Skip to main content
Erschienen in: Cancer and Metastasis Reviews 1/2010

01.03.2010

Biological and clinical significance of KRAS mutations in lung cancer: an oncogenic driver that contrasts with EGFR mutation

verfasst von: Kenichi Suda, Kenji Tomizawa, Tetsuya Mitsudomi

Erschienen in: Cancer and Metastasis Reviews | Ausgabe 1/2010

Einloggen, um Zugang zu erhalten

Abstract

KRAS and epidermal growth factor receptor (EGFR) are the two most frequently mutated proto-oncogenes in adenocarcinoma of the lung. The occurrence of these two oncogenic mutations is mutually exclusive, and they exhibit many contrasting characteristics such as clinical background, pathological features of patients harboring each mutation, and prognostic or predictive implications. Lung cancers harboring the EGFR mutations are remarkably sensitive to EGFR tyrosine kinase inhibitors such as gefitinib or erlotinib. This discovery has dramatically changed the clinical treatment of lung cancer in that it almost doubled the duration of survival for lung cancer patients with an EGFR mutation. In this review, we describe the features of KRAS mutations in lung cancer and contrast these with the features of EGFR mutations. Recent strategies to combat lung cancer harboring KRAS mutations are also reviewed.
Literatur
1.
Zurück zum Zitat Shih, C., Padhy, L. C., Murray, M., & Weinberg, R. A. (1981). Transforming genes of carcinomas and neuroblastomas introduced into mouse fibroblasts. Nature, 290, 261–264.CrossRefPubMed Shih, C., Padhy, L. C., Murray, M., & Weinberg, R. A. (1981). Transforming genes of carcinomas and neuroblastomas introduced into mouse fibroblasts. Nature, 290, 261–264.CrossRefPubMed
2.
Zurück zum Zitat Perucho, M., Goldfarb, M., Shimizu, K., Lama, C., Fogh, J., & Wigler, M. (1981). Human-tumor-derived cell lines contain common and different transforming genes. Cell, 27, 467–476.CrossRefPubMed Perucho, M., Goldfarb, M., Shimizu, K., Lama, C., Fogh, J., & Wigler, M. (1981). Human-tumor-derived cell lines contain common and different transforming genes. Cell, 27, 467–476.CrossRefPubMed
3.
Zurück zum Zitat Krontiris, T. G., & Cooper, G. M. (1981). Transforming activity of human tumor DNAs. Proceedings of the National Academy of Sciences of the United States of America, 78, 1181–1184.CrossRefPubMed Krontiris, T. G., & Cooper, G. M. (1981). Transforming activity of human tumor DNAs. Proceedings of the National Academy of Sciences of the United States of America, 78, 1181–1184.CrossRefPubMed
4.
Zurück zum Zitat Der, C. J., Krontiris, T. G., & Cooper, G. M. (1982). Transforming genes of human bladder and lung carcinoma cell lines are homologous to the ras genes of Harvey and Kirsten sarcoma viruses. Proceedings of the National Academy of Sciences of the United States of America, 79, 3637–3640.CrossRefPubMed Der, C. J., Krontiris, T. G., & Cooper, G. M. (1982). Transforming genes of human bladder and lung carcinoma cell lines are homologous to the ras genes of Harvey and Kirsten sarcoma viruses. Proceedings of the National Academy of Sciences of the United States of America, 79, 3637–3640.CrossRefPubMed
5.
Zurück zum Zitat Goldfarb, M., Shimizu, K., Perucho, M., & Wigler, M. (1982). Isolation and preliminary characterization of a human transforming gene from T24 bladder carcinoma cells. Nature, 296, 404–409.CrossRefPubMed Goldfarb, M., Shimizu, K., Perucho, M., & Wigler, M. (1982). Isolation and preliminary characterization of a human transforming gene from T24 bladder carcinoma cells. Nature, 296, 404–409.CrossRefPubMed
6.
Zurück zum Zitat Parada, L. F., Tabin, C. J., Shih, C., & Weinberg, R. A. (1982). Human EJ bladder carcinoma oncogene is homologue of Harvey sarcoma virus ras gene. Nature, 297, 474–478.CrossRefPubMed Parada, L. F., Tabin, C. J., Shih, C., & Weinberg, R. A. (1982). Human EJ bladder carcinoma oncogene is homologue of Harvey sarcoma virus ras gene. Nature, 297, 474–478.CrossRefPubMed
7.
Zurück zum Zitat Tabin, C. J., Bradley, S. M., Bargmann, C. I., Weinberg, R. A., Papageorge, A. G., Scolnick, E. M., et al. (1982). Mechanism of activation of a human oncogene. Nature, 300, 143–149.CrossRefPubMed Tabin, C. J., Bradley, S. M., Bargmann, C. I., Weinberg, R. A., Papageorge, A. G., Scolnick, E. M., et al. (1982). Mechanism of activation of a human oncogene. Nature, 300, 143–149.CrossRefPubMed
8.
Zurück zum Zitat Reddy, E. P., Reynolds, R. K., Santos, E., & Barbacid, M. (1982). A point mutation is responsible for the acquisition of transforming properties by the T24 human bladder carcinoma oncogene. Nature, 300, 149–152.CrossRefPubMed Reddy, E. P., Reynolds, R. K., Santos, E., & Barbacid, M. (1982). A point mutation is responsible for the acquisition of transforming properties by the T24 human bladder carcinoma oncogene. Nature, 300, 149–152.CrossRefPubMed
9.
Zurück zum Zitat Taparowsky, E., Suard, Y., Fasano, O., Shimizu, K., Goldfarb, M., & Wigler, M. (1982). Activation of the T24 bladder carcinoma transforming gene is linked to a single amino acid change. Nature, 300, 762–765.CrossRefPubMed Taparowsky, E., Suard, Y., Fasano, O., Shimizu, K., Goldfarb, M., & Wigler, M. (1982). Activation of the T24 bladder carcinoma transforming gene is linked to a single amino acid change. Nature, 300, 762–765.CrossRefPubMed
10.
Zurück zum Zitat Bos, J. (1988). The ras gene family and human carcinogenesis. Mutation Research, 195, 255–271.PubMed Bos, J. (1988). The ras gene family and human carcinogenesis. Mutation Research, 195, 255–271.PubMed
11.
Zurück zum Zitat Shimizu, K., Goldfarb, M., Suard, Y., Perucho, M., Li, Y., Kamata, T., et al. (1983). Three human transforming genes are related to the viral ras oncogenes. Proceedings of the National Academy of Sciences of the United States of America, 80, 2112–2116.CrossRefPubMed Shimizu, K., Goldfarb, M., Suard, Y., Perucho, M., Li, Y., Kamata, T., et al. (1983). Three human transforming genes are related to the viral ras oncogenes. Proceedings of the National Academy of Sciences of the United States of America, 80, 2112–2116.CrossRefPubMed
12.
Zurück zum Zitat Hall, A., Marshall, C. J., Spurr, N. K., & Weiss, R. A. (1983). Identification of transforming gene in two human sarcoma cell lines as a new member of the ras gene family located on chromosome 1. Nature, 303, 396–400.CrossRefPubMed Hall, A., Marshall, C. J., Spurr, N. K., & Weiss, R. A. (1983). Identification of transforming gene in two human sarcoma cell lines as a new member of the ras gene family located on chromosome 1. Nature, 303, 396–400.CrossRefPubMed
13.
