Skip to main content
Erschienen in: Cancer and Metastasis Reviews 1/2010

01.03.2010

microRNAs and lung cancer: tumors and 22-mers

verfasst von: Liqin Du, Alexander Pertsemlidis

Erschienen in: Cancer and Metastasis Reviews | Ausgabe 1/2010

Einloggen, um Zugang zu erhalten

Abstract

Work over the last decade has revealed novel regulatory mechanisms in pathological disease states that are mediated by microRNAs and has inspired researchers to begin elucidating the specific roles of miRNAs in the regulation of genes involved in cancer development and progression. Recently, miRNAs have been explored as therapeutic targets and diagnostic markers of cancer. In this paper, we review recent advances in the study of miRNAs involved in tumorigenesis, focusing on miRNA regulation of genes that have been demonstrated to play critical roles in lung cancer development. We discuss miRNA regulation of genes that play critical roles in the process of malignant transformation, angiogenesis and tumor metastasis, the dysregulation of miRNA expression in cancer development, and the development of miRNA-based diagnostics and therapeutics.
Literatur
1.
Zurück zum Zitat Yekta, S., Shih, I. H., & Bartel, D. P. (2004). MicroRNA-directed cleavage of HOXB8 mRNA. Science, 304, 594–596.PubMedCrossRef Yekta, S., Shih, I. H., & Bartel, D. P. (2004). MicroRNA-directed cleavage of HOXB8 mRNA. Science, 304, 594–596.PubMedCrossRef
2.
Zurück zum Zitat Vasudevan, S., Tong, Y., & Steitz, J. A. (2007). Switching from repression to activation: microRNAs can up-regulate translation. Science, 318, 1931–1934.PubMedCrossRef Vasudevan, S., Tong, Y., & Steitz, J. A. (2007). Switching from repression to activation: microRNAs can up-regulate translation. Science, 318, 1931–1934.PubMedCrossRef
3.
Zurück zum Zitat Novotny, G. W., Sonne, S. B., Nielsen, J. E., Jonstrup, S. P., Hansen, M. A., Skakkebaek, N. E., et al. (2007). Translational repression of E2F1 mRNA in carcinoma in situ and normal testis correlates with expression of the miR-17-92 cluster. Cell Death and Differentiation, 14, 879–882.PubMedCrossRef Novotny, G. W., Sonne, S. B., Nielsen, J. E., Jonstrup, S. P., Hansen, M. A., Skakkebaek, N. E., et al. (2007). Translational repression of E2F1 mRNA in carcinoma in situ and normal testis correlates with expression of the miR-17-92 cluster. Cell Death and Differentiation, 14, 879–882.PubMedCrossRef
4.
Zurück zum Zitat He, L., He, X., Lowe, S. W., & Hannon, G. J. (2007). microRNAs join the p53 network—Another piece in the tumour-suppression puzzle. Nature Reviews Cancer, 7, 819–822.PubMedCrossRef He, L., He, X., Lowe, S. W., & Hannon, G. J. (2007). microRNAs join the p53 network—Another piece in the tumour-suppression puzzle. Nature Reviews Cancer, 7, 819–822.PubMedCrossRef
5.
Zurück zum Zitat Cho, W. C. (2007). OncomiRs: The discovery and progress of microRNAs in cancers. Molecular Cancer, 6, 60.PubMedCrossRef Cho, W. C. (2007). OncomiRs: The discovery and progress of microRNAs in cancers. Molecular Cancer, 6, 60.PubMedCrossRef
6.
Zurück zum Zitat Hwang, H. W., & Mendell, J. T. (2006). MicroRNAs in cell proliferation, cell death, and tumorigenesis. British Journal of Cancer, 94, 776–780.PubMedCrossRef Hwang, H. W., & Mendell, J. T. (2006). MicroRNAs in cell proliferation, cell death, and tumorigenesis. British Journal of Cancer, 94, 776–780.PubMedCrossRef
7.
Zurück zum Zitat Esquela-Kerscher, A., & Slack, F. J. (2006). Oncomirs—microRNAs with a role in cancer. Nature Reviews Cancer, 6, 259–269.PubMedCrossRef Esquela-Kerscher, A., & Slack, F. J. (2006). Oncomirs—microRNAs with a role in cancer. Nature Reviews Cancer, 6, 259–269.PubMedCrossRef
8.
Zurück zum Zitat Hebert, C., Norris, K., Scheper, M. A., Nikitakis, N., & Sauk, J. J. (2007). High mobility group A2 is a target for miRNA-98 in head and neck squamous cell carcinoma. Molecular Cancer, 6, 5.PubMedCrossRef Hebert, C., Norris, K., Scheper, M. A., Nikitakis, N., & Sauk, J. J. (2007). High mobility group A2 is a target for miRNA-98 in head and neck squamous cell carcinoma. Molecular Cancer, 6, 5.PubMedCrossRef
9.
Zurück zum Zitat Lee, D. Y., Deng, Z., Wang, C. H., & Yang, B. B. (2007). MicroRNA-378 promotes cell survival, tumor growth, and angiogenesis by targeting SuFu and Fus-1 expression. Proceedings of the National Academy of Sciences of the United States of America, 104, 20350–20355.PubMedCrossRef Lee, D. Y., Deng, Z., Wang, C. H., & Yang, B. B. (2007). MicroRNA-378 promotes cell survival, tumor growth, and angiogenesis by targeting SuFu and Fus-1 expression. Proceedings of the National Academy of Sciences of the United States of America, 104, 20350–20355.PubMedCrossRef
10.
Zurück zum Zitat O’Donnell, K. A., Wentzel, E. A., Zeller, K. I., Dang, C. V., & Mendell, J. T. (2005). c-Myc-regulated microRNAs modulate E2F1 expression. Nature, 435, 839–843.PubMedCrossRef O’Donnell, K. A., Wentzel, E. A., Zeller, K. I., Dang, C. V., & Mendell, J. T. (2005). c-Myc-regulated microRNAs modulate E2F1 expression. Nature, 435, 839–843.PubMedCrossRef
11.
Zurück zum Zitat Mercatelli, N., Coppola, V., Bonci, D., Miele, F., Costantini, A., Guadagnoli, M., et al. (2008). The inhibition of the highly expressed miR-221 and miR-222 impairs the growth of prostate carcinoma xenografts in mice. PLoS ONE, 3, e4029.PubMedCrossRef Mercatelli, N., Coppola, V., Bonci, D., Miele, F., Costantini, A., Guadagnoli, M., et al. (2008). The inhibition of the highly expressed miR-221 and miR-222 impairs the growth of prostate carcinoma xenografts in mice. PLoS ONE, 3, e4029.PubMedCrossRef
12.
Zurück zum Zitat Felicetti, F., Errico, M. C., Bottero, L., Segnalini, P., Stoppacciaro, A., Biffoni, M., et al. (2008). The promyelocytic leukemia zinc finger-microRNA-221/-222 pathway controls melanoma progression through multiple oncogenic mechanisms. Cancer Research, 68, 2745–2754.PubMedCrossRef Felicetti, F., Errico, M. C., Bottero, L., Segnalini, P., Stoppacciaro, A., Biffoni, M., et al. (2008). The promyelocytic leukemia zinc finger-microRNA-221/-222 pathway controls melanoma progression through multiple oncogenic mechanisms. Cancer Research, 68, 2745–2754.PubMedCrossRef
13.
Zurück zum Zitat Wickramasinghe, N. S., Manavalan, T. T., Dougherty, S. M., Riggs, K. A., Li, Y., & Klinge, C. M. (2009). Estradiol downregulates miR-21 expression and increases miR-21 target gene expression in MCF-7 breast cancer cells. Nucleic Acids Research, 37, 2584–2595.PubMedCrossRef Wickramasinghe, N. S., Manavalan, T. T., Dougherty, S. M., Riggs, K. A., Li, Y., & Klinge, C. M. (2009). Estradiol downregulates miR-21 expression and increases miR-21 target gene expression in MCF-7 breast cancer cells. Nucleic Acids Research, 37, 2584–2595.PubMedCrossRef
14.
Zurück zum Zitat Yang, Y., Chaerkady, R., Beer, M. A., Mendell, J. T., & Pandey, A. (2009). Identification of miR-21 targets in breast cancer cells using a quantitative proteomic approach. Proteomics, 9, 1374–1384.PubMedCrossRef Yang, Y., Chaerkady, R., Beer, M. A., Mendell, J. T., & Pandey, A. (2009). Identification of miR-21 targets in breast cancer cells using a quantitative proteomic approach. Proteomics, 9, 1374–1384.PubMedCrossRef
15.
Zurück zum Zitat Si, M. L., Zhu, S., Wu, H., Lu, Z., Wu, F., & Mo, Y. Y. (2007). miR-21-mediated tumor growth. Oncogene, 26, 2799–2803.PubMedCrossRef Si, M. L., Zhu, S., Wu, H., Lu, Z., Wu, F., & Mo, Y. Y. (2007). miR-21-mediated tumor growth. Oncogene, 26, 2799–2803.PubMedCrossRef
16.
Zurück zum Zitat Yanaihara, N., Caplen, N., Bowman, E., Seike, M., Kumamoto, K., Yi, M., et al. (2006). Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell, 9, 189–198.PubMedCrossRef Yanaihara, N., Caplen, N., Bowman, E., Seike, M., Kumamoto, K., Yi, M., et al. (2006). Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell, 9, 189–198.PubMedCrossRef
17.
Zurück zum Zitat Taylor, D. D., & Gercel-Taylor, C. (2008). MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecologic Oncology, 110, 13–21.PubMedCrossRef Taylor, D. D., & Gercel-Taylor, C. (2008). MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecologic Oncology, 110, 13–21.PubMedCrossRef
18.
