394.CrossRefPubMed Calin, G. A., & Croce, C. M. (2006). MicroRNA-cancer connection: the beginning of a new tale. Cancer Research, 66(15), 7390–7394.CrossRefPubMed
55.
Zurück zum Zitat Cimmino, A., et al. (2005). miR-15 and miR-16 induce apoptosis by targeting BCL2. Proceedings of the National Academy of Sciences of the United States of America, 102(39), 13944–13949.CrossRefPubMed Cimmino, A., et al. (2005). miR-15 and miR-16 induce apoptosis by targeting BCL2. Proceedings of the National Academy of Sciences of the United States of America, 102(39), 13944–13949.CrossRefPubMed
56.
Zurück zum Zitat Lin, T., et al. (2009). MicroRNA-143 as a tumor suppressor for bladder cancer. The Journal of Urology, 181, 1372–1380.CrossRefPubMed Lin, T., et al. (2009). MicroRNA-143 as a tumor suppressor for bladder cancer. The Journal of Urology, 181, 1372–1380.CrossRefPubMed
57.
Zurück zum Zitat Varambally, S., et al. (2008). Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer. Science, 322(5908), 1695–1699.CrossRefPubMed Varambally, S., et al. (2008). Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer. Science, 322(5908), 1695–1699.CrossRefPubMed
58.
Zurück zum Zitat Liu, C. G., et al. (2004). An oligonucleotide microchip for genome-wide microRNA profiling in human and mouse tissues. Proceedings of the National Academy of Sciences of the United States of America, 101(26), 9740–9744.CrossRefPubMed Liu, C. G., et al. (2004). An oligonucleotide microchip for genome-wide microRNA profiling in human and mouse tissues. Proceedings of the National Academy of Sciences of the United States of America, 101(26), 9740–9744.CrossRefPubMed
59.
Zurück zum Zitat Walsh, T., & King, M. C. (2007). Ten genes for inherited breast cancer. Cancer Cell, 11(2), 103–105.CrossRefPubMed Walsh, T., & King, M. C. (2007). Ten genes for inherited breast cancer. Cancer Cell, 11(2), 103–105.CrossRefPubMed
60.
Zurück zum Zitat Xin, F., et al. (2008). Computational analysis of MicroRNA profiles and their target genes suggests significant involvement in breast cancer antiestrogen resistance. Bioinformatics, 25, 430–434.CrossRefPubMed Xin, F., et al. (2008). Computational analysis of MicroRNA profiles and their target genes suggests significant involvement in breast cancer antiestrogen resistance. Bioinformatics, 25, 430–434.CrossRefPubMed
61.
Zurück zum Zitat Scott, G. K., et al. (2006). Rapid alteration of microRNA levels by histone deacetylase inhibition. Cancer Research, 66(3), 1277–1281.CrossRefPubMed Scott, G. K., et al. (2006). Rapid alteration of microRNA levels by histone deacetylase inhibition. Cancer Research, 66(3), 1277–1281.CrossRefPubMed
62.
Zurück zum Zitat Abdelrahim, M., et al. (2002). Small inhibitory RNA duplexes for Sp1 mRNA block basal and estrogen-induced gene expression and cell cycle progression in MCF-7 breast cancer cells. Journal of Biological Chemistry, 277(32), 28815–28822.CrossRefPubMed Abdelrahim, M., et al. (2002). Small inhibitory RNA duplexes for Sp1 mRNA block basal and estrogen-induced gene expression and cell cycle progression in MCF-7 breast cancer cells. Journal of Biological Chemistry, 277(32), 28815–28822.CrossRefPubMed
63.
Zurück zum Zitat Ma, L., Teruya-Feldstein, J., & Weinberg, R. A. (2007). Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature, 449(7163), 682–688.CrossRefPubMed Ma, L., Teruya-Feldstein, J., & Weinberg, R. A. (2007). Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature, 449(7163), 682–688.CrossRefPubMed
64.
65.