Zurück zum Zitat DeClue, J. E., Papageorge, A. G., Fletcher, J. A., Diehl, S. R., Ratner, N., Vass, W. C., et al. (1992). Abnormal regulation of mammalian p21ras contributes to malignant tumor growth in von Recklinghausen (type 1) neurofibromatosis. Cell, 69, 265–273.CrossRefPubMed DeClue, J. E., Papageorge, A. G., Fletcher, J. A., Diehl, S. R., Ratner, N., Vass, W. C., et al. (1992). Abnormal regulation of mammalian p21ras contributes to malignant tumor growth in von Recklinghausen (type 1) neurofibromatosis. Cell, 69, 265–273.CrossRefPubMed
14.
Zurück zum Zitat Trahey, M., & McCormick, F. (1987). A cytoplasmic protein stimulates normal N-ras p21 GTPase, but does not affect oncogenic mutants. Science, 1987(238), 542–545.CrossRef Trahey, M., & McCormick, F. (1987). A cytoplasmic protein stimulates normal N-ras p21 GTPase, but does not affect oncogenic mutants. Science, 1987(238), 542–545.CrossRef
15.
Zurück zum Zitat Willumsen, B. M., Norris, K., Papageorge, A. G., Hubbert, N. L., & Lowy, D. R. (1984). Harvey murine sarcoma virus p21 ras protein: biological and biochemical significance of the cysteine nearest the carboxy terminus. The EMBO Journal, 3, 2581–2585.PubMed Willumsen, B. M., Norris, K., Papageorge, A. G., Hubbert, N. L., & Lowy, D. R. (1984). Harvey murine sarcoma virus p21 ras protein: biological and biochemical significance of the cysteine nearest the carboxy terminus. The EMBO Journal, 3, 2581–2585.PubMed
16.
Zurück zum Zitat Casey, P. J., Solski, P. A., Der, C. J., & Buss, J. E. (1989). p21ras is modified by a farnesyl isoprenoid. Proceedings of the National Academy of Sciences of the United States of America, 86, 8323–8327.CrossRefPubMed Casey, P. J., Solski, P. A., Der, C. J., & Buss, J. E. (1989). p21ras is modified by a farnesyl isoprenoid. Proceedings of the National Academy of Sciences of the United States of America, 86, 8323–8327.CrossRefPubMed
17.
Zurück zum Zitat Schaber, M. D., O'Hara, M. B., Garsky, V. M., Mosser, S. C., Bergstrom, J. D., Moores, S. L., et al. (1990). Polyisoprenylation of Ras in vitro by a farnesyl-protein transferase. The Journal of Biological Chemistry, 265, 14701–14704.PubMed Schaber, M. D., O'Hara, M. B., Garsky, V. M., Mosser, S. C., Bergstrom, J. D., Moores, S. L., et al. (1990). Polyisoprenylation of Ras in vitro by a farnesyl-protein transferase. The Journal of Biological Chemistry, 265, 14701–14704.PubMed
18.
Zurück zum Zitat Hancock, J. F., Paterson, H., & Marshall, C. J. (1990). A polybasic domain or palmitoylation is required in addition to the CAAX motif to localize p21ras to the plasma membrane. Cell, 63, 133–139.CrossRefPubMed Hancock, J. F., Paterson, H., & Marshall, C. J. (1990). A polybasic domain or palmitoylation is required in addition to the CAAX motif to localize p21ras to the plasma membrane. Cell, 63, 133–139.CrossRefPubMed
19.
Zurück zum Zitat Patek, C. E., Arends, M. J., Wallace, W. A., Luo, F., Hagan, S., Brownstein, D. G., et al. (2008). Mutationally activated K-ras 4A and 4B both mediate lung carcinogenesis. Experimental Cell Research, 314, 1105–1114.CrossRefPubMed Patek, C. E., Arends, M. J., Wallace, W. A., Luo, F., Hagan, S., Brownstein, D. G., et al. (2008). Mutationally activated K-ras 4A and 4B both mediate lung carcinogenesis. Experimental Cell Research, 314, 1105–1114.CrossRefPubMed
20.
Zurück zum Zitat To, M. D., Wong, C. E., Karnezis, A. N., Del Rosario, R., Di Lauro, R., & Balmain, A. (2008). Kras regulatory elements and exon 4A determine mutation specificity in lung cancer. Nature Genetics, 40, 1240–1244.CrossRefPubMed To, M. D., Wong, C. E., Karnezis, A. N., Del Rosario, R., Di Lauro, R., & Balmain, A. (2008). Kras regulatory elements and exon 4A determine mutation specificity in lung cancer. Nature Genetics, 40, 1240–1244.CrossRefPubMed
21.
Zurück zum Zitat Newbold, R. F., & Overell, R. W. (1983). Fibroblast immortality is a prerequisite for transformation by EJ c-Ha-ras oncogene. Nature, 304, 648–651.CrossRefPubMed Newbold, R. F., & Overell, R. W. (1983). Fibroblast immortality is a prerequisite for transformation by EJ c-Ha-ras oncogene. Nature, 304, 648–651.CrossRefPubMed
22.
Zurück zum Zitat Land, H., Parada, L. F., & Weinberg, R. A. (1983). Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes. Nature, 304, 596–602.CrossRefPubMed Land, H., Parada, L. F., & Weinberg, R. A. (1983). Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes. Nature, 304, 596–602.CrossRefPubMed
23.
Zurück zum Zitat Ruley, H. E. (1983). Adenovirus early region 1A enables viral and cellular transforming genes to transform primary cells in culture. Nature, 304, 602–606.CrossRefPubMed Ruley, H. E. (1983). Adenovirus early region 1A enables viral and cellular transforming genes to transform primary cells in culture. Nature, 304, 602–606.CrossRefPubMed
24.
Zurück zum Zitat Serrano, M., Lin, A. W., McCurrach, M. E., Beach, D., & Lowe, S. W. (1997). Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell, 88, 593–602.CrossRefPubMed Serrano, M., Lin, A. W., McCurrach, M. E., Beach, D., & Lowe, S. W. (1997). Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell, 88, 593–602.CrossRefPubMed
25.
Zurück zum Zitat Karnoub, A. E., & Weinberg, R. A. (2008). Ras oncogenes: split personalities. Nature Reviews Molecular Cell Biology, 9, 517–531.CrossRefPubMed Karnoub, A. E., & Weinberg, R. A. (2008). Ras oncogenes: split personalities. Nature Reviews Molecular Cell Biology, 9, 517–531.CrossRefPubMed
26.
Zurück zum Zitat Sun, P., Yoshizuka, N., New, L., Moser, B. A., Li, Y., Liao, R., et al. (2007). PRAK is essential for ras-induced senescence and tumor suppression. Cell, 128, 295–308.CrossRefPubMed Sun, P., Yoshizuka, N., New, L., Moser, B. A., Li, Y., Liao, R., et al. (2007). PRAK is essential for ras-induced senescence and tumor suppression. Cell, 128, 295–308.CrossRefPubMed
27.
Zurück zum Zitat Tuveson, D. A., Shaw, A. T., Willis, N. A., Silver, D. P., Jackson, E. L., Chang, S., et al. (2004). Endogenous oncogenic K-ras(G12D) stimulates proliferation and widespread neoplastic and developmental defects. Cancer Cell, 5, 375–387.CrossRefPubMed Tuveson, D. A., Shaw, A. T., Willis, N. A., Silver, D. P., Jackson, E. L., Chang, S., et al. (2004). Endogenous oncogenic K-ras(G12D) stimulates proliferation and widespread neoplastic and developmental defects. Cancer Cell, 5, 375–387.CrossRefPubMed
28.
Zurück zum Zitat Collado, M., Gil, J., Efeyan, A., Guerra, C., Schuhmacher, A. J., Barradas, M., et al. (2005). Tumour biology: senescence in premalignant tumours. Nature, 436, 642.CrossRefPubMed Collado, M., Gil, J., Efeyan, A., Guerra, C., Schuhmacher, A. J., Barradas, M., et al. (2005). Tumour biology: senescence in premalignant tumours. Nature, 436, 642.CrossRefPubMed
29.
