Skip to main content
Erschienen in: Cancer and Metastasis Reviews 1/2010

01.03.2010

Evidence for self-renewing lung cancer stem cells and their implications in tumor initiation, progression, and targeted therapy

verfasst von: James P. Sullivan, John D. Minna, Jerry W. Shay

Erschienen in: Cancer and Metastasis Reviews | Ausgabe 1/2010

Einloggen, um Zugang zu erhalten

Abstract

The discovery of rare tumor cells with stem cell features first in leukemia and later in solid tumors has emerged as an important area in cancer research. It has been determined that these stem-like tumor cells, termed cancer stem cells, are the primary cellular component within a tumor that drives disease progression and metastasis. In addition to their stem-like ability to self-renew and differentiate, cancer stem cells are also enriched in cells resistant to conventional radiation therapy and to chemotherapy. The immediate implications of this new tumor growth paradigm not only require a re-evaluation of how tumors are initiated, but also on how tumors should be monitored and treated. However, despite the relatively rapid pace of cancer stem cell research in solid tumors such as breast, brain, and colon cancers, similar progress in lung cancer remains hampered in part due to an incomplete understanding of lung epithelial stem cell hierarchy and the complex heterogeneity of the disease. In this review, we provide a critical summary of what is known about the role of normal and malignant lung stem cells in tumor development, the progress in characterizing lung cancer stem cells and the potential for therapeutically targeting pathways of lung cancer stem cell self-renewal.
Literatur
1.
Zurück zum Zitat Reya, T., et al. (2001). Stem cells, cancer, and cancer stem cells. Nature, 414(6859), 105–111.PubMed Reya, T., et al. (2001). Stem cells, cancer, and cancer stem cells. Nature, 414(6859), 105–111.PubMed
2.
Zurück zum Zitat Clarke, M. F., & Fuller, M. (2006). Stem cells and cancer: two faces of eve. Cell, 124(6), 1111–1115.PubMed Clarke, M. F., & Fuller, M. (2006). Stem cells and cancer: two faces of eve. Cell, 124(6), 1111–1115.PubMed
3.
Zurück zum Zitat Wicha, M. S., Liu, S. L., & Dontu, G. (2006). Cancer stem cells: an old idea—a paradigm shift. Cancer Research, 66(4), 1883–1890.PubMed Wicha, M. S., Liu, S. L., & Dontu, G. (2006). Cancer stem cells: an old idea—a paradigm shift. Cancer Research, 66(4), 1883–1890.PubMed
4.
Zurück zum Zitat Passegue, E., Wagner, E. F., & Weissman, I. L. (2004). JunB deficiency leads to a myeloproliferative disorder arising from hematopoietic stem cells. Cell, 119(3), 431–443.PubMed Passegue, E., Wagner, E. F., & Weissman, I. L. (2004). JunB deficiency leads to a myeloproliferative disorder arising from hematopoietic stem cells. Cell, 119(3), 431–443.PubMed
5.
Zurück zum Zitat Hanahan, D., & Weinberg, R. A. (2000). The hallmarks of cancer. Cell, 100(1), 57–70.PubMed Hanahan, D., & Weinberg, R. A. (2000). The hallmarks of cancer. Cell, 100(1), 57–70.PubMed
6.
Zurück zum Zitat Bonnet, D., & Dick, J. E. (1997). Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature Medicine, 3(7), 730–737.PubMed Bonnet, D., & Dick, J. E. (1997). Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature Medicine, 3(7), 730–737.PubMed
7.
Zurück zum Zitat Costello, R. T., et al. (2000). Human acute myeloid leukemia CD34+/CD38- progenitor cells have decreased sensitivity to chemotherapy and Fas-induced apoptosis, reduced immunogenicity, and impaired dendritic cell transformation capacities. Cancer Research, 60(16), 4403–4411.PubMed Costello, R. T., et al. (2000). Human acute myeloid leukemia CD34+/CD38- progenitor cells have decreased sensitivity to chemotherapy and Fas-induced apoptosis, reduced immunogenicity, and impaired dendritic cell transformation capacities. Cancer Research, 60(16), 4403–4411.PubMed
8.
Zurück zum Zitat Wulf, G. G., et al. (2001). A leukemic stem cell with intrinsic drug efflux capacity in acute myeloid leukemia. Blood, 98(4), 1166–1173.PubMed Wulf, G. G., et al. (2001). A leukemic stem cell with intrinsic drug efflux capacity in acute myeloid leukemia. Blood, 98(4), 1166–1173.PubMed
9.
Zurück zum Zitat Misaghian, N., et al. (2009). Targeting the leukemic stem cell: the Holy Grail of leukemia therapy. Leukemia, 23(1), 25–42.PubMed Misaghian, N., et al. (2009). Targeting the leukemic stem cell: the Holy Grail of leukemia therapy. Leukemia, 23(1), 25–42.PubMed
10.
Zurück zum Zitat Singh, S. K., et al. (2004). Identification of human brain tumour initiating cells. Nature, 432(7015), 396–401.PubMed Singh, S. K., et al. (2004). Identification of human brain tumour initiating cells. Nature, 432(7015), 396–401.PubMed
11.
Zurück zum Zitat Ponti, D., et al. (2005). Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Research, 65(13), 5506–5511.PubMed Ponti, D., et al. (2005). Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Research, 65(13), 5506–5511.PubMed
12.
Zurück zum Zitat Patrawala, L., et al. (2006). Highly purified CD44+ prostate cancer cells from xenograft human tumors are enriched in tumorigenic and metastatic progenitor cells. Oncogene, 25(12), 1696–1708.PubMed Patrawala, L., et al. (2006). Highly purified CD44+ prostate cancer cells from xenograft human tumors are enriched in tumorigenic and metastatic progenitor cells. Oncogene, 25(12), 1696–1708.PubMed
13.
Zurück zum Zitat Ricci-Vitiani, L., et al. (2007). Identification and expansion of human colon-cancer-initiating cells. Nature, 445(7123), 111–115.PubMed Ricci-Vitiani, L., et al. (2007). Identification and expansion of human colon-cancer-initiating cells. Nature, 445(7123), 111–115.PubMed
14.
Zurück zum Zitat O'Brien, C. A., et al. (2007). A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature, 445(7123), 106–110.PubMed O'Brien, C. A., et al. (2007). A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature, 445(7123), 106–110.PubMed
15.
Zurück zum Zitat Li, C. W., et al. (2007). Identification of pancreatic cancer stem cells. Cancer Research, 67(3), 1030–1037.PubMed Li, C. W., et al. (2007). Identification of pancreatic cancer stem cells. Cancer Research, 67(3), 1030–1037.PubMed
16.
Zurück zum Zitat Eramo, A., et al. (2008). Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death and Differentiation, 15(3), 504–514.PubMed Eramo, A., et al. (2008). Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death and Differentiation, 15(3), 504–514.PubMed
17.
Zurück zum Zitat Minna, J. D., Roth, J. A., & Gazdar, A. F. (2002). Focus on lung cancer. Cancer Cell, 1(1), 49–52.PubMed Minna, J. D., Roth, J. A., & Gazdar, A. F. (2002). Focus on lung cancer. Cancer Cell, 1(1), 49–52.PubMed
18.
Zurück zum Zitat Jemal, A., et al. (2009). Cancer statistics, 2009. CA: A Cancer Journal for Clinicians, 59(4), 225–249. Jemal, A., et al. (2009). Cancer statistics, 2009. CA: A Cancer Journal for Clinicians, 59(4), 225–249.
19.
Zurück zum Zitat Sun, S., Schiller, J. H., & Gazdar, A. F. (2007). Lung cancer in never smokers—a different disease. Nature Reviews Cancer, 7(10), 778–790.PubMed Sun, S., Schiller, J. H., & Gazdar, A. F. (2007). Lung cancer in never smokers—a different disease. Nature Reviews Cancer, 7(10), 778–790.PubMed
20.
