Skip to main content
Erschienen in: Cancer and Metastasis Reviews 4/2010

01.12.2010 | NON-THEMATIC REVIEW

Regulatory T cells and breast cancer: implications for immunopathogenesis

verfasst von: Maria Angelica Ehara Watanabe, Julie Massayo Maeda Oda, Marla Karine Amarante, Julio Cesar Voltarelli

Erschienen in: Cancer and Metastasis Reviews | Ausgabe 4/2010

Einloggen, um Zugang zu erhalten

Abstract

Current understanding of the role of several cancer risk factors is more comprehensive, as reported for a number of sites, including the brain, colon, breasts, and ovaries. Despite such advances, the incidence of breast cancer continues to increase worldwide. Signals from the microenviroment have a profound influence on the maintenance or progression cancers. Although T cells present the most important immunological response in tumor growth in the early stages of cancer, they become suppressive CD4+ and CD8+ regulatory T cells (Tregs) after chronic stimulation and interactions with tumor cells, thus promoting rather than inhibiting cancer development and progression. Tregs have an important marker protein which is FoxP3, though it does not necessarily confer a Treg phenotype when expressed in CD4+ T lymphocytes. High Treg levels have been reported in peripheral blood, lymph nodes, and tumor specimens from patients with different types of cancer. The precise mechanisms by which Tregs suppress immune cell functions remain unclear, and there are reports of both direct inhibition through cell–cell contact and indirect inhibition through the secretion of anti-inflammatory mediators such as interleukin. In this review, we present the molecular and immunological aspects of Treg cells in the metastasis of breast cancer.
Literatur
1.
Zurück zum Zitat Chu, D., & Lu, J. (2008). Novel therapies in breast cancer: What is new from ASCO 2008. Journal of Hematology Oncology, 1, 1–16.CrossRef Chu, D., & Lu, J. (2008). Novel therapies in breast cancer: What is new from ASCO 2008. Journal of Hematology Oncology, 1, 1–16.CrossRef
2.
Zurück zum Zitat Kásler, M., Polgár, C., & Fodor, J. (2009). Current status of treatment for early-stage invasive breast cancer. Orvosi Hetilap, 150, 1013–1021.CrossRefPubMed Kásler, M., Polgár, C., & Fodor, J. (2009). Current status of treatment for early-stage invasive breast cancer. Orvosi Hetilap, 150, 1013–1021.CrossRefPubMed
3.
Zurück zum Zitat Benz, C. C. (2008). Impact of aging on the biology of breast cancer. Impact of aging on the biology of breast cancer. Critical Reviews in Oncology/Hematology, 66(1), 65–74.CrossRefPubMed Benz, C. C. (2008). Impact of aging on the biology of breast cancer. Impact of aging on the biology of breast cancer. Critical Reviews in Oncology/Hematology, 66(1), 65–74.CrossRefPubMed
4.
Zurück zum Zitat Lacroix, M., Toillon, R. A., & Leclercq, G. (2004). Stable ‘portrait’ of breast tumors during progression: Data from biology, pathology and genetics. Endocrine-Related Cancer, 11, 497–522.CrossRefPubMed Lacroix, M., Toillon, R. A., & Leclercq, G. (2004). Stable ‘portrait’ of breast tumors during progression: Data from biology, pathology and genetics. Endocrine-Related Cancer, 11, 497–522.CrossRefPubMed
5.
Zurück zum Zitat Rakha, E. A., El-Sayed, M. E., Reis-Filho, J., & Ellis, I. O. (2009). Patho-biological aspects of basal-like breast cancer. Breast Cancer Research and Treatment, 113, 411–422.CrossRefPubMed Rakha, E. A., El-Sayed, M. E., Reis-Filho, J., & Ellis, I. O. (2009). Patho-biological aspects of basal-like breast cancer. Breast Cancer Research and Treatment, 113, 411–422.CrossRefPubMed
6.
Zurück zum Zitat Beckmann, M. W., Niederacher, D., Schnürch, H. G., Gusterson, B. A., & Bender, H. G. (1997). Multistep carcinogenesis of breast cancer and tumour heterogeneity. Journal of Molecular Medicine, 75, 429–439.CrossRefPubMed Beckmann, M. W., Niederacher, D., Schnürch, H. G., Gusterson, B. A., & Bender, H. G. (1997). Multistep carcinogenesis of breast cancer and tumour heterogeneity. Journal of Molecular Medicine, 75, 429–439.CrossRefPubMed
7.