Zurück zum Zitat Santos, E., Martin-Zanca, D., Reddy, E. P., Pierotti, M. A., Della Porta, G., & Barbacid, M. (1984). Malignant activation of a K-ras oncogene in lung carcinoma but not in normal tissue of the same patient. Science, 223, 661–664.CrossRefPubMed Santos, E., Martin-Zanca, D., Reddy, E. P., Pierotti, M. A., Della Porta, G., & Barbacid, M. (1984). Malignant activation of a K-ras oncogene in lung carcinoma but not in normal tissue of the same patient. Science, 223, 661–664.CrossRefPubMed
30.
Zurück zum Zitat Rodenhuis, S., van de Wetering, M. L., Mooi, W. J., Evers, S. G., van Zandwijk, N., & Bos, J. L. (1987). Mutational activation of the K-ras oncogene. A possible pathogenetic factor in adenocarcinoma of the lung. The New England Journal of Medicine, 317, 929–935.PubMed Rodenhuis, S., van de Wetering, M. L., Mooi, W. J., Evers, S. G., van Zandwijk, N., & Bos, J. L. (1987). Mutational activation of the K-ras oncogene. A possible pathogenetic factor in adenocarcinoma of the lung. The New England Journal of Medicine, 317, 929–935.PubMed
31.
Zurück zum Zitat Mitsudomi, T., Viallet, J., Linnoila, R. I., Mulshine, J. L., Minna, J. D., & Gazdar, A. F. (1991). Mutations of ras genes distinguish a subset of non-small cell lung cancer cell lines from small cell lung cancer cell lines. Oncogene, 6, 1353–1362.PubMed Mitsudomi, T., Viallet, J., Linnoila, R. I., Mulshine, J. L., Minna, J. D., & Gazdar, A. F. (1991). Mutations of ras genes distinguish a subset of non-small cell lung cancer cell lines from small cell lung cancer cell lines. Oncogene, 6, 1353–1362.PubMed
32.
Zurück zum Zitat Shigematsu, H., Takahashi, T., Nomura, M., Majmudar, K., Suzuki, M., Lee, H., et al. (2005). Somatic mutations of the HER2 kinase domain in lung adenocarcinomas. Cancer Research, 65, 1642–1646.CrossRefPubMed Shigematsu, H., Takahashi, T., Nomura, M., Majmudar, K., Suzuki, M., Lee, H., et al. (2005). Somatic mutations of the HER2 kinase domain in lung adenocarcinomas. Cancer Research, 65, 1642–1646.CrossRefPubMed
33.
Zurück zum Zitat Shigematsu, H., Lin, L., Takahashi, T., Nomura, M., Suzuki, M., Wistuba, I. I., et al. (2005). Clinical and biological features associated with epidermal growth factor receptor gene mutations in lung cancers. Journal of the National Cancer Institute, 97, 339–346.PubMed Shigematsu, H., Lin, L., Takahashi, T., Nomura, M., Suzuki, M., Wistuba, I. I., et al. (2005). Clinical and biological features associated with epidermal growth factor receptor gene mutations in lung cancers. Journal of the National Cancer Institute, 97, 339–346.PubMed
34.
Zurück zum Zitat Slebos, R. J., Hruban, R. H., Dalesio, O., Mooi, W. J., Offerhaus, G. J., & Rodenhuis, S. (1991). Relationship between K-ras oncogene activation and smoking in adenocarcinoma of the human lung. Journal of the National Cancer Institute, 83, 1024–1027.CrossRefPubMed Slebos, R. J., Hruban, R. H., Dalesio, O., Mooi, W. J., Offerhaus, G. J., & Rodenhuis, S. (1991). Relationship between K-ras oncogene activation and smoking in adenocarcinoma of the human lung. Journal of the National Cancer Institute, 83, 1024–1027.CrossRefPubMed
35.
Zurück zum Zitat Kosaka, T., Yatabe, Y., Endoh, H., Kuwano, H., Takahashi, T., & Mitsudomi, T. (2004). Mutations of the epidermal growth factor receptor gene in lung cancer: biological and clinical implications. Cancer Research, 64, 8919–8923.CrossRefPubMed Kosaka, T., Yatabe, Y., Endoh, H., Kuwano, H., Takahashi, T., & Mitsudomi, T. (2004). Mutations of the epidermal growth factor receptor gene in lung cancer: biological and clinical implications. Cancer Research, 64, 8919–8923.CrossRefPubMed
36.
Zurück zum Zitat Ding, L., Getz, G., Wheeler, D. A., Mardis, E. R., McLellan, M. D., Cibulskis, K., et al. (2008). Somatic mutations affect key pathways in lung adenocarcinoma. Nature, 455, 1069–1075.CrossRefPubMed Ding, L., Getz, G., Wheeler, D. A., Mardis, E. R., McLellan, M. D., Cibulskis, K., et al. (2008). Somatic mutations affect key pathways in lung adenocarcinoma. Nature, 455, 1069–1075.CrossRefPubMed
37.
Zurück zum Zitat Gealy, R., Zhang, L., Siegfried, J. M., Luketich, J. D., & Keohavong, P. (1999). Comparison of mutations in the p53 and K-ras genes in lung carcinomas from smoking and nonsmoking women. Cancer Epidemiology, Biomarkers & Prevention, 8, 297–302. Gealy, R., Zhang, L., Siegfried, J. M., Luketich, J. D., & Keohavong, P. (1999). Comparison of mutations in the p53 and K-ras genes in lung carcinomas from smoking and nonsmoking women. Cancer Epidemiology, Biomarkers & Prevention, 8, 297–302.
38.
Zurück zum Zitat Vahakangas, K. H., Bennett, W. P., Castren, K., Welsh, J. A., Khan, M. A., Blomeke, B., et al. (2001). p53 and K-ras mutations in lung cancers from former and never-smoking women. Cancer Research, 61, 4350–4356.PubMed Vahakangas, K. H., Bennett, W. P., Castren, K., Welsh, J. A., Khan, M. A., Blomeke, B., et al. (2001). p53 and K-ras mutations in lung cancers from former and never-smoking women. Cancer Research, 61, 4350–4356.PubMed
39.
Zurück zum Zitat Riely, G. J., Kris, M. G., Rosenbaum, D., Marks, J., Li, A., Chitale, D. A., et al. (2008). Frequency and distinctive spectrum of KRAS mutations in never smokers with lung adenocarcinoma. Clinical Cancer Research, 14, 5731–5734.CrossRefPubMed Riely, G. J., Kris, M. G., Rosenbaum, D., Marks, J., Li, A., Chitale, D. A., et al. (2008). Frequency and distinctive spectrum of KRAS mutations in never smokers with lung adenocarcinoma. Clinical Cancer Research, 14, 5731–5734.CrossRefPubMed
40.
Zurück zum Zitat Bos, J. L. (1989). ras oncogenes in human cancer: a review. Cancer Research, 49, 4682–4689.PubMed Bos, J. L. (1989). ras oncogenes in human cancer: a review. Cancer Research, 49, 4682–4689.PubMed
41.
Zurück zum Zitat Weir, B. A., Woo, M. S., Getz, G., Perner, S., Ding, L., Beroukhim, R., et al. (2007). Characterizing the cancer genome in lung adenocarcinoma. Nature, 450, 893–898.CrossRefPubMed Weir, B. A., Woo, M. S., Getz, G., Perner, S., Ding, L., Beroukhim, R., et al. (2007). Characterizing the cancer genome in lung adenocarcinoma. Nature, 450, 893–898.CrossRefPubMed
42.