Zurück zum Zitat Knight, D. A., & Holgate, S. T. (2003). The airway epithelium: structural and functional properties in health and disease. Respirology, 8(4), 432–446.PubMed Knight, D. A., & Holgate, S. T. (2003). The airway epithelium: structural and functional properties in health and disease. Respirology, 8(4), 432–446.PubMed
21.
Zurück zum Zitat Mercer, B. A., et al. (2006). The epithelial cell in lung health and emphysema pathogenesis. Current Respiratory Medicine Revue, 2(2), 101–142. Mercer, B. A., et al. (2006). The epithelial cell in lung health and emphysema pathogenesis. Current Respiratory Medicine Revue, 2(2), 101–142.
22.
Zurück zum Zitat Bowden, D. H. (1983). Cell turnover in the lung. American Review of Respiratory Disease, 128(2 Pt 2), S46–S48.PubMed Bowden, D. H. (1983). Cell turnover in the lung. American Review of Respiratory Disease, 128(2 Pt 2), S46–S48.PubMed
23.
Zurück zum Zitat Kauffman, S. L. (1980). Cell proliferation in the mammalian lung. International Review of Experimental Pathology, 22, 131–191.PubMed Kauffman, S. L. (1980). Cell proliferation in the mammalian lung. International Review of Experimental Pathology, 22, 131–191.PubMed
24.
Zurück zum Zitat Rawlins, E. L., & Hogan, B. L. (2008). Ciliated epithelial cell lifespan in the mouse trachea and lung. American Journal of Physiology. Lung Cellular and Molecular Physiology, 295(1), L231–L234.PubMed Rawlins, E. L., & Hogan, B. L. (2008). Ciliated epithelial cell lifespan in the mouse trachea and lung. American Journal of Physiology. Lung Cellular and Molecular Physiology, 295(1), L231–L234.PubMed
25.
Zurück zum Zitat Giangreco, A., et al. (2009). Stem cells are dispensable for lung homeostasis but restore airways after injury. Proceedings of the National Academy of Sciences of the United States of America, 106(23), 9286–9291.PubMed Giangreco, A., et al. (2009). Stem cells are dispensable for lung homeostasis but restore airways after injury. Proceedings of the National Academy of Sciences of the United States of America, 106(23), 9286–9291.PubMed
26.
Zurück zum Zitat Rawlins, E. L., & Hogan, B. L. (2006). Epithelial stem cells of the lung: privileged few or opportunities for many? Development, 133(13), 2455–2465.PubMed Rawlins, E. L., & Hogan, B. L. (2006). Epithelial stem cells of the lung: privileged few or opportunities for many? Development, 133(13), 2455–2465.PubMed
27.
Zurück zum Zitat Evans, M. J., et al. (2001). Cellular and molecular characteristics of basal cells in airway epithelium. Experimental Lung Research, 27(5), 401–415.PubMed Evans, M. J., et al. (2001). Cellular and molecular characteristics of basal cells in airway epithelium. Experimental Lung Research, 27(5), 401–415.PubMed
28.
Zurück zum Zitat Boers, J. E., Ambergen, A. W., & Thunnissen, F. B. (1998). Number and proliferation of basal and parabasal cells in normal human airway epithelium. American Journal of Respiratory and Critical Care Medicine, 157(6 Pt 1), 2000–2006.PubMed Boers, J. E., Ambergen, A. W., & Thunnissen, F. B. (1998). Number and proliferation of basal and parabasal cells in normal human airway epithelium. American Journal of Respiratory and Critical Care Medicine, 157(6 Pt 1), 2000–2006.PubMed
29.
Zurück zum Zitat Schoch, K. G., et al. (2004). A subset of mouse tracheal epithelial basal cells generates large colonies in vitro. American Journal of Physiology. Lung Cellular and Molecular Physiology, 286(4), L631–L642.PubMed Schoch, K. G., et al. (2004). A subset of mouse tracheal epithelial basal cells generates large colonies in vitro. American Journal of Physiology. Lung Cellular and Molecular Physiology, 286(4), L631–L642.PubMed
30.
Zurück zum Zitat Nakajima, M., et al. (1998). Immunohistochemical and ultrastructural studies of basal cells, Clara cells and bronchiolar cuboidal cells in normal human airways. Pathology International, 48(12), 944–953.PubMed Nakajima, M., et al. (1998). Immunohistochemical and ultrastructural studies of basal cells, Clara cells and bronchiolar cuboidal cells in normal human airways. Pathology International, 48(12), 944–953.PubMed
31.
Zurück zum Zitat Donnelly, G. M., Haack, D. G., & Heird, C. S. (1982). Tracheal epithelium: cell kinetics and differentiation in normal rat tissue. Cell and Tissue Kinetics, 15(2), 119–130.PubMed Donnelly, G. M., Haack, D. G., & Heird, C. S. (1982). Tracheal epithelium: cell kinetics and differentiation in normal rat tissue. Cell and Tissue Kinetics, 15(2), 119–130.PubMed
32.
Zurück zum Zitat Breuer, R., et al. (1990). Cell kinetics of normal adult hamster bronchial epithelium in the steady state. American Journal of Respiratory Cell and Molecular Biology, 2(1), 51–58.PubMed Breuer, R., et al. (1990). Cell kinetics of normal adult hamster bronchial epithelium in the steady state. American Journal of Respiratory Cell and Molecular Biology, 2(1), 51–58.PubMed
33.
Zurück zum Zitat Rawlins, E. L. (2008). Lung epithelial progenitor cells: lessons from development. Proceedings of the American Thorac Society, 5(6), 675–681. Rawlins, E. L. (2008). Lung epithelial progenitor cells: lessons from development. Proceedings of the American Thorac Society, 5(6), 675–681.
34.
Zurück zum Zitat Hong, K. U., et al. (2004). In vivo differentiation potential of tracheal basal cells: evidence for multipotent and unipotent subpopulations. American Journal of Physiology. Lung Cellular and Molecular Physiology, 286(4), L643–L649.PubMed Hong, K. U., et al. (2004). In vivo differentiation potential of tracheal basal cells: evidence for multipotent and unipotent subpopulations. American Journal of Physiology. Lung Cellular and Molecular Physiology, 286(4), L643–L649.PubMed
35.
Zurück zum Zitat Hong, K. U., et al. (2004). Basal cells are a multipotent progenitor capable of renewing the bronchial epithelium. American Journal of Pathology, 164(2), 577–588.PubMed Hong, K. U., et al. (2004). Basal cells are a multipotent progenitor capable of renewing the bronchial epithelium. American Journal of Pathology, 164(2), 577–588.PubMed
36.
Zurück zum Zitat Hajj, R., et al. (2007). Basal cells of the human adult airway surface epithelium retain transit-amplifying cell properties. Stem Cells, 25(1), 139–148.PubMed Hajj, R., et al. (2007). Basal cells of the human adult airway surface epithelium retain transit-amplifying cell properties. Stem Cells, 25(1), 139–148.PubMed
37.
Zurück zum Zitat Randell, S. H., et al. (1991). Properties of rat tracheal epithelial cells separated based on expression of cell surface alpha-galactosyl end groups. American Journal of Respiratory Cell and Molecular Biology, 4(6), 544–554.PubMed Randell, S. H., et al. (1991). Properties of rat tracheal epithelial cells separated based on expression of cell surface alpha-galactosyl end groups. American Journal of Respiratory Cell and Molecular Biology, 4(6), 544–554.PubMed
38.
Zurück zum Zitat Rock, J. R., et al. (2009). Basal cells as stem cells of the mouse trachea and human airway epithelium. Proceedings of the National Academy of Sciences of the United States of America, 106(31), 12771–12775.PubMed Rock, J. R., et al. (2009). Basal cells as stem cells of the mouse trachea and human airway epithelium. Proceedings of the National Academy of Sciences of the United States of America, 106(31), 12771–12775.PubMed
39.