Zurück zum Zitat Mitchell, P. S., Parkin, R. K., Kroh, E. M., Fritz, B. R., Wyman, S. K., Pogosova-Agadjanyan, E. L., et al. (2008). Circulating microRNAs as stable blood-based markers for cancer detection. Proceedings of the National Academy of Sciences of the United States of America, 105, 10513–10518.PubMedCrossRef Mitchell, P. S., Parkin, R. K., Kroh, E. M., Fritz, B. R., Wyman, S. K., Pogosova-Agadjanyan, E. L., et al. (2008). Circulating microRNAs as stable blood-based markers for cancer detection. Proceedings of the National Academy of Sciences of the United States of America, 105, 10513–10518.PubMedCrossRef
19.
Zurück zum Zitat Chen, X., Ba, Y., Ma, L., Cai, X., Yin, Y., Wang, K., et al. (2008). Characterization of microRNAs in serum: A novel class of biomarkers for diagnosis of cancer and other diseases. Cell Research, 18, 997–1006.PubMedCrossRef Chen, X., Ba, Y., Ma, L., Cai, X., Yin, Y., Wang, K., et al. (2008). Characterization of microRNAs in serum: A novel class of biomarkers for diagnosis of cancer and other diseases. Cell Research, 18, 997–1006.PubMedCrossRef
20.
21.
Zurück zum Zitat Khosravi-Far, R., & Esposti, M. D. (2004). Death receptor signals to mitochondria. Cancer Biology and Therapy, 3, 1051–1057.PubMedCrossRef Khosravi-Far, R., & Esposti, M. D. (2004). Death receptor signals to mitochondria. Cancer Biology and Therapy, 3, 1051–1057.PubMedCrossRef
22.
Zurück zum Zitat Holbro, T., Beerli, R. R., Maurer, F., Koziczak, M., Barbas, C. F., 3rd, & Hynes, N. E. (2003). The ErbB2/ErbB3 heterodimer functions as an oncogenic unit: ErbB2 requires ErbB3 to drive breast tumor cell proliferation. Proceedings of the National Academy of Sciences of the United States of America, 100, 8933–8938.PubMedCrossRef Holbro, T., Beerli, R. R., Maurer, F., Koziczak, M., Barbas, C. F., 3rd, & Hynes, N. E. (2003). The ErbB2/ErbB3 heterodimer functions as an oncogenic unit: ErbB2 requires ErbB3 to drive breast tumor cell proliferation. Proceedings of the National Academy of Sciences of the United States of America, 100, 8933–8938.PubMedCrossRef
23.
Zurück zum Zitat Scott, G. K., Goga, A., Bhaumik, D., Berger, C. E., Sullivan, C. S., & Benz, C. C. (2007). Coordinate suppression of ERBB2 and ERBB3 by enforced expression of micro-RNA miR-125a or miR-125b. Journal of Biological Chemistry, 282, 1479–1486.PubMedCrossRef Scott, G. K., Goga, A., Bhaumik, D., Berger, C. E., Sullivan, C. S., & Benz, C. C. (2007). Coordinate suppression of ERBB2 and ERBB3 by enforced expression of micro-RNA miR-125a or miR-125b. Journal of Biological Chemistry, 282, 1479–1486.PubMedCrossRef
24.
Zurück zum Zitat Weiss, G. J., Bemis, L. T., Nakajima, E., Sugita, M., Birks, D. K., Robinson, W. A., et al. (2008). EGFR regulation by microRNA in lung cancer: Correlation with clinical response and survival to gefitinib and EGFR expression in cell lines. Annals of Oncology, 19, 1053–1059.PubMedCrossRef Weiss, G. J., Bemis, L. T., Nakajima, E., Sugita, M., Birks, D. K., Robinson, W. A., et al. (2008). EGFR regulation by microRNA in lung cancer: Correlation with clinical response and survival to gefitinib and EGFR expression in cell lines. Annals of Oncology, 19, 1053–1059.PubMedCrossRef
25.
Zurück zum Zitat Webster, R. J., Giles, K. M., Price, K. J., Zhang, P. M., Mattick, J. S., & Leedman, P. J. (2009). Regulation of epidermal growth factor receptor signaling in human cancer cells by microRNA-7. Journal of Biological Chemistry, 284, 5731–5741.PubMedCrossRef Webster, R. J., Giles, K. M., Price, K. J., Zhang, P. M., Mattick, J. S., & Leedman, P. J. (2009). Regulation of epidermal growth factor receptor signaling in human cancer cells by microRNA-7. Journal of Biological Chemistry, 284, 5731–5741.PubMedCrossRef
26.
Zurück zum Zitat Eberhart, J. K., He, X., Swartz, M. E., Yan, Y. L., Song, H., Boling, T. C., et al. (2008). MicroRNA Mirn140 modulates Pdgf signaling during palatogenesis. Nature Genetics, 40, 290–298.PubMedCrossRef Eberhart, J. K., He, X., Swartz, M. E., Yan, Y. L., Song, H., Boling, T. C., et al. (2008). MicroRNA Mirn140 modulates Pdgf signaling during palatogenesis. Nature Genetics, 40, 290–298.PubMedCrossRef
27.
Zurück zum Zitat La Rocca, G., Badin, M., Shi, B., Xu, S. Q., Deangelis, T., Sepp-Lorenzinoi, L., et al. (2009). Mechanism of growth inhibition by MicroRNA 145: The role of the IGF-I receptor signaling pathway. Journal of Cellular Physiology, 220, 485–491.PubMedCrossRef La Rocca, G., Badin, M., Shi, B., Xu, S. Q., Deangelis, T., Sepp-Lorenzinoi, L., et al. (2009). Mechanism of growth inhibition by MicroRNA 145: The role of the IGF-I receptor signaling pathway. Journal of Cellular Physiology, 220, 485–491.PubMedCrossRef
28.
Zurück zum Zitat Bos, J. L. (1989). ras oncogenes in human cancer: A review. Cancer Research, 49, 4682–4689.PubMed Bos, J. L. (1989). ras oncogenes in human cancer: A review. Cancer Research, 49, 4682–4689.PubMed
29.
Zurück zum Zitat Downward, J. (2003). Targeting RAS signalling pathways in cancer therapy. Nature Reviews Cancer, 3, 11–22.PubMedCrossRef Downward, J. (2003). Targeting RAS signalling pathways in cancer therapy. Nature Reviews Cancer, 3, 11–22.PubMedCrossRef
30.
Zurück zum Zitat Zajac-Kaye, M. (2001). Myc oncogene: A key component in cell cycle regulation and its implication for lung cancer. Lung Cancer, 34(Suppl 2), S43–S46.PubMedCrossRef Zajac-Kaye, M. (2001). Myc oncogene: A key component in cell cycle regulation and its implication for lung cancer. Lung Cancer, 34(Suppl 2), S43–S46.PubMedCrossRef
31.
Zurück zum Zitat Johnson, S. M., Grosshans, H., Shingara, J., Byrom, M., Jarvis, R., Cheng, A., et al. (2005). RAS is regulated by the let-7 microRNA family. Cell, 120, 635–647.PubMedCrossRef Johnson, S. M., Grosshans, H., Shingara, J., Byrom, M., Jarvis, R., Cheng, A., et al. (2005). RAS is regulated by the let-7 microRNA family. Cell, 120, 635–647.PubMedCrossRef
32.
Zurück zum Zitat Kumar, M. S., Erkeland, S. J., Pester, R. E., Chen, C. Y., Ebert, M. S., Sharp, P. A., et al. (2008). Suppression of non-small cell lung tumor development by the let-7 microRNA family. Proceedings of the National Academy of Sciences of the United States of America, 105, 3903–3908.PubMedCrossRef Kumar, M. S., Erkeland, S. J., Pester, R. E., Chen, C. Y., Ebert, M. S., Sharp, P. A., et al. (2008). Suppression of non-small cell lung tumor development by the let-7 microRNA family. Proceedings of the National Academy of Sciences of the United States of America, 105, 3903–3908.PubMedCrossRef
33.
Zurück zum Zitat Sampson, V. B., Rong, N. H., Han, J., Yang, Q., Aris, V., Soteropoulos, P., et al. (2007). MicroRNA let-7a down-regulates MYC and reverts MYC-induced growth in Burkitt lymphoma cells. Cancer Research, 67, 9762–9770.PubMedCrossRef Sampson, V. B., Rong, N. H., Han, J., Yang, Q., Aris, V., Soteropoulos, P., et al. (2007). MicroRNA let-7a down-regulates MYC and reverts MYC-induced growth in Burkitt lymphoma cells. Cancer Research, 67, 9762–9770.PubMedCrossRef
34.
Zurück zum Zitat Mayr, C., Hemann, M. T., & Bartel, D. P. (2007). Disrupting the pairing between let-7 and Hmga2 enhances oncogenic transformation. Science, 315, 1576–1579.PubMedCrossRef Mayr, C., Hemann, M. T., & Bartel, D. P. (2007). Disrupting the pairing between let-7 and Hmga2 enhances oncogenic transformation. Science, 315, 1576–1579.PubMedCrossRef
35.
Zurück zum Zitat Muntoni, A., & Reddel, R. R. (2005). The first molecular details of ALT in human tumor cells. Human Molecular Genetics, 14(Spec No. 2), R191–R196.PubMedCrossRef Muntoni, A., & Reddel, R. R. (2005). The first molecular details of ALT in human tumor cells. Human Molecular Genetics, 14(Spec No. 2), R191–R196.PubMedCrossRef
36.