Zurück zum Zitat Kendall, J., Liu, Q., Bakleh, A., Krasnitz, A., Nguyen, K. C., Lakshmi, B., et al. (2007). Oncogenic cooperation and coamplification of developmental transcription factor genes in lung cancer. Proceedings of the National Academy of Sciences of the United States of America, 104, 16663–16668.CrossRefPubMed Kendall, J., Liu, Q., Bakleh, A., Krasnitz, A., Nguyen, K. C., Lakshmi, B., et al. (2007). Oncogenic cooperation and coamplification of developmental transcription factor genes in lung cancer. Proceedings of the National Academy of Sciences of the United States of America, 104, 16663–16668.CrossRefPubMed
43.
Zurück zum Zitat Soh, J., Okumura, N., Lockwood, W. W., Yamamoto, H., Shigematsu, H., Zhang, W., et al. (2009). Oncogene mutations, copy number gains and mutant allele specific imbalance (MASI) frequently occur together in tumor cells. PLoS One, 4, e7464.CrossRefPubMed Soh, J., Okumura, N., Lockwood, W. W., Yamamoto, H., Shigematsu, H., Zhang, W., et al. (2009). Oncogene mutations, copy number gains and mutant allele specific imbalance (MASI) frequently occur together in tumor cells. PLoS One, 4, e7464.CrossRefPubMed
44.
Zurück zum Zitat Zhang, Z., Wang, Y., Vikis, H. G., Johnson, L., Liu, G., Li, J., et al. (2001). Wildtype Kras2 can inhibit lung carcinogenesis in mice. Nature Genetics, 29, 25–33.CrossRefPubMed Zhang, Z., Wang, Y., Vikis, H. G., Johnson, L., Liu, G., Li, J., et al. (2001). Wildtype Kras2 can inhibit lung carcinogenesis in mice. Nature Genetics, 29, 25–33.CrossRefPubMed
45.
Zurück zum Zitat Diaz, R., Lue, J., Mathews, J., Yoon, A., Ahn, D., Garcia-Espana, A., et al. (2005). Inhibition of Ras oncogenic activity by Ras protooncogenes. International Journal of Cancer, 113, 241–248.CrossRef Diaz, R., Lue, J., Mathews, J., Yoon, A., Ahn, D., Garcia-Espana, A., et al. (2005). Inhibition of Ras oncogenic activity by Ras protooncogenes. International Journal of Cancer, 113, 241–248.CrossRef
46.
Zurück zum Zitat To, M. D., Perez-Losada, J., Mao, J. H., Hsu, J., Jacks, T., & Balmain, A. (2006). A functional switch from lung cancer resistance to susceptibility at the Pas1 locus in Kras2LA2 mice. Nature Genetics, 38, 926–930.CrossRefPubMed To, M. D., Perez-Losada, J., Mao, J. H., Hsu, J., Jacks, T., & Balmain, A. (2006). A functional switch from lung cancer resistance to susceptibility at the Pas1 locus in Kras2LA2 mice. Nature Genetics, 38, 926–930.CrossRefPubMed
47.
Zurück zum Zitat Kobayashi, T., Tsuda, H., Noguchi, M., Hirohashi, S., Shimosato, Y., Goya, T., et al. (1990). Association of point mutation in c-Ki-ras oncogene in lung adenocarcinoma with particular reference to cytologic subtypes. Cancer, 66, 289–294.CrossRefPubMed Kobayashi, T., Tsuda, H., Noguchi, M., Hirohashi, S., Shimosato, Y., Goya, T., et al. (1990). Association of point mutation in c-Ki-ras oncogene in lung adenocarcinoma with particular reference to cytologic subtypes. Cancer, 66, 289–294.CrossRefPubMed
48.
Zurück zum Zitat Tsuchiya, E., Furuta, R., Wada, N., Nakagawa, K., Ishikawa, Y., Kawabuchi, B., et al. (1995). High K-ras mutation rates in goblet-cell-type adenocarcinomas of the lungs. Journal of Cancer Research and Clinical Oncology, 121, 577–581.CrossRefPubMed Tsuchiya, E., Furuta, R., Wada, N., Nakagawa, K., Ishikawa, Y., Kawabuchi, B., et al. (1995). High K-ras mutation rates in goblet-cell-type adenocarcinomas of the lungs. Journal of Cancer Research and Clinical Oncology, 121, 577–581.CrossRefPubMed
49.
Zurück zum Zitat Marchetti, A., Buttitta, F., Pellegrini, S., Chella, A., Bertacca, G., Filardo, A., et al. (1996). Bronchioloalveolar lung carcinomas: K-ras mutations are constant events in the mucinous subtype. The Journal of Pathology, 179, 254–259.CrossRefPubMed Marchetti, A., Buttitta, F., Pellegrini, S., Chella, A., Bertacca, G., Filardo, A., et al. (1996). Bronchioloalveolar lung carcinomas: K-ras mutations are constant events in the mucinous subtype. The Journal of Pathology, 179, 254–259.CrossRefPubMed
50.
Zurück zum Zitat Yatabe, Y., Koga, T., Mitsudomi, T., & Takahashi, T. (2004). CK20 expression, CDX2 expression, K-ras mutation, and goblet cell morphology in a subset of lung adenocarcinomas. The Journal of Pathology, 203, 645–652.CrossRefPubMed Yatabe, Y., Koga, T., Mitsudomi, T., & Takahashi, T. (2004). CK20 expression, CDX2 expression, K-ras mutation, and goblet cell morphology in a subset of lung adenocarcinomas. The Journal of Pathology, 203, 645–652.CrossRefPubMed
51.
Zurück zum Zitat Paez, J. G., Janne, P. A., Lee, J. C., Tracy, S., Greulich, H., Gabriel, S., et al. (2004). EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science, 304, 1497–1500.CrossRefPubMed Paez, J. G., Janne, P. A., Lee, J. C., Tracy, S., Greulich, H., Gabriel, S., et al. (2004). EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science, 304, 1497–1500.CrossRefPubMed
52.
Zurück zum Zitat Lynch, T. J., Bell, D. W., Sordella, R., Gurubhagavatula, S., Okimoto, R. A., Brannigan, B. W., et al. (2004). Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. The New England Journal of Medicine, 350, 2129–2139.CrossRefPubMed Lynch, T. J., Bell, D. W., Sordella, R., Gurubhagavatula, S., Okimoto, R. A., Brannigan, B. W., et al. (2004). Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. The New England Journal of Medicine, 350, 2129–2139.CrossRefPubMed
53.
Zurück zum Zitat Pao, W., Miller, V., Zakowski, M., Doherty, J., Politi, K., Sarkaria, I., et al. (2004). EGF receptor gene mutations are common in lung cancers from “never smokers” and are associated with sensitivity of tumors to gefitinib and erlotinib. Proceedings of the National Academy of Sciences of the United States of America, 101, 13306–13311.CrossRefPubMed Pao, W., Miller, V., Zakowski, M., Doherty, J., Politi, K., Sarkaria, I., et al. (2004). EGF receptor gene mutations are common in lung cancers from “never smokers” and are associated with sensitivity of tumors to gefitinib and erlotinib. Proceedings of the National Academy of Sciences of the United States of America, 101, 13306–13311.CrossRefPubMed
54.
Zurück zum Zitat Mitsudomi, T., & Yatabe, Y. (2007). Mutations of the epidermal growth factor receptor gene and related genes as determinants of epidermal growth factor receptor tyrosine kinase inhibitors sensitivity in lung cancer. Cancer Science, 98, 1817–1824.CrossRefPubMed Mitsudomi, T., & Yatabe, Y. (2007). Mutations of the epidermal growth factor receptor gene and related genes as determinants of epidermal growth factor receptor tyrosine kinase inhibitors sensitivity in lung cancer. Cancer Science, 98, 1817–1824.CrossRefPubMed
55.