Zurück zum Zitat Perou, C. M., Sorlie, T., Eisen, M. B., van de Rijn, M., Jeffrey, S. S., Rees, C. A., et al. (2000). Molecular portraits of human breast tumours. Nature, 406, 747–752.CrossRefPubMed Perou, C. M., Sorlie, T., Eisen, M. B., van de Rijn, M., Jeffrey, S. S., Rees, C. A., et al. (2000). Molecular portraits of human breast tumours. Nature, 406, 747–752.CrossRefPubMed
8.
Zurück zum Zitat Sorlie, T., Perou, C. M., Tibshirani, R., Aas, T., Geisler, S., Johnsen, H., et al. (2001). Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proceedings of the National Academy of Sciences of USA, 98, 10869–10874.CrossRef Sorlie, T., Perou, C. M., Tibshirani, R., Aas, T., Geisler, S., Johnsen, H., et al. (2001). Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proceedings of the National Academy of Sciences of USA, 98, 10869–10874.CrossRef
9.
Zurück zum Zitat Sorlie, T., Tibshirani, R., Parker, J., Hastie, T., Marron, J. S., Nobel, A., et al. (2003). Repeated observation of breast tumor subtypes in independent gene expression data sets. Proceedings of the National Academy of Sciences of USA, 100, 8418–8423.CrossRef Sorlie, T., Tibshirani, R., Parker, J., Hastie, T., Marron, J. S., Nobel, A., et al. (2003). Repeated observation of breast tumor subtypes in independent gene expression data sets. Proceedings of the National Academy of Sciences of USA, 100, 8418–8423.CrossRef
10.
Zurück zum Zitat Bertucci, F., Houlgatte, R., Benziane, A., Granjeaud, S., Adélaïde, J., Tagett, R., et al. (2000). Gene expression profiling of primary breast carcinomas using arrays of candidate genes. Human Molecular Genetics, 9, 2981–2991.CrossRefPubMed Bertucci, F., Houlgatte, R., Benziane, A., Granjeaud, S., Adélaïde, J., Tagett, R., et al. (2000). Gene expression profiling of primary breast carcinomas using arrays of candidate genes. Human Molecular Genetics, 9, 2981–2991.CrossRefPubMed
11.
Zurück zum Zitat Bergamaschi, A., Kim, Y. H., Wang, P., Sorlie, T., Hernandez-Boussard, T., & Lonning, P. E. (2006). Distinct patterns of DNA copy number alteration are associated with different clinicopathological features and gene-expression subtypes of breast cancer. Genes, Chromosomes & Cancer, 45, 1033–1040.CrossRef Bergamaschi, A., Kim, Y. H., Wang, P., Sorlie, T., Hernandez-Boussard, T., & Lonning, P. E. (2006). Distinct patterns of DNA copy number alteration are associated with different clinicopathological features and gene-expression subtypes of breast cancer. Genes, Chromosomes & Cancer, 45, 1033–1040.CrossRef
12.
Zurück zum Zitat Chin, K., DeVries, S., Fridlyand, J., Spellman, P. T., Roydasgupta, R., & Kuo, W. L. (2006). Genomic and transcriptional aberrations linked to breast cancer pathophysiologies. Cancer Cell, 10, 529–541.CrossRefPubMed Chin, K., DeVries, S., Fridlyand, J., Spellman, P. T., Roydasgupta, R., & Kuo, W. L. (2006). Genomic and transcriptional aberrations linked to breast cancer pathophysiologies. Cancer Cell, 10, 529–541.CrossRefPubMed
13.
Zurück zum Zitat Neve, R. M., Chin, K., Fridlyand, J., Yeh, J., Baehner, F. L., Fevr, T., et al. (2006). A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell, 10, 515–527.CrossRefPubMed Neve, R. M., Chin, K., Fridlyand, J., Yeh, J., Baehner, F. L., Fevr, T., et al. (2006). A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell, 10, 515–527.CrossRefPubMed
14.