Zurück zum Zitat Mitomo, S., Maesawa, C., Ogasawara, S., Iwaya, T., Shibazaki, M., Yashima-Abo, A., et al. (2008). Downregulation of miR-138 is associated with overexpression of human telomerase reverse transcriptase protein in human anaplastic thyroid carcinoma cell lines. Cancer Science, 99, 280–286.PubMedCrossRef Mitomo, S., Maesawa, C., Ogasawara, S., Iwaya, T., Shibazaki, M., Yashima-Abo, A., et al. (2008). Downregulation of miR-138 is associated with overexpression of human telomerase reverse transcriptase protein in human anaplastic thyroid carcinoma cell lines. Cancer Science, 99, 280–286.PubMedCrossRef
37.
Zurück zum Zitat Gonzalo, S., Jaco, I., Fraga, M. F., Chen, T., Li, E., Esteller, M., et al. (2006). DNA methyltransferases control telomere length and telomere recombination in mammalian cells. Nature Cell Biology, 8, 416–424.PubMedCrossRef Gonzalo, S., Jaco, I., Fraga, M. F., Chen, T., Li, E., Esteller, M., et al. (2006). DNA methyltransferases control telomere length and telomere recombination in mammalian cells. Nature Cell Biology, 8, 416–424.PubMedCrossRef
38.
Zurück zum Zitat Benetti, R., Gonzalo, S., Jaco, I., Munoz, P., Gonzalez, S., Schoeftner, S., et al. (2008). A mammalian microRNA cluster controls DNA methylation and telomere recombination via Rbl2-dependent regulation of DNA methyltransferases. Nature Structural & Molecular Biology, 15, 268–279.CrossRef Benetti, R., Gonzalo, S., Jaco, I., Munoz, P., Gonzalez, S., Schoeftner, S., et al. (2008). A mammalian microRNA cluster controls DNA methylation and telomere recombination via Rbl2-dependent regulation of DNA methyltransferases. Nature Structural & Molecular Biology, 15, 268–279.CrossRef
39.
Zurück zum Zitat Fabbri, M., Garzon, R., Cimmino, A., Liu, Z., Zanesi, N., Callegari, E., et al. (2007). MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proceedings of the National Academy of Sciences of the United States of America, 104, 15805–15810.PubMedCrossRef Fabbri, M., Garzon, R., Cimmino, A., Liu, Z., Zanesi, N., Callegari, E., et al. (2007). MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proceedings of the National Academy of Sciences of the United States of America, 104, 15805–15810.PubMedCrossRef
40.
Zurück zum Zitat Hotchkiss, R. S., Strasser, A., McDunn, J. E., & Swanson, P. E. (2009). Cell death. New England Journal of Medicine, 361, 1570–1583.PubMedCrossRef Hotchkiss, R. S., Strasser, A., McDunn, J. E., & Swanson, P. E. (2009). Cell death. New England Journal of Medicine, 361, 1570–1583.PubMedCrossRef
41.
Zurück zum Zitat Porkka, K. P., Pfeiffer, M. J., Waltering, K. K., Vessella, R. L., Tammela, T. L., & Visakorpi, T. (2007). MicroRNA expression profiling in prostate cancer. Cancer Research, 67, 6130–6135.PubMedCrossRef Porkka, K. P., Pfeiffer, M. J., Waltering, K. K., Vessella, R. L., Tammela, T. L., & Visakorpi, T. (2007). MicroRNA expression profiling in prostate cancer. Cancer Research, 67, 6130–6135.PubMedCrossRef
42.
Zurück zum Zitat Bottoni, A., Piccin, D., Tagliati, F., Luchin, A., Zatelli, M. C., & degli Uberti, E. C. (2005). miR-15a and miR-16-1 down-regulation in pituitary adenomas. Journal of Cellular Physiology, 204, 280–285.PubMedCrossRef Bottoni, A., Piccin, D., Tagliati, F., Luchin, A., Zatelli, M. C., & degli Uberti, E. C. (2005). miR-15a and miR-16-1 down-regulation in pituitary adenomas. Journal of Cellular Physiology, 204, 280–285.PubMedCrossRef
43.
Zurück zum Zitat Cimmino, A., Calin, G. A., Fabbri, M., Iorio, M. V., Ferracin, M., Shimizu, M., et al. (2005). miR-15 and miR-16 induce apoptosis by targeting BCL2. Proceedings of the National Academy of Sciences of the United States of America, 102, 13944–13949.PubMedCrossRef Cimmino, A., Calin, G. A., Fabbri, M., Iorio, M. V., Ferracin, M., Shimizu, M., et al. (2005). miR-15 and miR-16 induce apoptosis by targeting BCL2. Proceedings of the National Academy of Sciences of the United States of America, 102, 13944–13949.PubMedCrossRef
44.
Zurück zum Zitat Mott, J. L., Kobayashi, S., Bronk, S. F., & Gores, G. J. (2007). mir-29 regulates Mcl-1 protein expression and apoptosis. Oncogene, 26, 6133–6140.PubMedCrossRef Mott, J. L., Kobayashi, S., Bronk, S. F., & Gores, G. J. (2007). mir-29 regulates Mcl-1 protein expression and apoptosis. Oncogene, 26, 6133–6140.PubMedCrossRef
45.
Zurück zum Zitat Calin, G. A., Ferracin, M., Cimmino, A., Di Leva, G., Shimizu, M., Wojcik, S. E., et al. (2005). A microRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. New England Journal of Medicine, 353, 1793–1801.PubMedCrossRef Calin, G. A., Ferracin, M., Cimmino, A., Di Leva, G., Shimizu, M., Wojcik, S. E., et al. (2005). A microRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. New England Journal of Medicine, 353, 1793–1801.PubMedCrossRef
46.
Zurück zum Zitat Cummins, J. M., He, Y., Leary, R. J., Pagliarini, R., Diaz, L. A., Jr., Sjoblom, T., et al. (2006). The colorectal microRNAome. Proceedings of the National Academy of Sciences of the United States of America, 103, 3687–3692.PubMedCrossRef Cummins, J. M., He, Y., Leary, R. J., Pagliarini, R., Diaz, L. A., Jr., Sjoblom, T., et al. (2006). The colorectal microRNAome. Proceedings of the National Academy of Sciences of the United States of America, 103, 3687–3692.PubMedCrossRef
47.
Zurück zum Zitat Chan, J. A., Krichevsky, A. M., & Kosik, K. S. (2005). MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Research, 65, 6029–6033.PubMedCrossRef Chan, J. A., Krichevsky, A. M., & Kosik, K. S. (2005). MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Research, 65, 6029–6033.PubMedCrossRef
48.
Zurück zum Zitat Seike, M., Goto, A., Okano, T., Bowman, E. D., Schetter, A. J., Horikawa, I., et al. (2009). MiR-21 is an EGFR-regulated anti-apoptotic factor in lung cancer in never-smokers. Proceedings of the National Academy of Sciences of the United States of America, 106, 12085–12090.PubMedCrossRef Seike, M., Goto, A., Okano, T., Bowman, E. D., Schetter, A. J., Horikawa, I., et al. (2009). MiR-21 is an EGFR-regulated anti-apoptotic factor in lung cancer in never-smokers. Proceedings of the National Academy of Sciences of the United States of America, 106, 12085–12090.PubMedCrossRef
49.
Zurück zum Zitat Tarasov, V., Jung, P., Verdoodt, B., Lodygin, D., Epanchintsev, A., Menssen, A., et al. (2007). Differential regulation of microRNAs by p53 revealed by massively parallel sequencing: miR-34a is a p53 target that induces apoptosis and G1-arrest. Cell Cycle, 6, 1586–1593.PubMed Tarasov, V., Jung, P., Verdoodt, B., Lodygin, D., Epanchintsev, A., Menssen, A., et al. (2007). Differential regulation of microRNAs by p53 revealed by massively parallel sequencing: miR-34a is a p53 target that induces apoptosis and G1-arrest. Cell Cycle, 6, 1586–1593.PubMed
50.
Zurück zum Zitat Hermeking, H. (2010). The miR-34 family in cancer and apoptosis. Cell Death and Differentiation, 17, 193–199.PubMedCrossRef Hermeking, H. (2010). The miR-34 family in cancer and apoptosis. Cell Death and Differentiation, 17, 193–199.PubMedCrossRef
51.
Zurück zum Zitat He, L., He, X., Lim, L. P., de Stanchina, E., Xuan, Z., Liang, Y., et al. (2007). A microRNA component of the p53 tumour suppressor network. Nature, 447, 1130–1134.PubMedCrossRef He, L., He, X., Lim, L. P., de Stanchina, E., Xuan, Z., Liang, Y., et al. (2007). A microRNA component of the p53 tumour suppressor network. Nature, 447, 1130–1134.PubMedCrossRef
52.
Zurück zum Zitat le Sage, C., Nagel, R., Egan, D. A., Schrier, M., Mesman, E., Mangiola, A., et al. (2007). Regulation of the p27(Kip1) tumor suppressor by miR-221 and miR-222 promotes cancer cell proliferation. EMBO Journal, 26, 3699–3708.PubMedCrossRef le Sage, C., Nagel, R., Egan, D. A., Schrier, M., Mesman, E., Mangiola, A., et al. (2007). Regulation of the p27(Kip1) tumor suppressor by miR-221 and miR-222 promotes cancer cell proliferation. EMBO Journal, 26, 3699–3708.PubMedCrossRef
53.
Zurück zum Zitat Gillies, J. K., & Lorimer, I. A. (2007). Regulation of p27Kip1 by miRNA 221/222 in glioblastoma. Cell Cycle, 6, 2005–2009.PubMed Gillies, J. K., & Lorimer, I. A. (2007). Regulation of p27Kip1 by miRNA 221/222 in glioblastoma. Cell Cycle, 6, 2005–2009.PubMed
54.