Zurück zum Zitat Barth, P. J., et al. (2000). Proliferation and number of Clara cell 10-kDa protein (CC10)-reactive epithelial cells and basal cells in normal, hyperplastic and metaplastic bronchial mucosa. Virchows Archiv, 437(6), 648–655.PubMed Barth, P. J., et al. (2000). Proliferation and number of Clara cell 10-kDa protein (CC10)-reactive epithelial cells and basal cells in normal, hyperplastic and metaplastic bronchial mucosa. Virchows Archiv, 437(6), 648–655.PubMed
40.
Zurück zum Zitat Boers, J. E., Ambergen, A. W., & Thunnissen, F. B. (1999). Number and proliferation of clara cells in normal human airway epithelium. American Journal of Respiratory and Critical Care Medicine, 159(5 Pt 1), 1585–1591.PubMed Boers, J. E., Ambergen, A. W., & Thunnissen, F. B. (1999). Number and proliferation of clara cells in normal human airway epithelium. American Journal of Respiratory and Critical Care Medicine, 159(5 Pt 1), 1585–1591.PubMed
41.
Zurück zum Zitat Buckpitt, A., et al. (1995). Relationship of cytochrome P450 activity to Clara cell cytotoxicity. IV. Metabolism of naphthalene and naphthalene oxide in microdissected airways from mice, rats, and hamsters. Molecular Pharmacology, 47(1), 74–81.PubMed Buckpitt, A., et al. (1995). Relationship of cytochrome P450 activity to Clara cell cytotoxicity. IV. Metabolism of naphthalene and naphthalene oxide in microdissected airways from mice, rats, and hamsters. Molecular Pharmacology, 47(1), 74–81.PubMed
42.
Zurück zum Zitat Stripp, B. R., et al. (1995). Plasticity of airway cell proliferation and gene expression after acute naphthalene injury. American Journal of Physiology, 269(6 Pt 1), L791–L799.PubMed Stripp, B. R., et al. (1995). Plasticity of airway cell proliferation and gene expression after acute naphthalene injury. American Journal of Physiology, 269(6 Pt 1), L791–L799.PubMed
43.
Zurück zum Zitat Stevens, T. P., et al. (1997). Cell proliferation contributes to PNEC hyperplasia after acute airway injury. American Journal of Physiology, 272(3 Pt 1), L486–L493.PubMed Stevens, T. P., et al. (1997). Cell proliferation contributes to PNEC hyperplasia after acute airway injury. American Journal of Physiology, 272(3 Pt 1), L486–L493.PubMed
44.
Zurück zum Zitat Reynolds, S. D., et al. (2000). Neuroepithelial bodies of pulmonary airways serve as a reservoir of progenitor cells capable of epithelial regeneration. American Journal of Pathology, 156(1), 269–278.PubMed Reynolds, S. D., et al. (2000). Neuroepithelial bodies of pulmonary airways serve as a reservoir of progenitor cells capable of epithelial regeneration. American Journal of Pathology, 156(1), 269–278.PubMed
45.
Zurück zum Zitat Reynolds, S. D., et al. (2000). Conditional clara cell ablation reveals a self-renewing progenitor function of pulmonary neuroendocrine cells. American Journal of Physiology. Lung Cellular and Molecular Physiology, 278(6), L1256–L1263.PubMed Reynolds, S. D., et al. (2000). Conditional clara cell ablation reveals a self-renewing progenitor function of pulmonary neuroendocrine cells. American Journal of Physiology. Lung Cellular and Molecular Physiology, 278(6), L1256–L1263.PubMed
46.
Zurück zum Zitat Hong, K. U., et al. (2001). Clara cell secretory protein-expressing cells of the airway neuroepithelial body microenvironment include a label-retaining subset and are critical for epithelial renewal after progenitor cell depletion. American Journal of Respiratory Cell and Molecular Biology, 24(6), 671–681.PubMed Hong, K. U., et al. (2001). Clara cell secretory protein-expressing cells of the airway neuroepithelial body microenvironment include a label-retaining subset and are critical for epithelial renewal after progenitor cell depletion. American Journal of Respiratory Cell and Molecular Biology, 24(6), 671–681.PubMed
47.
Zurück zum Zitat Simon, M., Argiris, A., & Murren, J. R. (2004). Progress in the therapy of small cell lung cancer. Critical Reviews in Oncology/hematology, 49(2), 119–133.PubMed Simon, M., Argiris, A., & Murren, J. R. (2004). Progress in the therapy of small cell lung cancer. Critical Reviews in Oncology/hematology, 49(2), 119–133.PubMed
48.
Zurück zum Zitat Turrisi, A. T., & Sherman, C. A. (2002). The treatment of limited small cell lung cancer: a report of the progress made and future prospects. European Journal of Cancer, 38(2), 279–291.PubMed Turrisi, A. T., & Sherman, C. A. (2002). The treatment of limited small cell lung cancer: a report of the progress made and future prospects. European Journal of Cancer, 38(2), 279–291.PubMed
49.
Zurück zum Zitat Watkins, D. N., et al. (2003). Hedgehog signalling within airway epithelial progenitors and in small-cell lung cancer. Nature, 422(6929), 313–317.PubMed Watkins, D. N., et al. (2003). Hedgehog signalling within airway epithelial progenitors and in small-cell lung cancer. Nature, 422(6929), 313–317.PubMed
50.
Zurück zum Zitat Giangreco, A., Groot, K. R., & Janes, S. M. (2007). Lung cancer and lung stem cells - Strange bedfellows? American Journal of Respiratory and Critical Care Medicine, 175(6), 547–553.PubMed Giangreco, A., Groot, K. R., & Janes, S. M. (2007). Lung cancer and lung stem cells - Strange bedfellows? American Journal of Respiratory and Critical Care Medicine, 175(6), 547–553.PubMed
51.
Zurück zum Zitat Adamson, I. Y., & Bowden, D. H. (1975). Derivation of type 1 epithelium from type 2 cells in the developing rat lung. Laboratory Investigation, 32(6), 736–745.PubMed Adamson, I. Y., & Bowden, D. H. (1975). Derivation of type 1 epithelium from type 2 cells in the developing rat lung. Laboratory Investigation, 32(6), 736–745.PubMed
52.
Zurück zum Zitat Evans, M. J., et al. (1975). Transformation of alveolar type 2 cells to type 1 cells following exposure to NO2. Experimental and Molecular Pathology, 22(1), 142–150.PubMed Evans, M. J., et al. (1975). Transformation of alveolar type 2 cells to type 1 cells following exposure to NO2. Experimental and Molecular Pathology, 22(1), 142–150.PubMed
53.
Zurück zum Zitat Buckley, S., et al. (1998). Apoptosis and DNA damage in type 2 alveolar epithelial cells cultured from hyperoxic rats. American Journal of Physiology, 274(5 Pt 1), L714–L720.PubMed Buckley, S., et al. (1998). Apoptosis and DNA damage in type 2 alveolar epithelial cells cultured from hyperoxic rats. American Journal of Physiology, 274(5 Pt 1), L714–L720.PubMed
54.
Zurück zum Zitat Reddy, R., et al. (2004). Isolation of a putative progenitor subpopulation of alveolar epithelial type 2 cells. American Journal of Physiology. Lung Cellular and Molecular Physiology, 286(4), L658–L667.PubMed Reddy, R., et al. (2004). Isolation of a putative progenitor subpopulation of alveolar epithelial type 2 cells. American Journal of Physiology. Lung Cellular and Molecular Physiology, 286(4), L658–L667.PubMed
55.
Zurück zum Zitat Giangreco, A., Reynolds, S. D., & Stripp, B. R. (2002). Terminal bronchioles harbor a unique airway stem cell population that localizes to the bronchoalveolar duct junction. American Journal of Pathology, 161(1), 173–182.PubMed Giangreco, A., Reynolds, S. D., & Stripp, B. R. (2002). Terminal bronchioles harbor a unique airway stem cell population that localizes to the bronchoalveolar duct junction. American Journal of Pathology, 161(1), 173–182.PubMed
56.