Zurück zum Zitat Zhu, S., et al. (2007). MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1). Journal of Biological Chemistry, 282(19), 14328–14336.CrossRefPubMed Zhu, S., et al. (2007). MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1). Journal of Biological Chemistry, 282(19), 14328–14336.CrossRefPubMed
66.
Zurück zum Zitat Boyd, J., et al. (1995). Regulation of microfilament organization and anchorage-independent growth by tropomyosin 1. Proceedings of the National Academy of Sciences of the United States of America, 92(25), 11534–11538.CrossRefPubMed Boyd, J., et al. (1995). Regulation of microfilament organization and anchorage-independent growth by tropomyosin 1. Proceedings of the National Academy of Sciences of the United States of America, 92(25), 11534–11538.CrossRefPubMed
67.
Zurück zum Zitat Frankel, L. B., et al. (2008). Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells. Journal of Biological Chemistry, 283(2), 1026–1033.CrossRefPubMed Frankel, L. B., et al. (2008). Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells. Journal of Biological Chemistry, 283(2), 1026–1033.CrossRefPubMed
68.
Zurück zum Zitat Hossain, A., Kuo, M. T., & Saunders, G. F. (2006). Mir-17–5p regulates breast cancer cell proliferation by inhibiting translation of AIB1 mRNA. Molecular and Cellular Biology, 26(21), 8191–8201.CrossRefPubMed Hossain, A., Kuo, M. T., & Saunders, G. F. (2006). Mir-17–5p regulates breast cancer cell proliferation by inhibiting translation of AIB1 mRNA. Molecular and Cellular Biology, 26(21), 8191–8201.CrossRefPubMed
69.
Zurück zum Zitat Murray, G. I., et al. (1997). Tumor-specific expression of cytochrome P450 CYP1B1. Cancer Research, 57(14), 3026–3031.PubMed Murray, G. I., et al. (1997). Tumor-specific expression of cytochrome P450 CYP1B1. Cancer Research, 57(14), 3026–3031.PubMed
70.
Zurück zum Zitat Tsuchiya, Y., et al. (2006). MicroRNA regulates the expression of human cytochrome P450 1B1. Cancer Research, 66(18), 9090–9098.CrossRefPubMed Tsuchiya, Y., et al. (2006). MicroRNA regulates the expression of human cytochrome P450 1B1. Cancer Research, 66(18), 9090–9098.CrossRefPubMed
71.
Zurück zum Zitat Mattie, M. D., et al. (2006). Optimized high-throughput microRNA expression profiling provides novel biomarker assessment of clinical prostate and breast cancer biopsies. Molecular Cancer, 5, 24.CrossRefPubMed Mattie, M. D., et al. (2006). Optimized high-throughput microRNA expression profiling provides novel biomarker assessment of clinical prostate and breast cancer biopsies. Molecular Cancer, 5, 24.CrossRefPubMed
72.
Zurück zum Zitat Scott, G. K., et al. (2007). Coordinate suppression of ERBB2 and ERBB3 by enforced expression of micro-RNA miR-125a or miR-125b. Journal of Biological Chemistry, 282(2), 1479–1486.CrossRefPubMed Scott, G. K., et al. (2007). Coordinate suppression of ERBB2 and ERBB3 by enforced expression of micro-RNA miR-125a or miR-125b. Journal of Biological Chemistry, 282(2), 1479–1486.CrossRefPubMed
73.
Zurück zum Zitat Eger, A., et al. (2005). DeltaEF1 is a transcriptional repressor of E-cadherin and regulates epithelial plasticity in breast cancer cells. Oncogene, 24(14), 2375–2385.CrossRefPubMed Eger, A., et al. (2005). DeltaEF1 is a transcriptional repressor of E-cadherin and regulates epithelial plasticity in breast cancer cells. Oncogene, 24(14), 2375–2385.CrossRefPubMed
74.
Zurück zum Zitat Hurteau, G. J., et al. (2007). Overexpression of the microRNA hsa-miR-200c leads to reduced expression of transcription factor 8 and increased expression of E-cadherin. Cancer Research, 67(17), 7972–7976.CrossRefPubMed Hurteau, G. J., et al. (2007). Overexpression of the microRNA hsa-miR-200c leads to reduced expression of transcription factor 8 and increased expression of E-cadherin. Cancer Research, 67(17), 7972–7976.CrossRefPubMed