Zurück zum Zitat Galardi, S., Mercatelli, N., Giorda, E., Massalini, S., Frajese, G. V., Ciafre, S. A., et al. (2007). miR-221 and miR-222 expression affects the proliferation potential of human prostate carcinoma cell lines by targeting p27Kip1. Journal of Biological Chemistry, 282, 23716–23724.PubMedCrossRef Galardi, S., Mercatelli, N., Giorda, E., Massalini, S., Frajese, G. V., Ciafre, S. A., et al. (2007). miR-221 and miR-222 expression affects the proliferation potential of human prostate carcinoma cell lines by targeting p27Kip1. Journal of Biological Chemistry, 282, 23716–23724.PubMedCrossRef
55.
Zurück zum Zitat Whang-Peng, J., Kao-Shan, C. S., Lee, E. C., Bunn, P. A., Carney, D. N., Gazdar, A. F., et al. (1982). Specific chromosome defect associated with human small-cell lung cancer; deletion 3p(14-23). Science, 215, 181–182.PubMedCrossRef Whang-Peng, J., Kao-Shan, C. S., Lee, E. C., Bunn, P. A., Carney, D. N., Gazdar, A. F., et al. (1982). Specific chromosome defect associated with human small-cell lung cancer; deletion 3p(14-23). Science, 215, 181–182.PubMedCrossRef
56.
Zurück zum Zitat Zabarovsky, E. R., Lerman, M. I., & Minna, J. D. (2002). Tumor suppressor genes on chromosome 3p involved in the pathogenesis of lung and other cancers. Oncogene, 21, 6915–6935.PubMedCrossRef Zabarovsky, E. R., Lerman, M. I., & Minna, J. D. (2002). Tumor suppressor genes on chromosome 3p involved in the pathogenesis of lung and other cancers. Oncogene, 21, 6915–6935.PubMedCrossRef
57.
Zurück zum Zitat Lerman, M. I., & Minna, J. D. (2000). The 630-kb lung cancer homozygous deletion region on human chromosome 3p21.3: Identification and evaluation of the resident candidate tumor suppressor genes. The International Lung Cancer Chromosome 3p21.3 Tumor Suppressor Gene Consortium. Cancer Research, 60, 6116–6133.PubMed Lerman, M. I., & Minna, J. D. (2000). The 630-kb lung cancer homozygous deletion region on human chromosome 3p21.3: Identification and evaluation of the resident candidate tumor suppressor genes. The International Lung Cancer Chromosome 3p21.3 Tumor Suppressor Gene Consortium. Cancer Research, 60, 6116–6133.PubMed
58.
Zurück zum Zitat Ji, L., Nishizaki, M., Gao, B., Burbee, D., Kondo, M., Kamibayashi, C., et al. (2002). Expression of several genes in the human chromosome 3p21.3 homozygous deletion region by an adenovirus vector results in tumor suppressor activities in vitro and in vivo. Cancer Research, 62, 2715–2720.PubMed Ji, L., Nishizaki, M., Gao, B., Burbee, D., Kondo, M., Kamibayashi, C., et al. (2002). Expression of several genes in the human chromosome 3p21.3 homozygous deletion region by an adenovirus vector results in tumor suppressor activities in vitro and in vivo. Cancer Research, 62, 2715–2720.PubMed
59.
Zurück zum Zitat Du, L., Schageman, J. J., Subauste, M. C., Saber, B., Hammond, S. M., Prudkin, L., et al. (2009). miR-93, miR-98, and miR-197 regulate expression of tumor suppressor gene FUS1. Molecular Cancer Research, 7, 1234–1243.PubMedCrossRef Du, L., Schageman, J. J., Subauste, M. C., Saber, B., Hammond, S. M., Prudkin, L., et al. (2009). miR-93, miR-98, and miR-197 regulate expression of tumor suppressor gene FUS1. Molecular Cancer Research, 7, 1234–1243.PubMedCrossRef
60.
Zurück zum Zitat Prudkin, L., Behrens, C., Liu, D. D., Zhou, X., Ozburn, N. C., Bekele, B. N., et al. (2008). Loss and reduction of FUS1 protein expression is a frequent phenomenon in the pathogenesis of lung cancer. Clinical Cancer Research, 14, 41–47.PubMedCrossRef Prudkin, L., Behrens, C., Liu, D. D., Zhou, X., Ozburn, N. C., Bekele, B. N., et al. (2008). Loss and reduction of FUS1 protein expression is a frequent phenomenon in the pathogenesis of lung cancer. Clinical Cancer Research, 14, 41–47.PubMedCrossRef
61.
Zurück zum Zitat Kondo, M., Ji, L., Kamibayashi, C., Tomizawa, Y., Randle, D., Sekido, Y., et al. (2001). Overexpression of candidate tumor suppressor gene FUS1 isolated from the 3p21.3 homozygous deletion region leads to G1 arrest and growth inhibition of lung cancer cells. Oncogene, 20, 6258–6262.PubMedCrossRef Kondo, M., Ji, L., Kamibayashi, C., Tomizawa, Y., Randle, D., Sekido, Y., et al. (2001). Overexpression of candidate tumor suppressor gene FUS1 isolated from the 3p21.3 homozygous deletion region leads to G1 arrest and growth inhibition of lung cancer cells. Oncogene, 20, 6258–6262.PubMedCrossRef
62.
Zurück zum Zitat Hanahan, D., & Folkman, J. (1996). Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell, 86, 353–364.PubMedCrossRef Hanahan, D., & Folkman, J. (1996). Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell, 86, 353–364.PubMedCrossRef
63.
Zurück zum Zitat Horn, L., & Sandler, A. B. (2009). Angiogenesis in the treatment of non-small cell lung cancer. The Proceedings of the American Thoracic Society, 6, 206–217.CrossRef Horn, L., & Sandler, A. B. (2009). Angiogenesis in the treatment of non-small cell lung cancer. The Proceedings of the American Thoracic Society, 6, 206–217.CrossRef
64.
65.
Zurück zum Zitat Yang, W. J., Yang, D. D., Na, S., Sandusky, G. E., Zhang, Q., & Zhao, G. (2005). Dicer is required for embryonic angiogenesis during mouse development. Journal of Biological Chemistry, 280, 9330–9335.PubMedCrossRef Yang, W. J., Yang, D. D., Na, S., Sandusky, G. E., Zhang, Q., & Zhao, G. (2005). Dicer is required for embryonic angiogenesis during mouse development. Journal of Biological Chemistry, 280, 9330–9335.PubMedCrossRef
66.
Zurück zum Zitat Bernstein, E., Kim, S. Y., Carmell, M. A., Murchison, E. P., Alcorn, H., Li, M. Z., et al. (2003). Dicer is essential for mouse development. Nature Genetics, 35, 215–217.PubMedCrossRef Bernstein, E., Kim, S. Y., Carmell, M. A., Murchison, E. P., Alcorn, H., Li, M. Z., et al. (2003). Dicer is essential for mouse development. Nature Genetics, 35, 215–217.PubMedCrossRef
67.
Zurück zum Zitat Suarez, Y., Fernandez-Hernando, C., Pober, J. S., & Sessa, W. C. (2007). Dicer dependent microRNAs regulate gene expression and functions in human endothelial cells. Circulation Research, 100, 1164–1173.PubMedCrossRef Suarez, Y., Fernandez-Hernando, C., Pober, J. S., & Sessa, W. C. (2007). Dicer dependent microRNAs regulate gene expression and functions in human endothelial cells. Circulation Research, 100, 1164–1173.PubMedCrossRef
68.
Zurück zum Zitat Kuehbacher, A., Urbich, C., Zeiher, A. M., & Dimmeler, S. (2007). Role of Dicer and Drosha for endothelial microRNA expression and angiogenesis. Circulation Research, 101, 59–68.PubMedCrossRef Kuehbacher, A., Urbich, C., Zeiher, A. M., & Dimmeler, S. (2007). Role of Dicer and Drosha for endothelial microRNA expression and angiogenesis. Circulation Research, 101, 59–68.PubMedCrossRef
69.
Zurück zum Zitat Suarez, Y., Fernandez-Hernando, C., Yu, J., Gerber, S. A., Harrison, K. D., Pober, J. S., et al. (2008). Dicer-dependent endothelial microRNAs are necessary for postnatal angiogenesis. Proceedings of the National Academy of Sciences of the United States of America, 105, 14082–14087.PubMedCrossRef Suarez, Y., Fernandez-Hernando, C., Yu, J., Gerber, S. A., Harrison, K. D., Pober, J. S., et al. (2008). Dicer-dependent endothelial microRNAs are necessary for postnatal angiogenesis. Proceedings of the National Academy of Sciences of the United States of America, 105, 14082–14087.PubMedCrossRef
70.
Zurück zum Zitat Otsuka, M., Zheng, M., Hayashi, M., Lee, J. D., Yoshino, O., Lin, S., et al. (2008). Impaired microRNA processing causes corpus luteum insufficiency and infertility in mice. Journal of Clinical Investigation, 118, 1944–1954.PubMedCrossRef Otsuka, M., Zheng, M., Hayashi, M., Lee, J. D., Yoshino, O., Lin, S., et al. (2008). Impaired microRNA processing causes corpus luteum insufficiency and infertility in mice. Journal of Clinical Investigation, 118, 1944–1954.PubMedCrossRef
71.