Zurück zum Zitat Kim, C. F., et al. (2005). Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell, 121(6), 823–835.PubMed Kim, C. F., et al. (2005). Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell, 121(6), 823–835.PubMed
57.
Zurück zum Zitat Jackson, E. L., et al. (2001). Analysis of lung tumor initiation and progression using conditional expression of oncogenic K-ras. Genes and Development, 15(24), 3243–3248.PubMed Jackson, E. L., et al. (2001). Analysis of lung tumor initiation and progression using conditional expression of oncogenic K-ras. Genes and Development, 15(24), 3243–3248.PubMed
58.
Zurück zum Zitat Fisher, G. H., et al. (2001). Induction and apoptotic regression of lung adenocarcinomas by regulation of a K-Ras transgene in the presence and absence of tumor suppressor genes. Genes and Development, 15(24), 3249–3262.PubMed Fisher, G. H., et al. (2001). Induction and apoptotic regression of lung adenocarcinomas by regulation of a K-Ras transgene in the presence and absence of tumor suppressor genes. Genes and Development, 15(24), 3249–3262.PubMed
59.
Zurück zum Zitat Politi, K., et al. (2006). Lung adenocarcinomas induced in mice by mutant EGF receptors found in human lung cancers respond to a tyrosine kinase inhibitor or to down-regulation of the receptors. Genes and Development, 20(11), 1496–1510.PubMed Politi, K., et al. (2006). Lung adenocarcinomas induced in mice by mutant EGF receptors found in human lung cancers respond to a tyrosine kinase inhibitor or to down-regulation of the receptors. Genes and Development, 20(11), 1496–1510.PubMed
60.
Zurück zum Zitat Carney, D. N., Gazdar, A. F., & Minna, J. D. (1980). Positive correlation between histological tumor involvement and generation of tumor cell colonies in agarose in specimens taken directly from patients with small-cell carcinoma of the lung. Cancer Research, 40(6), 1820–1823.PubMed Carney, D. N., Gazdar, A. F., & Minna, J. D. (1980). Positive correlation between histological tumor involvement and generation of tumor cell colonies in agarose in specimens taken directly from patients with small-cell carcinoma of the lung. Cancer Research, 40(6), 1820–1823.PubMed
61.
Zurück zum Zitat Carney, D. N., et al. (1982). Demonstration of the stem cell nature of clonogenic tumor cells from lung cancer patients. Stem Cells, 1(3), 149–164.PubMed Carney, D. N., et al. (1982). Demonstration of the stem cell nature of clonogenic tumor cells from lung cancer patients. Stem Cells, 1(3), 149–164.PubMed
62.
Zurück zum Zitat Gazdar, A. F., et al. (1981). Heterotransplantation of small-cell carcinoma of the lung into nude mice: comparison of intracranial and subcutaneous routes. International Journal of Cancer, 28(6), 777–783. Gazdar, A. F., et al. (1981). Heterotransplantation of small-cell carcinoma of the lung into nude mice: comparison of intracranial and subcutaneous routes. International Journal of Cancer, 28(6), 777–783.
63.
Zurück zum Zitat Visvader, J. E., & Lindeman, G. J. (2008). Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nature Reviews. Cancer, 8(10), 755–768.PubMed Visvader, J. E., & Lindeman, G. J. (2008). Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nature Reviews. Cancer, 8(10), 755–768.PubMed
64.
Zurück zum Zitat Goodell, M. A., et al. (1996). Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. Journal of Experimental Medicine, 183(4), 1797–1806.PubMed Goodell, M. A., et al. (1996). Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. Journal of Experimental Medicine, 183(4), 1797–1806.PubMed
65.
Zurück zum Zitat Zhou, S., et al. (2001). The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nature Medicine, 7(9), 1028–1034.PubMed Zhou, S., et al. (2001). The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nature Medicine, 7(9), 1028–1034.PubMed
66.
Zurück zum Zitat Hirschmann-Jax, C., et al. (2004). A distinct “side population” of cells with high drug efflux capacity in human tumor cells. Proceedings of the National Academy of Sciences of the United States of America, 101(39), 14228–14233.PubMed Hirschmann-Jax, C., et al. (2004). A distinct “side population” of cells with high drug efflux capacity in human tumor cells. Proceedings of the National Academy of Sciences of the United States of America, 101(39), 14228–14233.PubMed
67.
Zurück zum Zitat Kondo, T., Setoguchi, T., & Taga, T. (2004). Persistence of a small subpopulation of cancer stem-like cells in the C6 glioma cell line. Proceedings of the National Academy of Sciences of the United States of America, 101(3), 781–786.PubMed Kondo, T., Setoguchi, T., & Taga, T. (2004). Persistence of a small subpopulation of cancer stem-like cells in the C6 glioma cell line. Proceedings of the National Academy of Sciences of the United States of America, 101(3), 781–786.PubMed
68.
Zurück zum Zitat Patrawala, L., et al. (2005). Side population is enriched in tumorigenic, stem-like cancer cells, whereas ABCG2+ and ABCG2- cancer cells are similarly tumorigenic. Cancer Research, 65(14), 6207–6219.PubMed Patrawala, L., et al. (2005). Side population is enriched in tumorigenic, stem-like cancer cells, whereas ABCG2+ and ABCG2- cancer cells are similarly tumorigenic. Cancer Research, 65(14), 6207–6219.PubMed
69.
Zurück zum Zitat Feuring-Buske, M., & Hogge, D. E. (2001). Hoechst 33342 efflux identifies a subpopulation of cytogenetically normal CD34(+)CD38(-) progenitor cells from patients with acute myeloid leukemia. Blood, 97(12), 3882–3889.PubMed Feuring-Buske, M., & Hogge, D. E. (2001). Hoechst 33342 efflux identifies a subpopulation of cytogenetically normal CD34(+)CD38(-) progenitor cells from patients with acute myeloid leukemia. Blood, 97(12), 3882–3889.PubMed
70.
Zurück zum Zitat Szotek, P. P., et al. (2006). Ovarian cancer side population defines cells with stem cell-like characteristics and Mullerian Inhibiting Substance responsiveness. Proceedings of the National Academy of Sciences of the United States of America, 103(30), 11154–11159.PubMed Szotek, P. P., et al. (2006). Ovarian cancer side population defines cells with stem cell-like characteristics and Mullerian Inhibiting Substance responsiveness. Proceedings of the National Academy of Sciences of the United States of America, 103(30), 11154–11159.PubMed
71.
Zurück zum Zitat Ho, M. M., et al. (2007). Side population in human lung cancer cell lines and tumors is enriched with stem-like cancer cells. Cancer Research, 67(10), 4827–4833.PubMed Ho, M. M., et al. (2007). Side population in human lung cancer cell lines and tumors is enriched with stem-like cancer cells. Cancer Research, 67(10), 4827–4833.PubMed
72.
Zurück zum Zitat Zhong, Y., et al. (2007). Most MCF7 and SK-OV3 cells were deprived of their stem nature by Hoechst 33342. Biochemical and Biophysical Research Communications, 364(2), 338–343.PubMed Zhong, Y., et al. (2007). Most MCF7 and SK-OV3 cells were deprived of their stem nature by Hoechst 33342. Biochemical and Biophysical Research Communications, 364(2), 338–343.PubMed
73.
Zurück zum Zitat Platet, N., et al. (2007). Fluctuation of the SP/non-SP phenotype in the C6 glioma cell line. FEBS Letters, 581(7), 1435–1440.PubMed Platet, N., et al. (2007). Fluctuation of the SP/non-SP phenotype in the C6 glioma cell line. FEBS Letters, 581(7), 1435–1440.PubMed
74.
Zurück zum Zitat Montanaro, F., et al. (2004). Demystifying SP cell purification: viability, yield, and phenotype are defined by isolation parameters. Experimental Cell Research, 298(1), 144–154.PubMed Montanaro, F., et al. (2004). Demystifying SP cell purification: viability, yield, and phenotype are defined by isolation parameters. Experimental Cell Research, 298(1), 144–154.PubMed
75.