Zurück zum Zitat Leidner, R. S., Fu, P., Clifford, B., Hamdan, A., Jin, C., Eisenberg, R., et al. (2009). Genetic abnormalities of the EGFR pathway in African American patients with non-small-cell lung cancer. Journal of Clinical Oncology, 27, 5620–5626.CrossRefPubMed Leidner, R. S., Fu, P., Clifford, B., Hamdan, A., Jin, C., Eisenberg, R., et al. (2009). Genetic abnormalities of the EGFR pathway in African American patients with non-small-cell lung cancer. Journal of Clinical Oncology, 27, 5620–5626.CrossRefPubMed
56.
Zurück zum Zitat Matsuo, K., Ito, H., Yatabe, Y., Hiraki, A., Hirose, K., Wakai, K., et al. (2007). Risk factors differ for non-small-cell lung cancers with and without EGFR mutation: assessment of smoking and sex by a case-control study in Japanese. Cancer Science, 98, 96–101.CrossRefPubMed Matsuo, K., Ito, H., Yatabe, Y., Hiraki, A., Hirose, K., Wakai, K., et al. (2007). Risk factors differ for non-small-cell lung cancers with and without EGFR mutation: assessment of smoking and sex by a case-control study in Japanese. Cancer Science, 98, 96–101.CrossRefPubMed
57.
Zurück zum Zitat Slebos, R. J., Kibbelaar, R. E., Dalesio, O., Kooistra, A., Stam, J., Meijer, C. J., et al. (1990). K-ras oncogene activation as a prognostic marker in adenocarcinoma of the lung. The New England Journal of Medicine, 323, 561–565.PubMedCrossRef Slebos, R. J., Kibbelaar, R. E., Dalesio, O., Kooistra, A., Stam, J., Meijer, C. J., et al. (1990). K-ras oncogene activation as a prognostic marker in adenocarcinoma of the lung. The New England Journal of Medicine, 323, 561–565.PubMedCrossRef
58.
Zurück zum Zitat Mascaux, C., Iannino, N., Martin, B., Paesmans, M., Berghmans, T., Dusart, M., et al. (2005). The role of RAS oncogene in survival of patients with lung cancer: a systematic review of the literature with meta-analysis. British Journal of Cancer, 92, 131–139.CrossRefPubMed Mascaux, C., Iannino, N., Martin, B., Paesmans, M., Berghmans, T., Dusart, M., et al. (2005). The role of RAS oncogene in survival of patients with lung cancer: a systematic review of the literature with meta-analysis. British Journal of Cancer, 92, 131–139.CrossRefPubMed
59.
Zurück zum Zitat Kosaka, T., Yatabe, Y., Onozato, R., Kuwano, H., & Mitsudomi, T. (2009). Prognostic implication of EGFR, KRAS, and TP53 gene mutations in a large cohort of Japanese patients with surgically treated lung adenocarcinoma. Journal of Thoracic Oncology, 4, 22–29.PubMed Kosaka, T., Yatabe, Y., Onozato, R., Kuwano, H., & Mitsudomi, T. (2009). Prognostic implication of EGFR, KRAS, and TP53 gene mutations in a large cohort of Japanese patients with surgically treated lung adenocarcinoma. Journal of Thoracic Oncology, 4, 22–29.PubMed
60.
Zurück zum Zitat Fukuoka, M., Yano, S., Giaccone, G., Tamura, T., Nakagawa, K., Douillard, J. Y., et al. (2003). Multi-institutional randomized phase II trial of gefitinib for previously treated patients with advanced non-small-cell lung cancer. Journal of Clinical Oncology, 21, 2237–2246.CrossRefPubMed Fukuoka, M., Yano, S., Giaccone, G., Tamura, T., Nakagawa, K., Douillard, J. Y., et al. (2003). Multi-institutional randomized phase II trial of gefitinib for previously treated patients with advanced non-small-cell lung cancer. Journal of Clinical Oncology, 21, 2237–2246.CrossRefPubMed
61.
Zurück zum Zitat Kris, M. G., Natale, R. B., Herbst, R. S., Lynch, T. J., Jr., Prager, D., Belani, C. P., et al. (2003). Efficacy of gefitinib, an inhibitor of the epidermal growth factor receptor tyrosine kinase, in symptomatic patients with non-small cell lung cancer: a randomized trial. The Journal of the American Medical Association, 290, 2149–2158.CrossRef Kris, M. G., Natale, R. B., Herbst, R. S., Lynch, T. J., Jr., Prager, D., Belani, C. P., et al. (2003). Efficacy of gefitinib, an inhibitor of the epidermal growth factor receptor tyrosine kinase, in symptomatic patients with non-small cell lung cancer: a randomized trial. The Journal of the American Medical Association, 290, 2149–2158.CrossRef
62.
Zurück zum Zitat Sordella, R., Bell, D. W., Haber, D. A., & Settleman, J. (2004). Gefitinib-sensitizing EGFR mutations in lung cancer activate anti-apoptotic pathways. Science, 305, 1163–1167.CrossRefPubMed Sordella, R., Bell, D. W., Haber, D. A., & Settleman, J. (2004). Gefitinib-sensitizing EGFR mutations in lung cancer activate anti-apoptotic pathways. Science, 305, 1163–1167.CrossRefPubMed
63.
Zurück zum Zitat Mitsudomi, T., Kosaka, T., Endoh, H., Horio, Y., Hida, T., Mori, S., et al. (2005). Mutations of the epidermal growth factor receptor gene predict prolonged survival after gefitinib treatment in patients with non-small-cell lung cancer with postoperative recurrence. Journal of Clinical Oncology, 23, 2513–2520.CrossRefPubMed Mitsudomi, T., Kosaka, T., Endoh, H., Horio, Y., Hida, T., Mori, S., et al. (2005). Mutations of the epidermal growth factor receptor gene predict prolonged survival after gefitinib treatment in patients with non-small-cell lung cancer with postoperative recurrence. Journal of Clinical Oncology, 23, 2513–2520.CrossRefPubMed
64.
Zurück zum Zitat Takano, T., Fukui, T., Ohe, Y., Tsuta, K., Yamamoto, S., Nokihara, H., et al. (2008). EGFR mutations predict survival benefit from gefitinib in patients with advanced lung adenocarcinoma: a historical comparison of patients treated before and after gefitinib approval in Japan. Journal of Clinical Oncology, 26, 5589–5595.CrossRefPubMed Takano, T., Fukui, T., Ohe, Y., Tsuta, K., Yamamoto, S., Nokihara, H., et al. (2008). EGFR mutations predict survival benefit from gefitinib in patients with advanced lung adenocarcinoma: a historical comparison of patients treated before and after gefitinib approval in Japan. Journal of Clinical Oncology, 26, 5589–5595.CrossRefPubMed
65.
Zurück zum Zitat Cappuzzo, F., Hirsch, F. R., Rossi, E., Bartolini, S., Ceresoli, G. L., Bemis, L., et al. (2005). Epidermal growth factor receptor gene and protein and gefitinib sensitivity in non-small-cell lung cancer. Journal of the National Cancer Institute, 97, 643–655.PubMedCrossRef Cappuzzo, F., Hirsch, F. R., Rossi, E., Bartolini, S., Ceresoli, G. L., Bemis, L., et al. (2005). Epidermal growth factor receptor gene and protein and gefitinib sensitivity in non-small-cell lung cancer. Journal of the National Cancer Institute, 97, 643–655.PubMedCrossRef
66.