Zurück zum Zitat Shilo, S., Roy, S., Khanna, S., & Sen, C. K. (2008). Evidence for the involvement of miRNA in redox regulated angiogenic response of human microvascular endothelial cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 28, 471–477.PubMedCrossRef Shilo, S., Roy, S., Khanna, S., & Sen, C. K. (2008). Evidence for the involvement of miRNA in redox regulated angiogenic response of human microvascular endothelial cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 28, 471–477.PubMedCrossRef
72.
Zurück zum Zitat Fish, J. E., Santoro, M. M., Morton, S. U., Yu, S., Yeh, R. F., Wythe, J. D., et al. (2008). miR-126 regulates angiogenic signaling and vascular integrity. Dev Cell, 15, 272–284.PubMedCrossRef Fish, J. E., Santoro, M. M., Morton, S. U., Yu, S., Yeh, R. F., Wythe, J. D., et al. (2008). miR-126 regulates angiogenic signaling and vascular integrity. Dev Cell, 15, 272–284.PubMedCrossRef
73.
Zurück zum Zitat Wang, S., Aurora, A. B., Johnson, B. A., Qi, X., McAnally, J., Hill, J. A., et al. (2008). The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev Cell, 15, 261–271.PubMedCrossRef Wang, S., Aurora, A. B., Johnson, B. A., Qi, X., McAnally, J., Hill, J. A., et al. (2008). The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev Cell, 15, 261–271.PubMedCrossRef
74.
Zurück zum Zitat Kuhnert, F., Mancuso, M. R., Hampton, J., Stankunas, K., Asano, T., Chen, C. Z., et al. (2008). Attribution of vascular phenotypes of the murine Egfl7 locus to the microRNA miR-126. Development, 135, 3989–3993.PubMedCrossRef Kuhnert, F., Mancuso, M. R., Hampton, J., Stankunas, K., Asano, T., Chen, C. Z., et al. (2008). Attribution of vascular phenotypes of the murine Egfl7 locus to the microRNA miR-126. Development, 135, 3989–3993.PubMedCrossRef
75.
Zurück zum Zitat Liu, B., Peng, X. C., Zheng, X. L., Wang, J., & Qin, Y. W. (2009). MiR-126 restoration down-regulate VEGF and inhibit the growth of lung cancer cell lines in vitro and in vivo. Lung Cancer, 66, 169–175.PubMedCrossRef Liu, B., Peng, X. C., Zheng, X. L., Wang, J., & Qin, Y. W. (2009). MiR-126 restoration down-regulate VEGF and inhibit the growth of lung cancer cell lines in vitro and in vivo. Lung Cancer, 66, 169–175.PubMedCrossRef
76.
Zurück zum Zitat Fish, J. E., & Srivastava, D. (2009). MicroRNAs: Opening a new vein in angiogenesis research. Science Signaling, 2, pe1.PubMedCrossRef Fish, J. E., & Srivastava, D. (2009). MicroRNAs: Opening a new vein in angiogenesis research. Science Signaling, 2, pe1.PubMedCrossRef
77.
Zurück zum Zitat Hua, Z., Lv, Q., Ye, W., Wong, C. K., Cai, G., Gu, D., et al. (2006). MiRNA-directed regulation of VEGF and other angiogenic factors under hypoxia. PLoS ONE, 1, e116.PubMedCrossRef Hua, Z., Lv, Q., Ye, W., Wong, C. K., Cai, G., Gu, D., et al. (2006). MiRNA-directed regulation of VEGF and other angiogenic factors under hypoxia. PLoS ONE, 1, e116.PubMedCrossRef
78.
Zurück zum Zitat Dews, M., Homayouni, A., Yu, D., Murphy, D., Sevignani, C., Wentzel, E., et al. (2006). Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster. Nature Genetics, 38, 1060–1065.PubMedCrossRef Dews, M., Homayouni, A., Yu, D., Murphy, D., Sevignani, C., Wentzel, E., et al. (2006). Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster. Nature Genetics, 38, 1060–1065.PubMedCrossRef
79.
Zurück zum Zitat Poliseno, L., Tuccoli, A., Mariani, L., Evangelista, M., Citti, L., Woods, K., et al. (2006). MicroRNAs modulate the angiogenic properties of HUVECs. Blood, 108, 3068–3071.PubMedCrossRef Poliseno, L., Tuccoli, A., Mariani, L., Evangelista, M., Citti, L., Woods, K., et al. (2006). MicroRNAs modulate the angiogenic properties of HUVECs. Blood, 108, 3068–3071.PubMedCrossRef
80.
Zurück zum Zitat Ruan, K., Fang, X., & Ouyang, G. (2009). MicroRNAs: Novel regulators in the hallmarks of human cancer. Cancer Letters, 285, 116–126.PubMedCrossRef Ruan, K., Fang, X., & Ouyang, G. (2009). MicroRNAs: Novel regulators in the hallmarks of human cancer. Cancer Letters, 285, 116–126.PubMedCrossRef
81.
Zurück zum Zitat Chen, Y., & Gorski, D. H. (2008). Regulation of angiogenesis through a microRNA (miR-130a) that down-regulates antiangiogenic homeobox genes GAX and HOXA5. Blood, 111, 1217–1226.PubMedCrossRef Chen, Y., & Gorski, D. H. (2008). Regulation of angiogenesis through a microRNA (miR-130a) that down-regulates antiangiogenic homeobox genes GAX and HOXA5. Blood, 111, 1217–1226.PubMedCrossRef
82.
Zurück zum Zitat Hurst, D. R., Edmonds, M. D., & Welch, D. R. (2009). Metastamir: The field of metastasis-regulatory microRNA is spreading. Cancer Research, 69, 7495–7498.PubMedCrossRef Hurst, D. R., Edmonds, M. D., & Welch, D. R. (2009). Metastamir: The field of metastasis-regulatory microRNA is spreading. Cancer Research, 69, 7495–7498.PubMedCrossRef
83.
Zurück zum Zitat Savagner, P., Kusewitt, D. F., Carver, E. A., Magnino, F., Choi, C., Gridley, T., et al. (2005). Developmental transcription factor slug is required for effective re-epithelialization by adult keratinocytes. Journal of Cellular Physiology, 202, 858–866.PubMedCrossRef Savagner, P., Kusewitt, D. F., Carver, E. A., Magnino, F., Choi, C., Gridley, T., et al. (2005). Developmental transcription factor slug is required for effective re-epithelialization by adult keratinocytes. Journal of Cellular Physiology, 202, 858–866.PubMedCrossRef
84.
Zurück zum Zitat Liu, Y. (2004). Epithelial to mesenchymal transition in renal fibrogenesis: Pathologic significance, molecular mechanism, and therapeutic intervention. Journal of the American Society of Nephrology, 15, 1–12.PubMedCrossRef Liu, Y. (2004). Epithelial to mesenchymal transition in renal fibrogenesis: Pathologic significance, molecular mechanism, and therapeutic intervention. Journal of the American Society of Nephrology, 15, 1–12.PubMedCrossRef
85.
Zurück zum Zitat Thiery, J. P. (2002). Epithelial–mesenchymal transitions in tumour progression. Nature Reviews Cancer, 2, 442–454.PubMedCrossRef Thiery, J. P. (2002). Epithelial–mesenchymal transitions in tumour progression. Nature Reviews Cancer, 2, 442–454.PubMedCrossRef
86.
Zurück zum Zitat Ma, L., Teruya-Feldstein, J., & Weinberg, R. A. (2007). Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature, 449, 682–688.PubMedCrossRef Ma, L., Teruya-Feldstein, J., & Weinberg, R. A. (2007). Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature, 449, 682–688.PubMedCrossRef
87.
Zurück zum Zitat Clark, E. A., Golub, T. R., Lander, E. S., & Hynes, R. O. (2000). Genomic analysis of metastasis reveals an essential role for RhoC. Nature, 406, 532–535.PubMedCrossRef Clark, E. A., Golub, T. R., Lander, E. S., & Hynes, R. O. (2000). Genomic analysis of metastasis reveals an essential role for RhoC. Nature, 406, 532–535.PubMedCrossRef
88.
Zurück zum Zitat Ma, L., & Weinberg, R. A. (2008). Micromanagers of malignancy: Role of microRNAs in regulating metastasis. Trends in Genetics, 24, 448–456.PubMedCrossRef Ma, L., & Weinberg, R. A. (2008). Micromanagers of malignancy: Role of microRNAs in regulating metastasis. Trends in Genetics, 24, 448–456.PubMedCrossRef
89.
Zurück zum Zitat Ciafre, S. A., Galardi, S., Mangiola, A., Ferracin, M., Liu, C. G., Sabatino, G., et al. (2005). Extensive modulation of a set of microRNAs in primary glioblastoma. Biochemical and Biophysical Research Communications, 334, 1351–1358.PubMedCrossRef Ciafre, S. A., Galardi, S., Mangiola, A., Ferracin, M., Liu, C. G., Sabatino, G., et al. (2005). Extensive modulation of a set of microRNAs in primary glioblastoma. Biochemical and Biophysical Research Communications, 334, 1351–1358.PubMedCrossRef
90.
Zurück zum Zitat Bloomston, M., Frankel, W. L., Petrocca, F., Volinia, S., Alder, H., Hagan, J. P., et al. (2007). MicroRNA expression patterns to differentiate pancreatic adenocarcinoma from normal pancreas and chronic pancreatitis. JAMA, 297, 1901–1908.PubMedCrossRef Bloomston, M., Frankel, W. L., Petrocca, F., Volinia, S., Alder, H., Hagan, J. P., et al. (2007). MicroRNA expression patterns to differentiate pancreatic adenocarcinoma from normal pancreas and chronic pancreatitis. JAMA, 297, 1901–1908.PubMedCrossRef
91.