Zurück zum Zitat Wu, C., & Alman, B. A. (2008). Side population cells in human cancers. Cancer Letters, 268(1), 1–9.PubMed Wu, C., & Alman, B. A. (2008). Side population cells in human cancers. Cancer Letters, 268(1), 1–9.PubMed
76.
Zurück zum Zitat Mizrak, D., Brittan, M., & Alison, M. R. (2008). CD133: molecule of the moment. Journal of Pathology, 214(1), 3–9.PubMed Mizrak, D., Brittan, M., & Alison, M. R. (2008). CD133: molecule of the moment. Journal of Pathology, 214(1), 3–9.PubMed
77.
Zurück zum Zitat Yin, A. H., et al. (1997). AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood, 90(12), 5002–5012.PubMed Yin, A. H., et al. (1997). AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood, 90(12), 5002–5012.PubMed
78.
Zurück zum Zitat Uchida, N., et al. (2000). Direct isolation of human central nervous system stem cells. Proceedings of the National Academy of Sciences of the United States of America, 97(26), 14720–14725.PubMed Uchida, N., et al. (2000). Direct isolation of human central nervous system stem cells. Proceedings of the National Academy of Sciences of the United States of America, 97(26), 14720–14725.PubMed
79.
Zurück zum Zitat Ghods, A. J., et al. (2007). Spheres isolated from 9L gliosarcoma rat cell line possess chemoresistant and aggressive cancer stem-like cells. Stem Cells, 25(7), 1645–1653.PubMed Ghods, A. J., et al. (2007). Spheres isolated from 9L gliosarcoma rat cell line possess chemoresistant and aggressive cancer stem-like cells. Stem Cells, 25(7), 1645–1653.PubMed
80.
Zurück zum Zitat Lee, J., et al. (2006). Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell, 9(5), 391–403.PubMed Lee, J., et al. (2006). Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell, 9(5), 391–403.PubMed
81.
Zurück zum Zitat Bertolini, G., et al. (2009). Highly tumorigenic lung cancer CD133+ cells display stem-like features and are spared by cisplatin treatment. Proceedings of the National Academy of Sciences of the United States of America, 106(38), 16281–16286.PubMed Bertolini, G., et al. (2009). Highly tumorigenic lung cancer CD133+ cells display stem-like features and are spared by cisplatin treatment. Proceedings of the National Academy of Sciences of the United States of America, 106(38), 16281–16286.PubMed
82.
Zurück zum Zitat Levina, V., et al. (2008). Drug-selected human lung cancer stem cells: cytokine network, tumorigenic and metastatic properties. PLoS ONE, 3(8), e3077.PubMed Levina, V., et al. (2008). Drug-selected human lung cancer stem cells: cytokine network, tumorigenic and metastatic properties. PLoS ONE, 3(8), e3077.PubMed
83.
Zurück zum Zitat Meng, X., et al. (2009). Both CD133+ and CD133− subpopulations of A549 and H446 cells contain cancer-initiating cells. Cancer Science, 100(6), 1040–1046.PubMed Meng, X., et al. (2009). Both CD133+ and CD133− subpopulations of A549 and H446 cells contain cancer-initiating cells. Cancer Science, 100(6), 1040–1046.PubMed
84.
Zurück zum Zitat Howard, B. M., & Boockvar, J. A. (2008). Stem cell marker CD133 expression predicts outcome in glioma patients. Neurosurgery, 62(6), N8. Howard, B. M., & Boockvar, J. A. (2008). Stem cell marker CD133 expression predicts outcome in glioma patients. Neurosurgery, 62(6), N8.
85.
Zurück zum Zitat Salnikov, A. V., et al. (2009). CD133 is indicative for a resistance phenotype but does not represent a prognostic marker for survival of non-small cell lung cancer patients. International Journal of Cancer, 126, 950–958. Salnikov, A. V., et al. (2009). CD133 is indicative for a resistance phenotype but does not represent a prognostic marker for survival of non-small cell lung cancer patients. International Journal of Cancer, 126, 950–958.
86.
Zurück zum Zitat Tirino, V., et al. (2009). The role of CD133 in the identification and characterisation of tumour-initiating cells in non-small-cell lung cancer. European Journal of Cardio-Thoracic Surgery, 36(3), 446–453.PubMed Tirino, V., et al. (2009). The role of CD133 in the identification and characterisation of tumour-initiating cells in non-small-cell lung cancer. European Journal of Cardio-Thoracic Surgery, 36(3), 446–453.PubMed
87.
Zurück zum Zitat Wang, J., et al. (2008). CD133 negative glioma cells form tumors in nude rats and give rise to CD133 positive cells. International Journal of Cancer, 122(4), 761–768. Wang, J., et al. (2008). CD133 negative glioma cells form tumors in nude rats and give rise to CD133 positive cells. International Journal of Cancer, 122(4), 761–768.
88.
Zurück zum Zitat Shmelkov, S. V., et al. (2008). CD133 expression is not restricted to stem cells, and both CD133+ and CD133− metastatic colon cancer cells initiate tumors. Journal of Clinical Investigation, 118(6), 2111–2120.PubMed Shmelkov, S. V., et al. (2008). CD133 expression is not restricted to stem cells, and both CD133+ and CD133− metastatic colon cancer cells initiate tumors. Journal of Clinical Investigation, 118(6), 2111–2120.PubMed
89.
Zurück zum Zitat Bidlingmaier, S., Zhu, X., & Liu, B. (2008). The utility and limitations of glycosylated human CD133 epitopes in defining cancer stem cells. Journal of Molecular Medicine, 86(9), 1025–1032.PubMed Bidlingmaier, S., Zhu, X., & Liu, B. (2008). The utility and limitations of glycosylated human CD133 epitopes in defining cancer stem cells. Journal of Molecular Medicine, 86(9), 1025–1032.PubMed
90.
Zurück zum Zitat Moreb, J., et al. (1996). Overexpression of the human aldehyde dehydrogenase class I results in increased resistance to 4-hydroperoxycyclophosphamide. Cancer Gene Therapy, 3(1), 24–30.PubMed Moreb, J., et al. (1996). Overexpression of the human aldehyde dehydrogenase class I results in increased resistance to 4-hydroperoxycyclophosphamide. Cancer Gene Therapy, 3(1), 24–30.PubMed
91.
Zurück zum Zitat Chute, J. P., et al. (2006). Inhibition of aldehyde dehydrogenase and retinoid signaling induces the expansion of human hematopoietic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 103(31), 11707–11712.PubMed Chute, J. P., et al. (2006). Inhibition of aldehyde dehydrogenase and retinoid signaling induces the expansion of human hematopoietic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 103(31), 11707–11712.PubMed
92.
Zurück zum Zitat Chute, J. P., et al. (2005). Modulation of aldehyde dehydrogenase and retinoid signaling induces the expansion of human hematopoietic stem cells. Blood, 106(11), 488a. Chute, J. P., et al. (2005). Modulation of aldehyde dehydrogenase and retinoid signaling induces the expansion of human hematopoietic stem cells. Blood, 106(11), 488a.
93.
Zurück zum Zitat Pearce, D. J., & Bonnet, D. (2007). The combined use of Hoechst efflux ability and aldehyde dehydrogenase activity to identify murine and human hematopoietic stem cells. Experimental Hematology, 35(9), 1437–1446.PubMed Pearce, D. J., & Bonnet, D. (2007). The combined use of Hoechst efflux ability and aldehyde dehydrogenase activity to identify murine and human hematopoietic stem cells. Experimental Hematology, 35(9), 1437–1446.PubMed
94.