Zurück zum Zitat Aoki, M. N., da Silva do Amaral Herrera, A. C., Amarante, M. K., do Val Carneiro, J. L., Fungaro, M. H., & Watanabe, M. A. (2009). CCR5 and p53 codon 72 gene polymorphisms: Implications in breast cancer development. International Journal of Molecular Medicine, 23, 429–435.PubMed Aoki, M. N., da Silva do Amaral Herrera, A. C., Amarante, M. K., do Val Carneiro, J. L., Fungaro, M. H., & Watanabe, M. A. (2009). CCR5 and p53 codon 72 gene polymorphisms: Implications in breast cancer development. International Journal of Molecular Medicine, 23, 429–435.PubMed
15.
Zurück zum Zitat Hori, S., Nomura, T., & Sakaguchi, S. (2003). Control of regulatory T cell development by the transcription factor FoxP3. Science, 299, 1057–1061.CrossRefPubMed Hori, S., Nomura, T., & Sakaguchi, S. (2003). Control of regulatory T cell development by the transcription factor FoxP3. Science, 299, 1057–1061.CrossRefPubMed
16.
Zurück zum Zitat Bernardes, S. S., Borges, I. K., Lima, J. E., de Azevedo Oliveira Milanez, P., Costa, I. C., Felipe, I., et al. (2010). Involvement of regulatory T cells in HIV immunopathogenesis. Current HIV Research, 8, 340–346.CrossRefPubMed Bernardes, S. S., Borges, I. K., Lima, J. E., de Azevedo Oliveira Milanez, P., Costa, I. C., Felipe, I., et al. (2010). Involvement of regulatory T cells in HIV immunopathogenesis. Current HIV Research, 8, 340–346.CrossRefPubMed
17.
Zurück zum Zitat Rosenberg, S. A. (2001). Progress in human tumour immunology and immunotherapy. Nature, 411, 380–384.CrossRefPubMed Rosenberg, S. A. (2001). Progress in human tumour immunology and immunotherapy. Nature, 411, 380–384.CrossRefPubMed
18.
Zurück zum Zitat Dunn, G. P., Old, L. J., & Schreiber, R. D. (2004). The immunobiology of cancer immunosurveillance and immunoediting. Immunity, 21, 137–148.CrossRefPubMed Dunn, G. P., Old, L. J., & Schreiber, R. D. (2004). The immunobiology of cancer immunosurveillance and immunoediting. Immunity, 21, 137–148.CrossRefPubMed
19.
Zurück zum Zitat Dougan, M., & Dranoff, G. (2009). The immune response to tumors. Current Protocols in Immunology. Chapter 20, Unit 20.11. Dougan, M., & Dranoff, G. (2009). The immune response to tumors. Current Protocols in Immunology. Chapter 20, Unit 20.11.
20.
Zurück zum Zitat Amarante, M. K., & Watanabe, M. A. E. (2009). The possible involvement of virus in breast cancer. Journal of Cancer Research and Clinical Oncology, 135(3), 329–337.CrossRefPubMed Amarante, M. K., & Watanabe, M. A. E. (2009). The possible involvement of virus in breast cancer. Journal of Cancer Research and Clinical Oncology, 135(3), 329–337.CrossRefPubMed
21.
Zurück zum Zitat Standish, L. J., Sweet, E. S., Novack, J., Wenner, C. A., Bridge, C., Nelson, A., et al. (2008). Breast cancer and the immune system. Journal of the Society for Integrative Oncology, 6, 158–168.PubMed Standish, L. J., Sweet, E. S., Novack, J., Wenner, C. A., Bridge, C., Nelson, A., et al. (2008). Breast cancer and the immune system. Journal of the Society for Integrative Oncology, 6, 158–168.PubMed
22.
Zurück zum Zitat Kazbariene, B. (2009). Tumor and immunity. Medicina, 45, 162–167.PubMed Kazbariene, B. (2009). Tumor and immunity. Medicina, 45, 162–167.PubMed
23.
Zurück zum Zitat Tan, T. T., & Coussens, L. M. (2007). Humoral immunity, inflammation and cancer. Current Opinion in Immunology, 19, 209–216.CrossRefPubMed Tan, T. T., & Coussens, L. M. (2007). Humoral immunity, inflammation and cancer. Current Opinion in Immunology, 19, 209–216.CrossRefPubMed
24.