Zurück zum Zitat Roldo, C., Missiaglia, E., Hagan, J. P., Falconi, M., Capelli, P., Bersani, S., et al. (2006). MicroRNA expression abnormalities in pancreatic endocrine and acinar tumors are associated with distinctive pathologic features and clinical behavior. Journal of Clinical Oncology, 24, 4677–4684.PubMedCrossRef Roldo, C., Missiaglia, E., Hagan, J. P., Falconi, M., Capelli, P., Bersani, S., et al. (2006). MicroRNA expression abnormalities in pancreatic endocrine and acinar tumors are associated with distinctive pathologic features and clinical behavior. Journal of Clinical Oncology, 24, 4677–4684.PubMedCrossRef
92.
Zurück zum Zitat Huang, Q., Gumireddy, K., Schrier, M., le Sage, C., Nagel, R., Nair, S., et al. (2008). The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis. Nature Cell Biology, 10, 202–210.PubMedCrossRef Huang, Q., Gumireddy, K., Schrier, M., le Sage, C., Nagel, R., Nair, S., et al. (2008). The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis. Nature Cell Biology, 10, 202–210.PubMedCrossRef
93.
Zurück zum Zitat Goodison, S., Urquidi, V., & Tarin, D. (1999). CD44 cell adhesion molecules. Molecular Pathology, 52, 189–196.PubMedCrossRef Goodison, S., Urquidi, V., & Tarin, D. (1999). CD44 cell adhesion molecules. Molecular Pathology, 52, 189–196.PubMedCrossRef
94.
Zurück zum Zitat Park, S. M., Gaur, A. B., Lengyel, E., & Peter, M. E. (2008). The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes and Development, 22, 894–907.PubMedCrossRef Park, S. M., Gaur, A. B., Lengyel, E., & Peter, M. E. (2008). The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes and Development, 22, 894–907.PubMedCrossRef
95.
Zurück zum Zitat Gregory, P. A., Bert, A. G., Paterson, E. L., Barry, S. C., Tsykin, A., Farshid, G., et al. (2008). The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nature Cell Biology, 10, 593–601.PubMedCrossRef Gregory, P. A., Bert, A. G., Paterson, E. L., Barry, S. C., Tsykin, A., Farshid, G., et al. (2008). The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nature Cell Biology, 10, 593–601.PubMedCrossRef
96.
Zurück zum Zitat Burk, U., Schubert, J., Wellner, U., Schmalhofer, O., Vincan, E., Spaderna, S., et al. (2008). A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Reports, 9, 582–589.PubMedCrossRef Burk, U., Schubert, J., Wellner, U., Schmalhofer, O., Vincan, E., Spaderna, S., et al. (2008). A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Reports, 9, 582–589.PubMedCrossRef
97.
Zurück zum Zitat Korpal, M., Lee, E. S., Hu, G., & Kang, Y. (2008). The miR-200 family inhibits epithelial–mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. Journal of Biological Chemistry, 283, 14910–14914.PubMedCrossRef Korpal, M., Lee, E. S., Hu, G., & Kang, Y. (2008). The miR-200 family inhibits epithelial–mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. Journal of Biological Chemistry, 283, 14910–14914.PubMedCrossRef
98.
Zurück zum Zitat Gibbons, D. L., Lin, W., Creighton, C. J., Rizvi, Z. H., Gregory, P. A., Goodall, G. J., et al. (2009). Contextual extracellular cues promote tumor cell EMT and metastasis by regulating miR-200 family expression. Genes and Development, 23, 2140–2151.PubMedCrossRef Gibbons, D. L., Lin, W., Creighton, C. J., Rizvi, Z. H., Gregory, P. A., Goodall, G. J., et al. (2009). Contextual extracellular cues promote tumor cell EMT and metastasis by regulating miR-200 family expression. Genes and Development, 23, 2140–2151.PubMedCrossRef
99.
Zurück zum Zitat Tavazoie, S. F., Alarcon, C., Oskarsson, T., Padua, D., Wang, Q., Bos, P. D., et al. (2008). Endogenous human microRNAs that suppress breast cancer metastasis. Nature, 451, 147–152.PubMedCrossRef Tavazoie, S. F., Alarcon, C., Oskarsson, T., Padua, D., Wang, Q., Bos, P. D., et al. (2008). Endogenous human microRNAs that suppress breast cancer metastasis. Nature, 451, 147–152.PubMedCrossRef
100.
Zurück zum Zitat Crawford, M., Brawner, E., Batte, K., Yu, L., Hunter, M. G., Otterson, G. A., et al. (2008). MicroRNA-126 inhibits invasion in non-small cell lung carcinoma cell lines. Biochemical and Biophysical Research Communications, 373, 607–612.PubMedCrossRef Crawford, M., Brawner, E., Batte, K., Yu, L., Hunter, M. G., Otterson, G. A., et al. (2008). MicroRNA-126 inhibits invasion in non-small cell lung carcinoma cell lines. Biochemical and Biophysical Research Communications, 373, 607–612.PubMedCrossRef
101.
Zurück zum Zitat Feller, S. M. (2001). Crk family adaptors-signalling complex formation and biological roles. Oncogene, 20, 6348–6371.PubMedCrossRef Feller, S. M. (2001). Crk family adaptors-signalling complex formation and biological roles. Oncogene, 20, 6348–6371.PubMedCrossRef
102.
Zurück zum Zitat Kobashigawa, Y., Sakai, M., Naito, M., Yokochi, M., Kumeta, H., Makino, Y., et al. (2007). Structural basis for the transforming activity of human cancer-related signaling adaptor protein CRK. Nature Structural & Molecular Biology, 14, 503–510.CrossRef Kobashigawa, Y., Sakai, M., Naito, M., Yokochi, M., Kumeta, H., Makino, Y., et al. (2007). Structural basis for the transforming activity of human cancer-related signaling adaptor protein CRK. Nature Structural & Molecular Biology, 14, 503–510.CrossRef
103.
Zurück zum Zitat Jansen, A. P., Camalier, C. E., & Colburn, N. H. (2005). Epidermal expression of the translation inhibitor programmed cell death 4 suppresses tumorigenesis. Cancer Research, 65, 6034–6041.PubMedCrossRef Jansen, A. P., Camalier, C. E., & Colburn, N. H. (2005). Epidermal expression of the translation inhibitor programmed cell death 4 suppresses tumorigenesis. Cancer Research, 65, 6034–6041.PubMedCrossRef
104.
Zurück zum Zitat Chen, Y., Knosel, T., Kristiansen, G., Pietas, A., Garber, M. E., Matsuhashi, S., et al. (2003). Loss of PDCD4 expression in human lung cancer correlates with tumour progression and prognosis. Journal of Pathology, 200, 640–646.PubMedCrossRef Chen, Y., Knosel, T., Kristiansen, G., Pietas, A., Garber, M. E., Matsuhashi, S., et al. (2003). Loss of PDCD4 expression in human lung cancer correlates with tumour progression and prognosis. Journal of Pathology, 200, 640–646.PubMedCrossRef
105.
Zurück zum Zitat Mudduluru, G., Medved, F., Grobholz, R., Jost, C., Gruber, A., Leupold, J. H., et al. (2007). Loss of programmed cell death 4 expression marks adenoma–carcinoma transition, correlates inversely with phosphorylated protein kinase B, and is an independent prognostic factor in resected colorectal cancer. Cancer, 110, 1697–1707.PubMedCrossRef Mudduluru, G., Medved, F., Grobholz, R., Jost, C., Gruber, A., Leupold, J. H., et al. (2007). Loss of programmed cell death 4 expression marks adenoma–carcinoma transition, correlates inversely with phosphorylated protein kinase B, and is an independent prognostic factor in resected colorectal cancer. Cancer, 110, 1697–1707.PubMedCrossRef
106.
Zurück zum Zitat Talotta, F., Cimmino, A., Matarazzo, M. R., Casalino, L., De Vita, G., D'Esposito, M., et al. (2009). An autoregulatory loop mediated by miR-21 and PDCD4 controls the AP-1 activity in RAS transformation. Oncogene, 28, 73–84.PubMedCrossRef Talotta, F., Cimmino, A., Matarazzo, M. R., Casalino, L., De Vita, G., D'Esposito, M., et al. (2009). An autoregulatory loop mediated by miR-21 and PDCD4 controls the AP-1 activity in RAS transformation. Oncogene, 28, 73–84.PubMedCrossRef
107.
Zurück zum Zitat Lee, Y. S., & Dutta, A. (2007). The tumor suppressor microRNA let-7 represses the HMGA2 oncogene. Genes and Development, 21, 1025–1030.PubMedCrossRef Lee, Y. S., & Dutta, A. (2007). The tumor suppressor microRNA let-7 represses the HMGA2 oncogene. Genes and Development, 21, 1025–1030.PubMedCrossRef
108.
Zurück zum Zitat Wang, Y., & Lee, C. G. (2009). MicroRNA and cancer—Focus on apoptosis. Journal of Cellular and Molecular Medicine, 13, 12–23.PubMedCrossRef Wang, Y., & Lee, C. G. (2009). MicroRNA and cancer—Focus on apoptosis. Journal of Cellular and Molecular Medicine, 13, 12–23.PubMedCrossRef
109.
Zurück zum Zitat Hayashita, Y., Osada, H., Tatematsu, Y., Yamada, H., Yanagisawa, K., Tomida, S., et al. (2005). A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Research, 65, 9628–9632.PubMedCrossRef Hayashita, Y., Osada, H., Tatematsu, Y., Yamada, H., Yanagisawa, K., Tomida, S., et al. (2005). A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Research, 65, 9628–9632.PubMedCrossRef
110.