Zurück zum Zitat Cheung, A. M., et al. (2007). Aldehyde dehydrogenase activity in leukemic blasts defines a subgroup of acute myeloid leukemia with adverse prognosis and superior NOD/SCID engrafting potential. Leukemia, 21(7), 1423–1430.PubMed Cheung, A. M., et al. (2007). Aldehyde dehydrogenase activity in leukemic blasts defines a subgroup of acute myeloid leukemia with adverse prognosis and superior NOD/SCID engrafting potential. Leukemia, 21(7), 1423–1430.PubMed
95.
Zurück zum Zitat Pearce, D. J., et al. (2005). Characterization of cells with a high aldehyde dehydrogenase activity from cord blood and acute myeloid leukemia samples. Stem Cells, 23(6), 752–760.PubMed Pearce, D. J., et al. (2005). Characterization of cells with a high aldehyde dehydrogenase activity from cord blood and acute myeloid leukemia samples. Stem Cells, 23(6), 752–760.PubMed
96.
Zurück zum Zitat Bar, E. E., et al. (2007). Cyclopamine-mediated hedgehog pathway inhibition depletes stem-like cancer cells in glioblastoma. Stem Cells, 25(10), 2524–2533.PubMed Bar, E. E., et al. (2007). Cyclopamine-mediated hedgehog pathway inhibition depletes stem-like cancer cells in glioblastoma. Stem Cells, 25(10), 2524–2533.PubMed
97.
Zurück zum Zitat Ginestier, C., et al. (2007). ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell, 1(5), 555–567.PubMed Ginestier, C., et al. (2007). ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell, 1(5), 555–567.PubMed
98.
Zurück zum Zitat Huang, E. H., et al. (2009). Aldehyde dehydrogenase 1 is a marker for normal and malignant human colonic Stem Cells (SC) and tracks SC overpopulation during colon tumorigenesis. Cancer Research, 69, 3382–3389.PubMed Huang, E. H., et al. (2009). Aldehyde dehydrogenase 1 is a marker for normal and malignant human colonic Stem Cells (SC) and tracks SC overpopulation during colon tumorigenesis. Cancer Research, 69, 3382–3389.PubMed
99.
Zurück zum Zitat Chen, Y. C., et al. (2009). Aldehyde dehydrogenase 1 is a putative marker for cancer stem cells in head and neck squamous cancer. Biochemical and Biophysical Research Communications, 385(3), 307–313.PubMed Chen, Y. C., et al. (2009). Aldehyde dehydrogenase 1 is a putative marker for cancer stem cells in head and neck squamous cancer. Biochemical and Biophysical Research Communications, 385(3), 307–313.PubMed
100.
Zurück zum Zitat Patel, M., et al. (2008). ALDH1A1 and ALDH3A1 expression in lung cancers: correlation with histologic type and potential precursors. Lung Cancer, 59(3), 340–349.PubMed Patel, M., et al. (2008). ALDH1A1 and ALDH3A1 expression in lung cancers: correlation with histologic type and potential precursors. Lung Cancer, 59(3), 340–349.PubMed
101.
Zurück zum Zitat Jiang, F., et al. (2009). Aldehyde dehydrogenase 1 is a tumor stem cell-associated marker in lung cancer. Molecular Cancer Research, 7(3), 330–338.PubMed Jiang, F., et al. (2009). Aldehyde dehydrogenase 1 is a tumor stem cell-associated marker in lung cancer. Molecular Cancer Research, 7(3), 330–338.PubMed
102.
Zurück zum Zitat Moreb, J. S., et al. (2008). ALDH isozymes downregulation affects cell growth, cell motility and gene expression in lung cancer cells. Molecular Cancer, 7, 87.PubMed Moreb, J. S., et al. (2008). ALDH isozymes downregulation affects cell growth, cell motility and gene expression in lung cancer cells. Molecular Cancer, 7, 87.PubMed
103.
Zurück zum Zitat Moreb, J. S., et al. (2007). Heterogeneity of aldehyde dehydrogenase expression in lung cancer cell lines is revealed by aldefluor flow cytometry-based assay. Cytometry Part B-Clinical Cytometry, 72B(4), 281–289. Moreb, J. S., et al. (2007). Heterogeneity of aldehyde dehydrogenase expression in lung cancer cell lines is revealed by aldefluor flow cytometry-based assay. Cytometry Part B-Clinical Cytometry, 72B(4), 281–289.
104.
Zurück zum Zitat Al-Hajj, M., & Clarke, M. F. (2004). Self-renewal and solid tumor stem cells. Oncogene, 23(43), 7274–7282.PubMed Al-Hajj, M., & Clarke, M. F. (2004). Self-renewal and solid tumor stem cells. Oncogene, 23(43), 7274–7282.PubMed
105.
Zurück zum Zitat Kirstetter, P., et al. (2006). Activation of the canonical Wnt pathway leads to loss of hematopoietic stem cell repopulation and multilineage differentiation block. Nature Immunology, 7(10), 1048–1056.PubMed Kirstetter, P., et al. (2006). Activation of the canonical Wnt pathway leads to loss of hematopoietic stem cell repopulation and multilineage differentiation block. Nature Immunology, 7(10), 1048–1056.PubMed
106.
Zurück zum Zitat Reya, T., et al. (2003). A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature, 423(6938), 409–414.PubMed Reya, T., et al. (2003). A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature, 423(6938), 409–414.PubMed
107.
Zurück zum Zitat Stripp, B. R., & Reynolds, S. D. (2008). Maintenance and repair of the bronchiolar epithelium. Proceedings of the American Thoracic Society, 5(3), 328–333.PubMed Stripp, B. R., & Reynolds, S. D. (2008). Maintenance and repair of the bronchiolar epithelium. Proceedings of the American Thoracic Society, 5(3), 328–333.PubMed
108.
Zurück zum Zitat Reynolds, S. D., et al. (2008). Conditional stabilization of beta-catenin expands the pool of lung stem cells. Stem Cells, 26(5), 1337–1346.PubMed Reynolds, S. D., et al. (2008). Conditional stabilization of beta-catenin expands the pool of lung stem cells. Stem Cells, 26(5), 1337–1346.PubMed
109.
Zurück zum Zitat Zemke, A. C., et al. (2009). beta-Catenin is not necessary for maintenance or repair of the bronchiolar epithelium. American Journal of Respiratory Cell and Molecular Biology, 41(5), 535–543.PubMed Zemke, A. C., et al. (2009). beta-Catenin is not necessary for maintenance or repair of the bronchiolar epithelium. American Journal of Respiratory Cell and Molecular Biology, 41(5), 535–543.PubMed
110.
Zurück zum Zitat Lemjabbar-Alaoui, H., et al. (2006). Wnt and Hedgehog are critical mediators of cigarette smoke-induced lung cancer. PLoS ONE, 1, e93.PubMed Lemjabbar-Alaoui, H., et al. (2006). Wnt and Hedgehog are critical mediators of cigarette smoke-induced lung cancer. PLoS ONE, 1, e93.PubMed
111.
Zurück zum Zitat Uematsu, K., et al. (2003). Wnt pathway activation in mesothelioma: evidence of dishevelled overexpression and transcriptional activity of beta-catenin. Cancer Research, 63(15), 4547–4551.PubMed Uematsu, K., et al. (2003). Wnt pathway activation in mesothelioma: evidence of dishevelled overexpression and transcriptional activity of beta-catenin. Cancer Research, 63(15), 4547–4551.PubMed
112.
Zurück zum Zitat Uematsu, K., et al. (2003). Activation of the Wnt pathway in non small cell lung cancer: evidence of dishevelled overexpression. Oncogene, 22(46), 7218–7221.PubMed Uematsu, K., et al. (2003). Activation of the Wnt pathway in non small cell lung cancer: evidence of dishevelled overexpression. Oncogene, 22(46), 7218–7221.PubMed
113.
Zurück zum Zitat You, L., et al. (2004). Inhibition of Wnt-2-mediated signaling induces programmed cell death in non-small-cell lung cancer cells. Oncogene, 23(36), 6170–6174.PubMed You, L., et al. (2004). Inhibition of Wnt-2-mediated signaling induces programmed cell death in non-small-cell lung cancer cells. Oncogene, 23(36), 6170–6174.PubMed
114.