Zurück zum Zitat DeNardo, D. G., & Coussens, L. M. (2007). Inflammation and breast cancer. Balancing immune response: Crosstalk between adaptive and innate immune cells during breast cancer progression. Breast Cancer Research, 9, 212.CrossRefPubMed DeNardo, D. G., & Coussens, L. M. (2007). Inflammation and breast cancer. Balancing immune response: Crosstalk between adaptive and innate immune cells during breast cancer progression. Breast Cancer Research, 9, 212.CrossRefPubMed
25.
Zurück zum Zitat Wang, R. F. (2008). CD8+ regulatory T cells, their suppressive mechanisms, and regulation in cancer. Human Immunology, 69, 811–814.CrossRefPubMed Wang, R. F. (2008). CD8+ regulatory T cells, their suppressive mechanisms, and regulation in cancer. Human Immunology, 69, 811–814.CrossRefPubMed
26.
Zurück zum Zitat Sakaguchi, S., Wing, K., & Miyara, M. (2007). Regulatory T cells—A brief history and perspective. European Journal of Immunology, 37(Suppl 1), S116–S123.CrossRefPubMed Sakaguchi, S., Wing, K., & Miyara, M. (2007). Regulatory T cells—A brief history and perspective. European Journal of Immunology, 37(Suppl 1), S116–S123.CrossRefPubMed
27.
Zurück zum Zitat Sakaguchi, S., Sakaguchi, N., Asano, M., Itoh, M., & Toda, M. (1995). Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. Journal of Immunology, 155(3), 1151–1164. Sakaguchi, S., Sakaguchi, N., Asano, M., Itoh, M., & Toda, M. (1995). Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. Journal of Immunology, 155(3), 1151–1164.
28.
Zurück zum Zitat Shevach, E. M. (2002). CD4−CD25− suppressor T cells: More questions than answers. Nature Reviews. Immunology, 2, 389–400.PubMed Shevach, E. M. (2002). CD4CD25 suppressor T cells: More questions than answers. Nature Reviews. Immunology, 2, 389–400.PubMed
29.
Zurück zum Zitat Wood, K. J., & Sakaguchi, S. (2003). Regulatory lymphocytes: Regulatory T cells in transplantation tolerance. Nature Review Immunology, 3, 199–210.CrossRef Wood, K. J., & Sakaguchi, S. (2003). Regulatory lymphocytes: Regulatory T cells in transplantation tolerance. Nature Review Immunology, 3, 199–210.CrossRef
30.
Zurück zum Zitat Maloy, K. J., & Powrie, F. (2001). Regulatory T cells in the control of immune pathology. Nature Immunology, 2, 816–822.CrossRefPubMed Maloy, K. J., & Powrie, F. (2001). Regulatory T cells in the control of immune pathology. Nature Immunology, 2, 816–822.CrossRefPubMed
31.
Zurück zum Zitat Li, M. O., & Flavell, R. A. (2008). TGF-beta: A master of all T cell trades. Cell, 134, 392–404.CrossRefPubMed Li, M. O., & Flavell, R. A. (2008). TGF-beta: A master of all T cell trades. Cell, 134, 392–404.CrossRefPubMed
32.
Zurück zum Zitat Feuerer, M., Hill, J. A., Mathis, M., & Benoist, C. (2009). FoxP3+ regulatory T cells: Differentiation, specification, subphenotypes. Nature Immunolgy, 10, 689–695.CrossRef Feuerer, M., Hill, J. A., Mathis, M., & Benoist, C. (2009). FoxP3+ regulatory T cells: Differentiation, specification, subphenotypes. Nature Immunolgy, 10, 689–695.CrossRef
33.
Zurück zum Zitat Curti, A., Pandolfi, S., Valzasina, B., Aluigi, M., Isidori, A., Ferri, E., et al. (2007). Modulation of tryptophan catabolism by human leukemic cells results in the conversion of CD25S into CD25R T regulatory cells. Blood, 109, 2871–2877.PubMed Curti, A., Pandolfi, S., Valzasina, B., Aluigi, M., Isidori, A., Ferri, E., et al. (2007). Modulation of tryptophan catabolism by human leukemic cells results in the conversion of CD25S into CD25R T regulatory cells. Blood, 109, 2871–2877.PubMed
34.
Zurück zum Zitat Thornton, A. M., & Shevach, E. M. (1998). CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. The Journal of Experimental Medicine, 188, 287–296.CrossRefPubMed Thornton, A. M., & Shevach, E. M. (1998). CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. The Journal of Experimental Medicine, 188, 287–296.CrossRefPubMed
35.