75.
Zurück zum Zitat Adams, B. D., Furneaux, H., & White, B. A. (2007). The micro-ribonucleic acid (miRNA) miR-206 targets the human estrogen receptor-alpha (ERalpha) and represses ERalpha messenger RNA and protein expression in breast cancer cell lines. Molecular Endocrinology, 21(5), 1132–1147.CrossRefPubMed Adams, B. D., Furneaux, H., & White, B. A. (2007). The micro-ribonucleic acid (miRNA) miR-206 targets the human estrogen receptor-alpha (ERalpha) and represses ERalpha messenger RNA and protein expression in breast cancer cell lines. Molecular Endocrinology, 21(5), 1132–1147.CrossRefPubMed
76.
Zurück zum Zitat Kondo, N., et al. (2008). miR-206 Expression is down-regulated in estrogen receptor alpha-positive human breast cancer. Cancer Research, 68(13), 5004–5008.CrossRefPubMed Kondo, N., et al. (2008). miR-206 Expression is down-regulated in estrogen receptor alpha-positive human breast cancer. Cancer Research, 68(13), 5004–5008.CrossRefPubMed
77.
Zurück zum Zitat Chambers, A. F., Groom, A. C., & MacDonald, I. C. (2002). Dissemination and growth of cancer cells in metastatic sites. Nature Reviews Cancer, 2(8), 563–572.CrossRefPubMed Chambers, A. F., Groom, A. C., & MacDonald, I. C. (2002). Dissemination and growth of cancer cells in metastatic sites. Nature Reviews Cancer, 2(8), 563–572.CrossRefPubMed
78.
Zurück zum Zitat Fidler, I. J. (2003). The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nature Review Cancer, 3(6), 453–458.CrossRef Fidler, I. J. (2003). The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nature Review Cancer, 3(6), 453–458.CrossRef
79.
Zurück zum Zitat Huang, Q., et al. (2008). The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis. Nature Cell Biology, 10(2), 202–210.CrossRefPubMed Huang, Q., et al. (2008). The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis. Nature Cell Biology, 10(2), 202–210.CrossRefPubMed
80.
Zurück zum Zitat Tavazoie, S. F., et al. (2008). Endogenous human microRNAs that suppress breast cancer metastasis. Nature, 451(7175), 147–152.CrossRefPubMed Tavazoie, S. F., et al. (2008). Endogenous human microRNAs that suppress breast cancer metastasis. Nature, 451(7175), 147–152.CrossRefPubMed
81.
Zurück zum Zitat Yu, F., et al. (2007). Let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell, 131(6), 1109–1123.CrossRefPubMed Yu, F., et al. (2007). Let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell, 131(6), 1109–1123.CrossRefPubMed
82.
Zurück zum Zitat Gebeshuber, C. A., Zatloukal, K., & Martinez, J. (2009). miR-29a suppresses tristetraprolin, which is a regulator of epithelial polarity and metastasis. EMBO Reports, 10(4), 400–405.CrossRefPubMed Gebeshuber, C. A., Zatloukal, K., & Martinez, J. (2009). miR-29a suppresses tristetraprolin, which is a regulator of epithelial polarity and metastasis. EMBO Reports, 10(4), 400–405.CrossRefPubMed
Metadaten
Titel
MicroRNA function in cancer: oncogene or a tumor suppressor?
verfasst von
Sylvia K. Shenouda
Suresh K. Alahari
Publikationsdatum
01.12.2009
Verlag
Springer US
Erschienen in
Cancer and Metastasis Reviews / Ausgabe 3-4/2009
Print ISSN: 0167-7659
Elektronische ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-009-9188-5

Weitere Artikel der Ausgabe 3-4/2009

Cancer and Metastasis Reviews 3-4/2009 Zur Ausgabe

EditorialNotes

Preface

Acknowledgments

Biographies

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.