Zurück zum Zitat Shi, Y., et al. (2007). Inhibition of Wnt-2 and galectin-3 synergistically destabilizes beta-catenin and induces apoptosis in human colorectal cancer cells. International Journal of Cancer, 121(6), 1175–1181. Shi, Y., et al. (2007). Inhibition of Wnt-2 and galectin-3 synergistically destabilizes beta-catenin and induces apoptosis in human colorectal cancer cells. International Journal of Cancer, 121(6), 1175–1181.
115.
Zurück zum Zitat You, L., et al. (2004). An anti-Wnt-2 monoclonal antibody induces apoptosis in malignant melanoma cells and inhibits tumor growth. Cancer Research, 64(15), 5385–5389.PubMed You, L., et al. (2004). An anti-Wnt-2 monoclonal antibody induces apoptosis in malignant melanoma cells and inhibits tumor growth. Cancer Research, 64(15), 5385–5389.PubMed
116.
Zurück zum Zitat Daniel, V. C., Peacock, C. D., & Watkins, D. N. (2006). Developmental signalling pathways in lung cancer. Respirology, 11(3), 234–240.PubMed Daniel, V. C., Peacock, C. D., & Watkins, D. N. (2006). Developmental signalling pathways in lung cancer. Respirology, 11(3), 234–240.PubMed
117.
Zurück zum Zitat Reya, T., & Clevers, H. (2005). Wnt signalling in stem cells and cancer. Nature, 434(7035), 843–850.PubMed Reya, T., & Clevers, H. (2005). Wnt signalling in stem cells and cancer. Nature, 434(7035), 843–850.PubMed
118.
Zurück zum Zitat Litingtung, Y., et al. (1998). Sonic hedgehog is essential to foregut development. Nature Genetics, 20(1), 58–61.PubMed Litingtung, Y., et al. (1998). Sonic hedgehog is essential to foregut development. Nature Genetics, 20(1), 58–61.PubMed
119.
Zurück zum Zitat Pepicelli, C. V., Lewis, P. M., & McMahon, A. P. (1998). Sonic hedgehog regulates branching morphogenesis in the mammalian lung. Current Biology, 8(19), 1083–1086.PubMed Pepicelli, C. V., Lewis, P. M., & McMahon, A. P. (1998). Sonic hedgehog regulates branching morphogenesis in the mammalian lung. Current Biology, 8(19), 1083–1086.PubMed
120.
Zurück zum Zitat Bellusci, S., et al. (1997). Involvement of Sonic hedgehog (Shh) in mouse embryonic lung growth and morphogenesis. Development, 124(1), 53–63.PubMed Bellusci, S., et al. (1997). Involvement of Sonic hedgehog (Shh) in mouse embryonic lung growth and morphogenesis. Development, 124(1), 53–63.PubMed
121.
Zurück zum Zitat Taipale, J., & Beachy, P. A. (2001). The Hedgehog and Wnt signalling pathways in cancer. Nature, 411(6835), 349–354.PubMed Taipale, J., & Beachy, P. A. (2001). The Hedgehog and Wnt signalling pathways in cancer. Nature, 411(6835), 349–354.PubMed
122.
Zurück zum Zitat Nilsson, M., et al. (2000). Induction of basal cell carcinomas and trichoepitheliomas in mice overexpressing GLI-1. Proceedings of the National Academy of Sciences of the United States of America, 97(7), 3438–3443.PubMed Nilsson, M., et al. (2000). Induction of basal cell carcinomas and trichoepitheliomas in mice overexpressing GLI-1. Proceedings of the National Academy of Sciences of the United States of America, 97(7), 3438–3443.PubMed
123.
Zurück zum Zitat Goodrich, L. V., & Scott, M. P. (1998). Hedgehog and patched in neural development and disease. Neuron, 21(6), 1243–1257.PubMed Goodrich, L. V., & Scott, M. P. (1998). Hedgehog and patched in neural development and disease. Neuron, 21(6), 1243–1257.PubMed
124.
Zurück zum Zitat Vestergaard, J., et al. (2006). Hedgehog signaling in small-cell lung cancer: frequent in vivo but a rare event in vitro. Lung Cancer, 52(3), 281–290.PubMed Vestergaard, J., et al. (2006). Hedgehog signaling in small-cell lung cancer: frequent in vivo but a rare event in vitro. Lung Cancer, 52(3), 281–290.PubMed
125.
Zurück zum Zitat Chi, S., et al. (2006). Activation of the hedgehog pathway in a subset of lung cancers. Cancer Letters, 244(1), 53–60.PubMed Chi, S., et al. (2006). Activation of the hedgehog pathway in a subset of lung cancers. Cancer Letters, 244(1), 53–60.PubMed
126.
Zurück zum Zitat Zhao, C., et al. (2009). Hedgehog signalling is essential for maintenance of cancer stem cells in myeloid leukaemia. Nature, 458(7239), 776–779.PubMed Zhao, C., et al. (2009). Hedgehog signalling is essential for maintenance of cancer stem cells in myeloid leukaemia. Nature, 458(7239), 776–779.PubMed
127.
Zurück zum Zitat Peacock, C. D., et al. (2007). Hedgehog signaling maintains a tumor stem cell compartment in multiple myeloma. Proceedings of the National Academy of Sciences of the United States of America, 104(10), 4048–4053.PubMed Peacock, C. D., et al. (2007). Hedgehog signaling maintains a tumor stem cell compartment in multiple myeloma. Proceedings of the National Academy of Sciences of the United States of America, 104(10), 4048–4053.PubMed
128.
Zurück zum Zitat Liu, S., et al. (2006). Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Research, 66(12), 6063–6071.PubMed Liu, S., et al. (2006). Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Research, 66(12), 6063–6071.PubMed
129.
Zurück zum Zitat Tremblay, M. R., et al. (2009). Recent patents for Hedgehog pathway inhibitors for the treatment of malignancy. Expert Opinion on Therapeutic Patents, 19(8), 1039–1056.PubMed Tremblay, M. R., et al. (2009). Recent patents for Hedgehog pathway inhibitors for the treatment of malignancy. Expert Opinion on Therapeutic Patents, 19(8), 1039–1056.PubMed
130.
Zurück zum Zitat Hyman, J. M., et al. (2009). Small-molecule inhibitors reveal multiple strategies for Hedgehog pathway blockade. Proceedings of the National Academy of Sciences of the United States of America, 106(33), 14132–14137.PubMed Hyman, J. M., et al. (2009). Small-molecule inhibitors reveal multiple strategies for Hedgehog pathway blockade. Proceedings of the National Academy of Sciences of the United States of America, 106(33), 14132–14137.PubMed
131.
Zurück zum Zitat Dlugosz, A. A., & Talpaz, M. (2009). Following the hedgehog to new cancer therapies. New England Journal of Medicine, 361(12), 1202–1205.PubMed Dlugosz, A. A., & Talpaz, M. (2009). Following the hedgehog to new cancer therapies. New England Journal of Medicine, 361(12), 1202–1205.PubMed
132.
Zurück zum Zitat Artavanis-Tsakonas, S., Rand, M. D., & Lake, R. J. (1999). Notch signaling: cell fate control and signal integration in development. Science, 284(5415), 770–776.PubMed Artavanis-Tsakonas, S., Rand, M. D., & Lake, R. J. (1999). Notch signaling: cell fate control and signal integration in development. Science, 284(5415), 770–776.PubMed
133.
Zurück zum Zitat Collins, B. J., Kleeberger, W., & Ball, D. W. (2004). Notch in lung development and lung cancer. Seminars in Cancer Biology, 14(5), 357–364.PubMed Collins, B. J., Kleeberger, W., & Ball, D. W. (2004). Notch in lung development and lung cancer. Seminars in Cancer Biology, 14(5), 357–364.PubMed
134.