Zurück zum Zitat He, L., Thomson, J. M., Hemann, M. T., Hernando-Monge, E., Mu, D., Goodson, S., et al. (2005). A microRNA polycistron as a potential human oncogene. Nature, 435, 828–833.PubMedCrossRef He, L., Thomson, J. M., Hemann, M. T., Hernando-Monge, E., Mu, D., Goodson, S., et al. (2005). A microRNA polycistron as a potential human oncogene. Nature, 435, 828–833.PubMedCrossRef
111.
Zurück zum Zitat Mendell, J. T. (2008). miRiad roles for the miR-17-92 cluster in development and disease. Cell, 133, 217–222.PubMedCrossRef Mendell, J. T. (2008). miRiad roles for the miR-17-92 cluster in development and disease. Cell, 133, 217–222.PubMedCrossRef
112.
Zurück zum Zitat Xiao, C., Srinivasan, L., Calado, D. P., Patterson, H. C., Zhang, B., Wang, J., et al. (2008). Lymphoproliferative disease and autoimmunity in mice with increased miR-17-92 expression in lymphocytes. Nature Immunology, 9, 405–414.PubMedCrossRef Xiao, C., Srinivasan, L., Calado, D. P., Patterson, H. C., Zhang, B., Wang, J., et al. (2008). Lymphoproliferative disease and autoimmunity in mice with increased miR-17-92 expression in lymphocytes. Nature Immunology, 9, 405–414.PubMedCrossRef
113.
Zurück zum Zitat Sylvestre, Y., De Guire, V., Querido, E., Mukhopadhyay, U. K., Bourdeau, V., Major, F., et al. (2007). An E2F/miR-20a autoregulatory feedback loop. Journal of Biological Chemistry, 282, 2135–2143.PubMedCrossRef Sylvestre, Y., De Guire, V., Querido, E., Mukhopadhyay, U. K., Bourdeau, V., Major, F., et al. (2007). An E2F/miR-20a autoregulatory feedback loop. Journal of Biological Chemistry, 282, 2135–2143.PubMedCrossRef
114.
Zurück zum Zitat Bandi, N., Zbinden, S., Gugger, M., Arnold, M., Kocher, V., Hasan, L., et al. (2009). miR-15a and miR-16 are implicated in cell cycle regulation in a Rb-dependent manner and are frequently deleted or down-regulated in non-small cell lung cancer. Cancer Research, 69, 5553–5559.PubMedCrossRef Bandi, N., Zbinden, S., Gugger, M., Arnold, M., Kocher, V., Hasan, L., et al. (2009). miR-15a and miR-16 are implicated in cell cycle regulation in a Rb-dependent manner and are frequently deleted or down-regulated in non-small cell lung cancer. Cancer Research, 69, 5553–5559.PubMedCrossRef
115.
Zurück zum Zitat Chen, R. W., Bemis, L. T., Amato, C. M., Myint, H., Tran, H., Birks, D. K., et al. (2008). Truncation in CCND1 mRNA alters miR-16-1 regulation in mantle cell lymphoma. Blood, 112, 822–829.PubMedCrossRef Chen, R. W., Bemis, L. T., Amato, C. M., Myint, H., Tran, H., Birks, D. K., et al. (2008). Truncation in CCND1 mRNA alters miR-16-1 regulation in mantle cell lymphoma. Blood, 112, 822–829.PubMedCrossRef
116.
Zurück zum Zitat Liu, Q., Fu, H., Sun, F., Zhang, H., Tie, Y., Zhu, J., et al. (2008). miR-16 family induces cell cycle arrest by regulating multiple cell cycle genes. Nucleic Acids Research, 36, 5391–5404.PubMedCrossRef Liu, Q., Fu, H., Sun, F., Zhang, H., Tie, Y., Zhu, J., et al. (2008). miR-16 family induces cell cycle arrest by regulating multiple cell cycle genes. Nucleic Acids Research, 36, 5391–5404.PubMedCrossRef
117.
Zurück zum Zitat Bonci, D., Coppola, V., Musumeci, M., Addario, A., Giuffrida, R., Memeo, L., et al. (2008). The miR-15a–miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities. Nature Medicine, 14, 1271–1277.PubMedCrossRef Bonci, D., Coppola, V., Musumeci, M., Addario, A., Giuffrida, R., Memeo, L., et al. (2008). The miR-15a–miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities. Nature Medicine, 14, 1271–1277.PubMedCrossRef
118.
Zurück zum Zitat Garofalo, M., Quintavalle, C., Di Leva, G., Zanca, C., Romano, G., Taccioli, C., et al. (2008). MicroRNA signatures of TRAIL resistance in human non-small cell lung cancer. Oncogene, 27, 3845–3855.PubMedCrossRef Garofalo, M., Quintavalle, C., Di Leva, G., Zanca, C., Romano, G., Taccioli, C., et al. (2008). MicroRNA signatures of TRAIL resistance in human non-small cell lung cancer. Oncogene, 27, 3845–3855.PubMedCrossRef
119.
Zurück zum Zitat Frankel, L. B., Christoffersen, N. R., Jacobsen, A., Lindow, M., Krogh, A., & Lund, A. H. (2008). Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells. Journal of Biological Chemistry, 283, 1026–1033.PubMedCrossRef Frankel, L. B., Christoffersen, N. R., Jacobsen, A., Lindow, M., Krogh, A., & Lund, A. H. (2008). Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells. Journal of Biological Chemistry, 283, 1026–1033.PubMedCrossRef
120.
Zurück zum Zitat Lu, Z., Liu, M., Stribinskis, V., Klinge, C. M., Ramos, K. S., Colburn, N. H., et al. (2008). MicroRNA-21 promotes cell transformation by targeting the programmed cell death 4 gene. Oncogene, 27, 4373–4379.PubMedCrossRef Lu, Z., Liu, M., Stribinskis, V., Klinge, C. M., Ramos, K. S., Colburn, N. H., et al. (2008). MicroRNA-21 promotes cell transformation by targeting the programmed cell death 4 gene. Oncogene, 27, 4373–4379.PubMedCrossRef
121.
Zurück zum Zitat Calin, G. A., & Croce, C. M. (2006). MicroRNA signatures in human cancers. Nature Reviews Cancer, 6, 857–866.PubMedCrossRef Calin, G. A., & Croce, C. M. (2006). MicroRNA signatures in human cancers. Nature Reviews Cancer, 6, 857–866.PubMedCrossRef
122.
Zurück zum Zitat Schetter, A. J., Leung, S. Y., Sohn, J. J., Zanetti, K. A., Bowman, E. D., Yanaihara, N., et al. (2008). MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma. JAMA, 299, 425–436.PubMedCrossRef Schetter, A. J., Leung, S. Y., Sohn, J. J., Zanetti, K. A., Bowman, E. D., Yanaihara, N., et al. (2008). MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma. JAMA, 299, 425–436.PubMedCrossRef
123.
Zurück zum Zitat Takamizawa, J., Konishi, H., Yanagisawa, K., Tomida, S., Osada, H., Endoh, H., et al. (2004). Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Research, 64, 3753–3756.PubMedCrossRef Takamizawa, J., Konishi, H., Yanagisawa, K., Tomida, S., Osada, H., Endoh, H., et al. (2004). Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Research, 64, 3753–3756.PubMedCrossRef
124.
Zurück zum Zitat Yu, S. L., Chen, H. Y., Chang, G. C., Chen, C. Y., Chen, H. W., Singh, S., et al. (2008). MicroRNA signature predicts survival and relapse in lung cancer. Cancer Cells, 13, 48–57.CrossRef Yu, S. L., Chen, H. Y., Chang, G. C., Chen, C. Y., Chen, H. W., Singh, S., et al. (2008). MicroRNA signature predicts survival and relapse in lung cancer. Cancer Cells, 13, 48–57.CrossRef
125.
Zurück zum Zitat Wang, Q. Z., Xu, W., Habib, N., & Xu, R. (2009). Potential uses of microRNA in lung cancer diagnosis, prognosis, and therapy. Current Cancer Drug Targets, 9, 572–594.PubMedCrossRef Wang, Q. Z., Xu, W., Habib, N., & Xu, R. (2009). Potential uses of microRNA in lung cancer diagnosis, prognosis, and therapy. Current Cancer Drug Targets, 9, 572–594.PubMedCrossRef
126.
Zurück zum Zitat Weidhaas, J. B., Babar, I., Nallur, S. M., Trang, P., Roush, S., Boehm, M., et al. (2007). MicroRNAs as potential agents to alter resistance to cytotoxic anticancer therapy. Cancer Research, 67, 11111–11116.PubMedCrossRef Weidhaas, J. B., Babar, I., Nallur, S. M., Trang, P., Roush, S., Boehm, M., et al. (2007). MicroRNAs as potential agents to alter resistance to cytotoxic anticancer therapy. Cancer Research, 67, 11111–11116.PubMedCrossRef
127.
Zurück zum Zitat Ji, J., Shi, J., Budhu, A., Yu, Z., Forgues, M., Roessler, S., et al. (2009). MicroRNA expression, survival, and response to interferon in liver cancer. New England Journal of Medicine, 361, 1437–1447.PubMedCrossRef Ji, J., Shi, J., Budhu, A., Yu, Z., Forgues, M., Roessler, S., et al. (2009). MicroRNA expression, survival, and response to interferon in liver cancer. New England Journal of Medicine, 361, 1437–1447.PubMedCrossRef
128.
Zurück zum Zitat Ng, E. K., Chong, W. W., Jin, H., Lam, E. K., Shin, V. Y., Yu, J., et al. (2009). Differential expression of microRNAs in plasma of patients with colorectal cancer: A potential marker for colorectal cancer screening. Gut, 58, 1375–1381.PubMedCrossRef Ng, E. K., Chong, W. W., Jin, H., Lam, E. K., Shin, V. Y., Yu, J., et al. (2009). Differential expression of microRNAs in plasma of patients with colorectal cancer: A potential marker for colorectal cancer screening. Gut, 58, 1375–1381.PubMedCrossRef
129.