Zurück zum Zitat Wang, H. Y., Peng, G., Guo, Z., Shevach, E. M., & Wang, R. F. (2005). Recognition of a new ARTC1 peptide ligand uniquely expressed in tumor cells by antigen-specific CD4+ regulatory T cells. Journal of Immunology, 174, 2661–2670. Wang, H. Y., Peng, G., Guo, Z., Shevach, E. M., & Wang, R. F. (2005). Recognition of a new ARTC1 peptide ligand uniquely expressed in tumor cells by antigen-specific CD4+ regulatory T cells. Journal of Immunology, 174, 2661–2670.
36.
Zurück zum Zitat Roncarolo, M. G., Gregori, S., Battaglia, M., Bacchetta, R., Fleischhauer, K., & Levings, M. K. (2006). Interleukin-10-secreting type 1 regulatory T cells in rodents and humans. Immunological Reviews, 212, 28–50.CrossRefPubMed Roncarolo, M. G., Gregori, S., Battaglia, M., Bacchetta, R., Fleischhauer, K., & Levings, M. K. (2006). Interleukin-10-secreting type 1 regulatory T cells in rodents and humans. Immunological Reviews, 212, 28–50.CrossRefPubMed
37.
Zurück zum Zitat Weiner, H. L. (2001). Induction and mechanism of action of transforming growth factor beta-secreting Th3 regulatory cells. Immunological Reviews, 182, 207–214.CrossRefPubMed Weiner, H. L. (2001). Induction and mechanism of action of transforming growth factor beta-secreting Th3 regulatory cells. Immunological Reviews, 182, 207–214.CrossRefPubMed
38.
Zurück zum Zitat Fontenot, J. D., Gavin, M. A., & Rudensky, A. Y. (2003). FoxP3 programs the development and function of CD4+CD25 regulatory T cells. Nature Immunology, 4, 330–336.CrossRefPubMed Fontenot, J. D., Gavin, M. A., & Rudensky, A. Y. (2003). FoxP3 programs the development and function of CD4+CD25 regulatory T cells. Nature Immunology, 4, 330–336.CrossRefPubMed
39.
Zurück zum Zitat Bacchetta, R., Passerini, L., Gambineri, E., Daí, M., Allan, S. E., Perroni, L., et al. (2006). Defective regulatory and effector T cell functions in patients with FoxP3 mutations. The Journal of Clinical Investigation, 116, 1713–1722.CrossRefPubMed Bacchetta, R., Passerini, L., Gambineri, E., Daí, M., Allan, S. E., Perroni, L., et al. (2006). Defective regulatory and effector T cell functions in patients with FoxP3 mutations. The Journal of Clinical Investigation, 116, 1713–1722.CrossRefPubMed
40.
Zurück zum Zitat Gavin, M. A., Torgerson, T. R., Houston, E., DeRoos, P., Ho, W. Y., Stray-Pedersen, A., et al. (2006). Single-cell analysis of normal and FOXP3-mutant human T cells: FoxP3 expression without regulatory T cell development. Proceedings of the National Academy of Sciences of the USA, 103, 6659–6664.CrossRefPubMed Gavin, M. A., Torgerson, T. R., Houston, E., DeRoos, P., Ho, W. Y., Stray-Pedersen, A., et al. (2006). Single-cell analysis of normal and FOXP3-mutant human T cells: FoxP3 expression without regulatory T cell development. Proceedings of the National Academy of Sciences of the USA, 103, 6659–6664.CrossRefPubMed
41.
Zurück zum Zitat Roncador, G., Brown, P. J., Maestre, L., Hue, S., Martínez-Torrecuadrada, J. L., Ling, K. L., et al. (2005). Analysis of FoxP3 protein expression in human CD4(+)CD25(+) regulatory T cells at the single-cell level. European Journal of Immunology, 35, 1681–1691.CrossRefPubMed Roncador, G., Brown, P. J., Maestre, L., Hue, S., Martínez-Torrecuadrada, J. L., Ling, K. L., et al. (2005). Analysis of FoxP3 protein expression in human CD4(+)CD25(+) regulatory T cells at the single-cell level. European Journal of Immunology, 35, 1681–1691.CrossRefPubMed
42.