Zurück zum Zitat Ito, T., et al. (2000). Basic helix-loop-helix transcription factors regulate the neuroendocrine differentiation of fetal mouse pulmonary epithelium. Development, 127(18), 3913–3921.PubMed Ito, T., et al. (2000). Basic helix-loop-helix transcription factors regulate the neuroendocrine differentiation of fetal mouse pulmonary epithelium. Development, 127(18), 3913–3921.PubMed
135.
Zurück zum Zitat Borges, M., et al. (1997). An achaete-scute homologue essential for neuroendocrine differentiation in the lung. Nature, 386(6627), 852–855.PubMed Borges, M., et al. (1997). An achaete-scute homologue essential for neuroendocrine differentiation in the lung. Nature, 386(6627), 852–855.PubMed
136.
Zurück zum Zitat Guseh, J. S., et al. (2009). Notch signaling promotes airway mucous metaplasia and inhibits alveolar development. Development, 136(10), 1751–1759.PubMed Guseh, J. S., et al. (2009). Notch signaling promotes airway mucous metaplasia and inhibits alveolar development. Development, 136(10), 1751–1759.PubMed
137.
Zurück zum Zitat Tsao, P. N., et al. (2008). Gamma-secretase activation of notch signaling regulates the balance of proximal and distal fates in progenitor cells of the developing lung. Journal of Biological Chemistry, 283(43), 29532–29544.PubMed Tsao, P. N., et al. (2008). Gamma-secretase activation of notch signaling regulates the balance of proximal and distal fates in progenitor cells of the developing lung. Journal of Biological Chemistry, 283(43), 29532–29544.PubMed
138.
Zurück zum Zitat Dang, T. P., et al. (2003). Constitutive activation of Notch3 inhibits terminal epithelial differentiation in lungs of transgenic mice. Oncogene, 22(13), 1988–1997.PubMed Dang, T. P., et al. (2003). Constitutive activation of Notch3 inhibits terminal epithelial differentiation in lungs of transgenic mice. Oncogene, 22(13), 1988–1997.PubMed
139.
Zurück zum Zitat Konishi, J., et al. (2007). Gamma-secretase inhibitor prevents Notch3 activation and reduces proliferation in human lung cancers. Cancer Research, 67(17), 8051–8057.PubMed Konishi, J., et al. (2007). Gamma-secretase inhibitor prevents Notch3 activation and reduces proliferation in human lung cancers. Cancer Research, 67(17), 8051–8057.PubMed
140.
Zurück zum Zitat Haruki, N., et al. (2005). Dominant-negative Notch3 receptor inhibits mitogen-activated protein kinase pathway and the growth of human lung cancers. Cancer Research, 65(9), 3555–3561.PubMed Haruki, N., et al. (2005). Dominant-negative Notch3 receptor inhibits mitogen-activated protein kinase pathway and the growth of human lung cancers. Cancer Research, 65(9), 3555–3561.PubMed
141.
Zurück zum Zitat Zheng, Q., et al. (2007). Notch signaling inhibits growth of the human lung adenocarcinoma cell line A549. Oncology Reports, 17(4), 847–852.PubMed Zheng, Q., et al. (2007). Notch signaling inhibits growth of the human lung adenocarcinoma cell line A549. Oncology Reports, 17(4), 847–852.PubMed
142.
Zurück zum Zitat Fan, X., et al. (2006). Notch pathway inhibition depletes stem-like cells and blocks engraftment in embryonal brain tumors. Cancer Research, 66(15), 7445–7452.PubMed Fan, X., et al. (2006). Notch pathway inhibition depletes stem-like cells and blocks engraftment in embryonal brain tumors. Cancer Research, 66(15), 7445–7452.PubMed
143.
Zurück zum Zitat Hoey, T., et al. (2009). DLL4 blockade inhibits tumor growth and reduces tumor-initiating cell frequency. Cell Stem Cell, 5(2), 168–177.PubMed Hoey, T., et al. (2009). DLL4 blockade inhibits tumor growth and reduces tumor-initiating cell frequency. Cell Stem Cell, 5(2), 168–177.PubMed
144.
Zurück zum Zitat Jiang, T. Y., et al. (2009). Achaete-scute complex homologue 1 regulates tumor-initiating capacity in human small cell lung cancer. Cancer Research, 69(3), 845–854.PubMed Jiang, T. Y., et al. (2009). Achaete-scute complex homologue 1 regulates tumor-initiating capacity in human small cell lung cancer. Cancer Research, 69(3), 845–854.PubMed
145.
Zurück zum Zitat Hill, R. P. (2006). Identifying cancer stem cells in solid tumors: case not proven. Cancer Research, 66(4), 1891–1895. discussion 1890.PubMed Hill, R. P. (2006). Identifying cancer stem cells in solid tumors: case not proven. Cancer Research, 66(4), 1891–1895. discussion 1890.PubMed
146.
Zurück zum Zitat Kern, S. E., & Shibata, D. (2007). The fuzzy math of solid tumor stem cells: a perspective. Cancer Research, 67(19), 8985–8988.PubMed Kern, S. E., & Shibata, D. (2007). The fuzzy math of solid tumor stem cells: a perspective. Cancer Research, 67(19), 8985–8988.PubMed
147.
Zurück zum Zitat Kelly, P. N., et al. (2007). Tumor growth need not be driven by rare cancer stem cells. Science, 317(5836), 337.PubMed Kelly, P. N., et al. (2007). Tumor growth need not be driven by rare cancer stem cells. Science, 317(5836), 337.PubMed
148.
Zurück zum Zitat Quintana, E., et al. (2008). Efficient tumour formation by single human melanoma cells. Nature, 456(7222), 593–598.PubMed Quintana, E., et al. (2008). Efficient tumour formation by single human melanoma cells. Nature, 456(7222), 593–598.PubMed
149.
Zurück zum Zitat Li, Z., et al. (2009). Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells. Cancer Cell, 15(6), 501–513.PubMed Li, Z., et al. (2009). Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells. Cancer Cell, 15(6), 501–513.PubMed
150.
Zurück zum Zitat Heddleston, J. M., et al. (2009). The hypoxic microenvironment maintains glioblastoma stem cells and promotes reprogramming towards a cancer stem cell phenotype. Cell Cycle, 8(20), 3274–3284.PubMed Heddleston, J. M., et al. (2009). The hypoxic microenvironment maintains glioblastoma stem cells and promotes reprogramming towards a cancer stem cell phenotype. Cell Cycle, 8(20), 3274–3284.PubMed
151.
Zurück zum Zitat Li, L., & Neaves, W. B. (2006). Normal stem cells and cancer stem cells: the niche matters. Cancer Research, 66(9), 4553–4557.PubMed Li, L., & Neaves, W. B. (2006). Normal stem cells and cancer stem cells: the niche matters. Cancer Research, 66(9), 4553–4557.PubMed
152.
Zurück zum Zitat Gupta, P. B., Chaffer, C. L., & Weinberg, R. A. (2009). Cancer stem cells: mirage or reality? Nature Medicine, 15(9), 1010–1012.PubMed Gupta, P. B., Chaffer, C. L., & Weinberg, R. A. (2009). Cancer stem cells: mirage or reality? Nature Medicine, 15(9), 1010–1012.PubMed
153.
Zurück zum Zitat Mani, S. A., et al. (2008). The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell, 133(4), 704–715.PubMed Mani, S. A., et al. (2008). The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell, 133(4), 704–715.PubMed
Metadaten
Titel
Evidence for self-renewing lung cancer stem cells and their implications in tumor initiation, progression, and targeted therapy
verfasst von
James P. Sullivan
John D. Minna
Jerry W. Shay
Publikationsdatum
01.03.2010
Verlag
Springer US
Erschienen in
Cancer and Metastasis Reviews / Ausgabe 1/2010
Print ISSN: 0167-7659
Elektronische ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-010-9216-5

Weitere Artikel der Ausgabe 1/2010

Cancer and Metastasis Reviews 1/2010 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.