Zurück zum Zitat Mok, T. S., Wu, Y. L., Thongprasert, S., Yang, C. H., Chu, D. T., Saijo, N., et al. (2009). Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. The New England Journal of Medicine, 361, 947–957.CrossRefPubMed Mok, T. S., Wu, Y. L., Thongprasert, S., Yang, C. H., Chu, D. T., Saijo, N., et al. (2009). Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. The New England Journal of Medicine, 361, 947–957.CrossRefPubMed
67.
Zurück zum Zitat Kobayashi, K., Inoue, A., Maemondo, M., Sugawara, S., Isobe, H., Oizumi, S., et al. (2009). First-line gefitinib versus first-line chemotherapy by carboplatin (CBDCA) plus paclitaxel (TXL) in non-small cell lung cancer (NSCLC) patients (pts) with EGFR mutations: a phase III study (002) by North East Japan Gefitinib Study Group. Journal of Clinical Oncology, 27, 15s (suppl; abstr 8016).CrossRef Kobayashi, K., Inoue, A., Maemondo, M., Sugawara, S., Isobe, H., Oizumi, S., et al. (2009). First-line gefitinib versus first-line chemotherapy by carboplatin (CBDCA) plus paclitaxel (TXL) in non-small cell lung cancer (NSCLC) patients (pts) with EGFR mutations: a phase III study (002) by North East Japan Gefitinib Study Group. Journal of Clinical Oncology, 27, 15s (suppl; abstr 8016).CrossRef
68.
Zurück zum Zitat Tsurutani, J., Mitsudomi, T., Mori, S., Okamoto, I., Nozaki, K., Tada, H., et al. (2009). A phase III, first-line trial of gefitinib versus cisplatin plus docetaxel for patients with advanced or recurrent non-small cell lungcancer (NSCLC) harboring activating mutation of the epidermal growthfactor receptor (EGFR) gene: a preliminary results of WJTOG 3405. European Journal of Cancer, 7(Suppl), 505(abstr O-9002). Tsurutani, J., Mitsudomi, T., Mori, S., Okamoto, I., Nozaki, K., Tada, H., et al. (2009). A phase III, first-line trial of gefitinib versus cisplatin plus docetaxel for patients with advanced or recurrent non-small cell lungcancer (NSCLC) harboring activating mutation of the epidermal growthfactor receptor (EGFR) gene: a preliminary results of WJTOG 3405. European Journal of Cancer, 7(Suppl), 505(abstr O-9002).
69.
Zurück zum Zitat Pao, W., Wang, T. Y., Riely, G. J., Miller, V. A., Pan, Q., Ladanyi, M., et al. (2005). KRAS mutations and primary resistance of lung adenocarcinomas to gefitinib or erlotinib. PLoS Medicine, 2, e17.CrossRefPubMed Pao, W., Wang, T. Y., Riely, G. J., Miller, V. A., Pan, Q., Ladanyi, M., et al. (2005). KRAS mutations and primary resistance of lung adenocarcinomas to gefitinib or erlotinib. PLoS Medicine, 2, e17.CrossRefPubMed
70.
Zurück zum Zitat Murray, S., Dahabreh, I. J., Linardou, H., Manoloukos, M., Bafaloukos, D., & Kosmidis, P. (2008). Somatic mutations of the tyrosine kinase domain of epidermal growth factor receptor and tyrosine kinase inhibitor response to TKIs in non-small cell lung cancer: an analytical database. Journal of Thoracic Oncology, 3, 832–839.CrossRefPubMed Murray, S., Dahabreh, I. J., Linardou, H., Manoloukos, M., Bafaloukos, D., & Kosmidis, P. (2008). Somatic mutations of the tyrosine kinase domain of epidermal growth factor receptor and tyrosine kinase inhibitor response to TKIs in non-small cell lung cancer: an analytical database. Journal of Thoracic Oncology, 3, 832–839.CrossRefPubMed
71.
Zurück zum Zitat Jackman, D. M., Miller, V. A., Cioffredi, L. A., Yeap, B. Y., Janne, P. A., Riely, G. J., et al. (2009). Impact of epidermal growth factor receptor and KRAS mutations on clinical outcomes in previously untreated non-small cell lung cancer patients: results of an online tumor registry of clinical trials. Clinical Cancer Research, 15, 5267–5273.CrossRefPubMed Jackman, D. M., Miller, V. A., Cioffredi, L. A., Yeap, B. Y., Janne, P. A., Riely, G. J., et al. (2009). Impact of epidermal growth factor receptor and KRAS mutations on clinical outcomes in previously untreated non-small cell lung cancer patients: results of an online tumor registry of clinical trials. Clinical Cancer Research, 15, 5267–5273.CrossRefPubMed
72.
Zurück zum Zitat O'Byrne, K. J., Bondarenko, I., Barrios, C., Eschbach, C., Martens, U., Hotko, Y., et al. (2009). Molecular and clinical predictors of outcome for cetuximab in non-small cell lung cancer (NSCLC): Data from the FLEX study. Journal of Clinical Oncology, 27, 15s (suppl; abstr 8007).CrossRef O'Byrne, K. J., Bondarenko, I., Barrios, C., Eschbach, C., Martens, U., Hotko, Y., et al. (2009). Molecular and clinical predictors of outcome for cetuximab in non-small cell lung cancer (NSCLC): Data from the FLEX study. Journal of Clinical Oncology, 27, 15s (suppl; abstr 8007).CrossRef
73.
Zurück zum Zitat Lynch, T. J., Patel, T., Dreisbach, L., McCleod, M., Heim, W. J., Robert, H., et al. (2007). A randomized multicenter phase III study of cetuximab in combination with taxane/carboplatin versus taxane/carboplatin alone as first-line treatment for patients with advanced/metastatic non-small cell lung cancer. Journal of Thoracic Oncology, 2, s340.CrossRef Lynch, T. J., Patel, T., Dreisbach, L., McCleod, M., Heim, W. J., Robert, H., et al. (2007). A randomized multicenter phase III study of cetuximab in combination with taxane/carboplatin versus taxane/carboplatin alone as first-line treatment for patients with advanced/metastatic non-small cell lung cancer. Journal of Thoracic Oncology, 2, s340.CrossRef
74.
Zurück zum Zitat Cutsem, E.V., Lang, I., D'haens, G., Moiseyenko, V., Zaluski J., Folprecht G., et al. (2008). KRAS status and efficacy in the first-line treatment of patients with metastatic colorectal cancer (mCRC) treated with FOLFIRI with or without cetuximab: The CRYSTAL experience. Journal of Clinical Oncology, 26, abstr 2. Cutsem, E.V., Lang, I., D'haens, G., Moiseyenko, V., Zaluski J., Folprecht G., et al. (2008). KRAS status and efficacy in the first-line treatment of patients with metastatic colorectal cancer (mCRC) treated with FOLFIRI with or without cetuximab: The CRYSTAL experience. Journal of Clinical Oncology, 26, abstr 2.
75.
Zurück zum Zitat Downward, J. (2003). Targeting RAS signalling pathways in cancer therapy. Nature Reviews Cancer, 3, 11–22.CrossRefPubMed Downward, J. (2003). Targeting RAS signalling pathways in cancer therapy. Nature Reviews Cancer, 3, 11–22.CrossRefPubMed
76.
Zurück zum Zitat Weinstein, I. B., & Joe, A. (2008). Oncogene addiction. Cancer Research, 68, 3077–80. discussion 80.CrossRefPubMed Weinstein, I. B., & Joe, A. (2008). Oncogene addiction. Cancer Research, 68, 3077–80. discussion 80.CrossRefPubMed
77.