Zurück zum Zitat Lawrie, C. H., Gal, S., Dunlop, H. M., Pushkaran, B., Liggins, A. P., Pulford, K., et al. (2008). Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. British Journal Haematology, 141, 672–675.CrossRef Lawrie, C. H., Gal, S., Dunlop, H. M., Pushkaran, B., Liggins, A. P., Pulford, K., et al. (2008). Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. British Journal Haematology, 141, 672–675.CrossRef
130.
Zurück zum Zitat Lebanony, D., Benjamin, H., Gilad, S., Ezagouri, M., Dov, A., Ashkenazi, K., et al. (2009). Diagnostic assay based on hsa-miR-205 expression distinguishes squamous from nonsquamous non-small-cell lung carcinoma. Journal of Clinical Oncology, 27, 2030–2037.PubMedCrossRef Lebanony, D., Benjamin, H., Gilad, S., Ezagouri, M., Dov, A., Ashkenazi, K., et al. (2009). Diagnostic assay based on hsa-miR-205 expression distinguishes squamous from nonsquamous non-small-cell lung carcinoma. Journal of Clinical Oncology, 27, 2030–2037.PubMedCrossRef
131.
Zurück zum Zitat Liang, Y. (2008). An expression meta-analysis of predicted microRNA targets identifies a diagnostic signature for lung cancer. BMC Med Genomics, 1, 61.PubMedCrossRef Liang, Y. (2008). An expression meta-analysis of predicted microRNA targets identifies a diagnostic signature for lung cancer. BMC Med Genomics, 1, 61.PubMedCrossRef
132.
Zurück zum Zitat Pavlidis, N., & Fizazi, K. (2005). Cancer of unknown primary (CUP). Critical Reviews in Oncology/Hematology, 54, 243–250.PubMedCrossRef Pavlidis, N., & Fizazi, K. (2005). Cancer of unknown primary (CUP). Critical Reviews in Oncology/Hematology, 54, 243–250.PubMedCrossRef
133.
Zurück zum Zitat Lu, J., Getz, G., Miska, E. A., Alvarez-Saavedra, E., Lamb, J., Peck, D., et al. (2005). MicroRNA expression profiles classify human cancers. Nature, 435, 834–838.PubMedCrossRef Lu, J., Getz, G., Miska, E. A., Alvarez-Saavedra, E., Lamb, J., Peck, D., et al. (2005). MicroRNA expression profiles classify human cancers. Nature, 435, 834–838.PubMedCrossRef
134.
Zurück zum Zitat Negrini, M., Nicoloso, M. S., & Calin, G. A. (2009). MicroRNAs and cancer—New paradigms in molecular oncology. Current Opinion in Cell Biology, 21, 470–479.PubMedCrossRef Negrini, M., Nicoloso, M. S., & Calin, G. A. (2009). MicroRNAs and cancer—New paradigms in molecular oncology. Current Opinion in Cell Biology, 21, 470–479.PubMedCrossRef
135.
Zurück zum Zitat Wu, M., Jolicoeur, N., Li, Z., Zhang, L., Fortin, Y., L’Abbe, D., et al. (2008). Genetic variations of microRNAs in human cancer and their effects on the expression of miRNAs. Carcinogenesis, 29, 1710–1716.PubMedCrossRef Wu, M., Jolicoeur, N., Li, Z., Zhang, L., Fortin, Y., L’Abbe, D., et al. (2008). Genetic variations of microRNAs in human cancer and their effects on the expression of miRNAs. Carcinogenesis, 29, 1710–1716.PubMedCrossRef
136.
Zurück zum Zitat Calin, G. A., Cimmino, A., Fabbri, M., Ferracin, M., Wojcik, S. E., Shimizu, M., et al. (2008). MiR-15a and miR-16-1 cluster functions in human leukemia. Proceedings of the National Academy of Sciences of the United States of America, 105, 5166–5171.PubMedCrossRef Calin, G. A., Cimmino, A., Fabbri, M., Ferracin, M., Wojcik, S. E., Shimizu, M., et al. (2008). MiR-15a and miR-16-1 cluster functions in human leukemia. Proceedings of the National Academy of Sciences of the United States of America, 105, 5166–5171.PubMedCrossRef
137.
Zurück zum Zitat Krutzfeldt, J., Kuwajima, S., Braich, R., Rajeev, K. G., Pena, J., Tuschl, T., et al. (2007). Specificity, duplex degradation and subcellular localization of antagomirs. Nucleic Acids Research, 35, 2885–2892.PubMedCrossRef Krutzfeldt, J., Kuwajima, S., Braich, R., Rajeev, K. G., Pena, J., Tuschl, T., et al. (2007). Specificity, duplex degradation and subcellular localization of antagomirs. Nucleic Acids Research, 35, 2885–2892.PubMedCrossRef
138.
Zurück zum Zitat Fontana, L., Fiori, M. E., Albini, S., Cifaldi, L., Giovinazzi, S., Forloni, M., et al. (2008). Antagomir-17-5p abolishes the growth of therapy-resistant neuroblastoma through p21 and BIM. PLoS ONE, 3, e2236.PubMedCrossRef Fontana, L., Fiori, M. E., Albini, S., Cifaldi, L., Giovinazzi, S., Forloni, M., et al. (2008). Antagomir-17-5p abolishes the growth of therapy-resistant neuroblastoma through p21 and BIM. PLoS ONE, 3, e2236.PubMedCrossRef
139.
Zurück zum Zitat Elmen, J., Lindow, M., Schutz, S., Lawrence, M., Petri, A., Obad, S., et al. (2008). LNA-mediated microRNA silencing in non-human primates. Nature, 452, 896–899.PubMedCrossRef Elmen, J., Lindow, M., Schutz, S., Lawrence, M., Petri, A., Obad, S., et al. (2008). LNA-mediated microRNA silencing in non-human primates. Nature, 452, 896–899.PubMedCrossRef
140.
Zurück zum Zitat Kota, J., Chivukula, R. R., O'Donnell, K. A., Wentzel, E. A., Montgomery, C. L., Hwang, H. W., et al. (2009). Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell, 137, 1005–1017.PubMedCrossRef Kota, J., Chivukula, R. R., O'Donnell, K. A., Wentzel, E. A., Montgomery, C. L., Hwang, H. W., et al. (2009). Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell, 137, 1005–1017.PubMedCrossRef
141.
Zurück zum Zitat Zhu, S., Si, M. L., Wu, H., & Mo, Y. Y. (2007). MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1). Journal of Biological Chemistry, 282, 14328–14336.PubMedCrossRef Zhu, S., Si, M. L., Wu, H., & Mo, Y. Y. (2007). MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1). Journal of Biological Chemistry, 282, 14328–14336.PubMedCrossRef
142.
Zurück zum Zitat Garofalo, M., Di Leva, G., Romano, G., Nuovo, G., Suh, S. S., Ngankeu, A., et al. (2009). miR-221&222 regulate TRAIL resistance and enhance tumorigenicity through PTEN and TIMP3 downregulation. Cancer Cell, 16, 498–509.PubMedCrossRef Garofalo, M., Di Leva, G., Romano, G., Nuovo, G., Suh, S. S., Ngankeu, A., et al. (2009). miR-221&222 regulate TRAIL resistance and enhance tumorigenicity through PTEN and TIMP3 downregulation. Cancer Cell, 16, 498–509.PubMedCrossRef
143.
Zurück zum Zitat Sun, F., Fu, H., Liu, Q., Tie, Y., Zhu, J., Xing, R., et al. (2008). Downregulation of CCND1 and CDK6 by miR-34a induces cell cycle arrest. FEBS Letters, 582, 1564–1568.PubMedCrossRef Sun, F., Fu, H., Liu, Q., Tie, Y., Zhu, J., Xing, R., et al. (2008). Downregulation of CCND1 and CDK6 by miR-34a induces cell cycle arrest. FEBS Letters, 582, 1564–1568.PubMedCrossRef
144.
Zurück zum Zitat Bommer, G. T., Gerin, I., Feng, Y., Kaczorowski, A. J., Kuick, R., Love, R. E., et al. (2007). p53-Mediated activation of miRNA34 candidate tumor-suppressor genes. Current Biology, 17, 1298–1307.PubMedCrossRef Bommer, G. T., Gerin, I., Feng, Y., Kaczorowski, A. J., Kuick, R., Love, R. E., et al. (2007). p53-Mediated activation of miRNA34 candidate tumor-suppressor genes. Current Biology, 17, 1298–1307.PubMedCrossRef
145.
Zurück zum Zitat Welch, C., Chen, Y., & Stallings, R. L. (2007). MicroRNA-34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma cells. Oncogene, 26, 5017–5022.PubMedCrossRef Welch, C., Chen, Y., & Stallings, R. L. (2007). MicroRNA-34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma cells. Oncogene, 26, 5017–5022.PubMedCrossRef
Metadaten
Titel
microRNAs and lung cancer: tumors and 22-mers
verfasst von
Liqin Du
Alexander Pertsemlidis
Publikationsdatum
01.03.2010
Verlag
Springer US
Erschienen in
Cancer and Metastasis Reviews / Ausgabe 1/2010
Print ISSN: 0167-7659
Elektronische ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-010-9204-9

Weitere Artikel der Ausgabe 1/2010

Cancer and Metastasis Reviews 1/2010 Zur Ausgabe

Acknowledgments

Biography—Adi Gazdar

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.