Zurück zum Zitat Singh, A., Greninger, P., Rhodes, D., Koopman, L., Violette, S., Bardeesy, N., et al. (2009). A gene expression signature associated with “K-Ras addiction” reveals regulators of EMT and tumor cell survival. Cancer Cell, 15, 489–500.CrossRefPubMed Singh, A., Greninger, P., Rhodes, D., Koopman, L., Violette, S., Bardeesy, N., et al. (2009). A gene expression signature associated with “K-Ras addiction” reveals regulators of EMT and tumor cell survival. Cancer Cell, 15, 489–500.CrossRefPubMed
78.
Zurück zum Zitat Horiguchi, K., Shirakihara, T., Nakano, A., Imamura, T., Miyazono, K., & Saitoh, M. (2009). Role of Ras signaling in the induction of snail by transforming growth factor-beta. The Journal of Biological Chemistry, 284, 245–253.CrossRefPubMed Horiguchi, K., Shirakihara, T., Nakano, A., Imamura, T., Miyazono, K., & Saitoh, M. (2009). Role of Ras signaling in the induction of snail by transforming growth factor-beta. The Journal of Biological Chemistry, 284, 245–253.CrossRefPubMed
79.
Zurück zum Zitat Gupta, S., Ramjaun, A. R., Haiko, P., Wang, Y., Warne, P. H., Nicke, B., et al. (2007). Binding of ras to phosphoinositide 3-kinase p110alpha is required for ras-driven tumorigenesis in mice. Cell, 129, 957–968.CrossRefPubMed Gupta, S., Ramjaun, A. R., Haiko, P., Wang, Y., Warne, P. H., Nicke, B., et al. (2007). Binding of ras to phosphoinositide 3-kinase p110alpha is required for ras-driven tumorigenesis in mice. Cell, 129, 957–968.CrossRefPubMed
80.
Zurück zum Zitat Yang, Y., Iwanaga, K., Raso, M. G., Wislez, M., Hanna, A. E., Wieder, E. D., et al. (2008). Phosphatidylinositol 3-kinase mediates bronchioalveolar stem cell expansion in mouse models of oncogenic K-ras-induced lung cancer. PLoS One, 3, e2220.CrossRefPubMed Yang, Y., Iwanaga, K., Raso, M. G., Wislez, M., Hanna, A. E., Wieder, E. D., et al. (2008). Phosphatidylinositol 3-kinase mediates bronchioalveolar stem cell expansion in mouse models of oncogenic K-ras-induced lung cancer. PLoS One, 3, e2220.CrossRefPubMed
81.
Zurück zum Zitat Engelman, J. A., Chen, L., Tan, X., Crosby, K., Guimaraes, A. R., Upadhyay, R., et al. (2008). Effective use of PI3K and MEK inhibitors to treat mutant Kras G12D and PIK3CA H1047R murine lung cancers. Nature Medicine, 14, 1351–1356.CrossRefPubMed Engelman, J. A., Chen, L., Tan, X., Crosby, K., Guimaraes, A. R., Upadhyay, R., et al. (2008). Effective use of PI3K and MEK inhibitors to treat mutant Kras G12D and PIK3CA H1047R murine lung cancers. Nature Medicine, 14, 1351–1356.CrossRefPubMed
82.
Zurück zum Zitat Wee, S., Jagani, Z., Xiang, K. X., Loo, A., Dorsch, M., Yao, Y. M., et al. (2009). PI3K pathway activation mediates resistance to MEK inhibitors in KRAS mutant cancers. Cancer Research, 69, 4286–4293.CrossRefPubMed Wee, S., Jagani, Z., Xiang, K. X., Loo, A., Dorsch, M., Yao, Y. M., et al. (2009). PI3K pathway activation mediates resistance to MEK inhibitors in KRAS mutant cancers. Cancer Research, 69, 4286–4293.CrossRefPubMed
83.
Zurück zum Zitat Sos, M. L., Michel, K., Zander, T., Weiss, J., Frommolt, P., Peifer, M., et al. (2009). Predicting drug susceptibility of non-small cell lung cancers based on genetic lesions. The Journal of Clinical Investigation, 119, 1727–1740.CrossRefPubMed Sos, M. L., Michel, K., Zander, T., Weiss, J., Frommolt, P., Peifer, M., et al. (2009). Predicting drug susceptibility of non-small cell lung cancers based on genetic lesions. The Journal of Clinical Investigation, 119, 1727–1740.CrossRefPubMed
84.
Zurück zum Zitat Scholl, C., Frohling, S., Dunn, I. F., Schinzel, A. C., Barbie, D. A., Kim, S. Y., et al. (2009). Synthetic lethal interaction between oncogenic KRAS dependency and STK33 suppression in human cancer cells. Cell, 137, 821–834.CrossRefPubMed Scholl, C., Frohling, S., Dunn, I. F., Schinzel, A. C., Barbie, D. A., Kim, S. Y., et al. (2009). Synthetic lethal interaction between oncogenic KRAS dependency and STK33 suppression in human cancer cells. Cell, 137, 821–834.CrossRefPubMed
85.
Zurück zum Zitat Luo, J., Emanuele, M. J., Li, D., Creighton, C. J., Schlabach, M. R., Westbrook, T. F., et al. (2009). A genome-wide RNAi screen identifies multiple synthetic lethal interactions with the Ras oncogene. Cell, 137, 835–848.CrossRefPubMed Luo, J., Emanuele, M. J., Li, D., Creighton, C. J., Schlabach, M. R., Westbrook, T. F., et al. (2009). A genome-wide RNAi screen identifies multiple synthetic lethal interactions with the Ras oncogene. Cell, 137, 835–848.CrossRefPubMed
86.
Zurück zum Zitat Barbie, D. A., Tamayo, P., Boehm, J. S., Kim, S. Y., Moody, S. E., Dunn, I. F., et al. (2009). Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature, 462, 108–112.CrossRefPubMed Barbie, D. A., Tamayo, P., Boehm, J. S., Kim, S. Y., Moody, S. E., Dunn, I. F., et al. (2009). Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature, 462, 108–112.CrossRefPubMed
87.
Zurück zum Zitat Chien, Y., Kim, S., Bumeister, R., Loo, Y. M., Kwon, S. W., Johnson, C. L., et al. (2006). RalB GTPase-mediated activation of the IkappaB family kinase TBK1 couples innate immune signaling to tumor cell survival. Cell, 127, 157–170.CrossRefPubMed Chien, Y., Kim, S., Bumeister, R., Loo, Y. M., Kwon, S. W., Johnson, C. L., et al. (2006). RalB GTPase-mediated activation of the IkappaB family kinase TBK1 couples innate immune signaling to tumor cell survival. Cell, 127, 157–170.CrossRefPubMed
88.
Zurück zum Zitat Meylan, E., Dooley, A. L., Feldser, D. M., Shen, L., Turk, E., Ouyang, C., et al. (2009). Requirement for NF-kappaB signalling in a mouse model of lung adenocarcinoma. Nature, 462, 104–107.CrossRefPubMed Meylan, E., Dooley, A. L., Feldser, D. M., Shen, L., Turk, E., Ouyang, C., et al. (2009). Requirement for NF-kappaB signalling in a mouse model of lung adenocarcinoma. Nature, 462, 104–107.CrossRefPubMed
89.
Zurück zum Zitat Shimamura, T., Ji, H., Minami, Y., Thomas, R. K., Lowell, A. M., Shah, K., et al. (2006). Non-small-cell lung cancer and Ba/F3 transformed cells harboring the ERBB2 G776insV_G/C mutation are sensitive to the dual-specific epidermal growth factor receptor and ERBB2 inhibitor HKI-272. Cancer Research, 66, 6487–6491.CrossRefPubMed Shimamura, T., Ji, H., Minami, Y., Thomas, R. K., Lowell, A. M., Shah, K., et al. (2006). Non-small-cell lung cancer and Ba/F3 transformed cells harboring the ERBB2 G776insV_G/C mutation are sensitive to the dual-specific epidermal growth factor receptor and ERBB2 inhibitor HKI-272. Cancer Research, 66, 6487–6491.CrossRefPubMed
90.
Zurück zum Zitat Soda, M., Choi, Y. L., Enomoto, M., Takada, S., Yamashita, Y., Ishikawa, S., et al. (2007). Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature, 448, 561–566.CrossRefPubMed Soda, M., Choi, Y. L., Enomoto, M., Takada, S., Yamashita, Y., Ishikawa, S., et al. (2007). Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature, 448, 561–566.CrossRefPubMed
91.
Zurück zum Zitat Koivunen, J. P., Mermel, C., Zejnullahu, K., Murphy, C., Lifshits, E., Holmes, A. J., et al. (2008). EML4-ALK fusion gene and efficacy of an ALK kinase inhibitor in lung cancer. Clinical Cancer Research, 14, 4275–4283.CrossRefPubMed Koivunen, J. P., Mermel, C., Zejnullahu, K., Murphy, C., Lifshits, E., Holmes, A. J., et al. (2008). EML4-ALK fusion gene and efficacy of an ALK kinase inhibitor in lung cancer. Clinical Cancer Research, 14, 4275–4283.CrossRefPubMed
92.
Zurück zum Zitat Morita, S., Okamoto, I., Kobayashi, K., Yamazaki, K., Asahina, H., Inoue, A., et al. (2009). Combined Survival Analysis of Prospective Clinical Trials of Gefitinib for Non-Small Cell Lung Cancer with EGFR Mutations. Clinical Cancer Research, 15, 4493–4498.CrossRefPubMed Morita, S., Okamoto, I., Kobayashi, K., Yamazaki, K., Asahina, H., Inoue, A., et al. (2009). Combined Survival Analysis of Prospective Clinical Trials of Gefitinib for Non-Small Cell Lung Cancer with EGFR Mutations. Clinical Cancer Research, 15, 4493–4498.CrossRefPubMed
93.
Zurück zum Zitat Kim, E. S., Hirsh, V., Mok, T., Socinski, M. A., Gervais, R., Wu, Y. L., et al. (2008). Gefitinib versus docetaxel in previously treated non-small-cell lung cancer (INTEREST): a randomised phase III trial. Lancet, 372, 1809–1818.CrossRefPubMed Kim, E. S., Hirsh, V., Mok, T., Socinski, M. A., Gervais, R., Wu, Y. L., et al. (2008). Gefitinib versus docetaxel in previously treated non-small-cell lung cancer (INTEREST): a randomised phase III trial. Lancet, 372, 1809–1818.CrossRefPubMed
94.
Zurück zum Zitat Maruyama, R., Nishiwaki, Y., Tamura, T., Yamamoto, N., Tsuboi, M., Nakagawa, K., et al. (2008). Phase III study, V-15-32, of gefitinib versus docetaxel in previously treated Japanese patients with non-small-cell lung cancer. Journal of Clinical Oncology, 26, 4244–4252.CrossRefPubMed Maruyama, R., Nishiwaki, Y., Tamura, T., Yamamoto, N., Tsuboi, M., Nakagawa, K., et al. (2008). Phase III study, V-15-32, of gefitinib versus docetaxel in previously treated Japanese patients with non-small-cell lung cancer. Journal of Clinical Oncology, 26, 4244–4252.CrossRefPubMed
95.
Zurück zum Zitat Lee, J. C., Vivanco, I., Beroukhim, R., Huang, J. H., Feng, W. L., DeBiasi, R. M., et al. (2006). Epidermal growth factor receptor activation in glioblastoma through novel missense mutations in the extracellular domain. PLoS Medicine, 3, e485.CrossRefPubMed Lee, J. C., Vivanco, I., Beroukhim, R., Huang, J. H., Feng, W. L., DeBiasi, R. M., et al. (2006). Epidermal growth factor receptor activation in glioblastoma through novel missense mutations in the extracellular domain. PLoS Medicine, 3, e485.CrossRefPubMed
96.
Zurück zum Zitat Hynes, N. E., & Lane, H. A. (2005). ERBB receptors and cancer: the complexity of targeted inhibitors. Nature Reviews Cancer, 5, 341–354.CrossRefPubMed Hynes, N. E., & Lane, H. A. (2005). ERBB receptors and cancer: the complexity of targeted inhibitors. Nature Reviews Cancer, 5, 341–354.CrossRefPubMed
97.
Zurück zum Zitat Mitin, N., Rossman, K. L., & Der, C. J. (2005). Signaling interplay in Ras superfamily function. Current Biology, 15, R563–574.CrossRefPubMed Mitin, N., Rossman, K. L., & Der, C. J. (2005). Signaling interplay in Ras superfamily function. Current Biology, 15, R563–574.CrossRefPubMed
98.
Zurück zum Zitat Repasky, G. A., Chenette, E. J., & Der, C. J. (2004). Renewing the conspiracy theory debate: does Raf function alone to mediate Ras oncogenesis? Trends in Cell Biology, 14, 639–647.CrossRefPubMed Repasky, G. A., Chenette, E. J., & Der, C. J. (2004). Renewing the conspiracy theory debate: does Raf function alone to mediate Ras oncogenesis? Trends in Cell Biology, 14, 639–647.CrossRefPubMed
99.
Zurück zum Zitat Schubbert, S., Shannon, K., & Bollag, G. (2007). Hyperactive Ras in developmental disorders and cancer. Nature Reviews Cancer, 7, 295–308.CrossRefPubMed Schubbert, S., Shannon, K., & Bollag, G. (2007). Hyperactive Ras in developmental disorders and cancer. Nature Reviews Cancer, 7, 295–308.CrossRefPubMed
100.
101.
Zurück zum Zitat Tam, I. Y., Chung, L. P., Suen, W. S., Wang, E., Wong, M. C., Ho, K. K., et al. (2006). Distinct epidermal growth factor receptor and KRAS mutation patterns in non-small cell lung cancer patients with different tobacco exposure and clinicopathologic features. Clinical Cancer Research, 12, 1647–1653.CrossRefPubMed Tam, I. Y., Chung, L. P., Suen, W. S., Wang, E., Wong, M. C., Ho, K. K., et al. (2006). Distinct epidermal growth factor receptor and KRAS mutation patterns in non-small cell lung cancer patients with different tobacco exposure and clinicopathologic features. Clinical Cancer Research, 12, 1647–1653.CrossRefPubMed
102.
Zurück zum Zitat Rudin, C. M., Avila-Tang, E., Harris, C. C., Herman, J. G., Hirsch, F. R., Pao, W., et al. (2009). Lung cancer in never smokers: molecular profiles and therapeutic implications. Clinical Cancer Research, 15, 5646–5661.CrossRefPubMed Rudin, C. M., Avila-Tang, E., Harris, C. C., Herman, J. G., Hirsch, F. R., Pao, W., et al. (2009). Lung cancer in never smokers: molecular profiles and therapeutic implications. Clinical Cancer Research, 15, 5646–5661.CrossRefPubMed
Metadaten
Titel
Biological and clinical significance of KRAS mutations in lung cancer: an oncogenic driver that contrasts with EGFR mutation
verfasst von
Kenichi Suda
Kenji Tomizawa
Tetsuya Mitsudomi
Publikationsdatum
01.03.2010
Verlag
Springer US
Erschienen in
Cancer and Metastasis Reviews / Ausgabe 1/2010
Print ISSN: 0167-7659
Elektronische ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-010-9209-4

Weitere Artikel der Ausgabe 1/2010

Cancer and Metastasis Reviews 1/2010 Zur Ausgabe

EditorialNotes

Preface

Acknowledgments

Biography—Adi Gazdar

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.