Zurück zum Zitat Li, B., Saouaf, S. J., Samanta, A., Shen, Y., Hancock, W. W., & Greene, M. I. (2007). Biochemistry and therapeutic implications of mechanisms involved in FoxP3 activity in immune suppression. Current Opinion in Immunology, 19, 583–588.CrossRefPubMed Li, B., Saouaf, S. J., Samanta, A., Shen, Y., Hancock, W. W., & Greene, M. I. (2007). Biochemistry and therapeutic implications of mechanisms involved in FoxP3 activity in immune suppression. Current Opinion in Immunology, 19, 583–588.CrossRefPubMed
43.
Zurück zum Zitat Wu, Y., Borde, M., Heissmeyer, V., Feuerer, M., Lapan, A. D., Stroud, J. C., et al. (2006). FoxP3 controls regulatory T cell function through cooperation with NFAT. Cell, 126, 375–387.CrossRefPubMed Wu, Y., Borde, M., Heissmeyer, V., Feuerer, M., Lapan, A. D., Stroud, J. C., et al. (2006). FoxP3 controls regulatory T cell function through cooperation with NFAT. Cell, 126, 375–387.CrossRefPubMed
44.
Zurück zum Zitat Cruvinel, W. M., Mesquita, D., Jr., Araújo, J. A. P., Salmazi, K. C., Kállas, E. G., Andrade, L. E. C., et al. (2008). Natural regulatory T cells in rheumatic diseases. Revista Brasileira de Reumatologia, 48, 342–355.CrossRef Cruvinel, W. M., Mesquita, D., Jr., Araújo, J. A. P., Salmazi, K. C., Kállas, E. G., Andrade, L. E. C., et al. (2008). Natural regulatory T cells in rheumatic diseases. Revista Brasileira de Reumatologia, 48, 342–355.CrossRef
45.
Zurück zum Zitat Lin, H., Sun, X. F., Zhen, Z. J., Xia, Y., Ling, J. Y., Huang, H. Q., et al. (2009). Correlation between peripheral blood CD4+CD25highCD127low regulatory T cell and clinical characteristics of patients with non-Hodgkin’s lymphoma. Ai Zheng, 28(11), 1186–1192.PubMed Lin, H., Sun, X. F., Zhen, Z. J., Xia, Y., Ling, J. Y., Huang, H. Q., et al. (2009). Correlation between peripheral blood CD4+CD25highCD127low regulatory T cell and clinical characteristics of patients with non-Hodgkin’s lymphoma. Ai Zheng, 28(11), 1186–1192.PubMed
46.
Zurück zum Zitat Whiteside, T. L. (2006). Immune suppression in cancer: Effects on immune cells, mechanisms and future therapeutic intervention. Seminars in Cancer Biology, 16(1), 3–15.CrossRefPubMed Whiteside, T. L. (2006). Immune suppression in cancer: Effects on immune cells, mechanisms and future therapeutic intervention. Seminars in Cancer Biology, 16(1), 3–15.CrossRefPubMed
47.
Zurück zum Zitat Mansfield, A. S., Heikkila, P. S., Vaara, A. T., von Smitten, K. A., Vakkila, J. M., & Leidenius, M. H. (2009). Simultaneous FoxP3 and IDO expression is associated with sentinel lymph node metastases in breast cancer. BMC Cancer, 9, 231.CrossRefPubMed Mansfield, A. S., Heikkila, P. S., Vaara, A. T., von Smitten, K. A., Vakkila, J. M., & Leidenius, M. H. (2009). Simultaneous FoxP3 and IDO expression is associated with sentinel lymph node metastases in breast cancer. BMC Cancer, 9, 231.CrossRefPubMed
48.
Zurück zum Zitat Zhou, L., Lopes, J. E., Chong, M. M. W., Ivanov, I. I., Min, R., Victora, G. D., et al. (2008). TGF-β-induced FoxP3 inhibits TH17 cell differentiation by antagonizing RORγt function. Nature, 453, 236–240.CrossRefPubMed Zhou, L., Lopes, J. E., Chong, M. M. W., Ivanov, I. I., Min, R., Victora, G. D., et al. (2008). TGF-β-induced FoxP3 inhibits TH17 cell differentiation by antagonizing RORγt function. Nature, 453, 236–240.CrossRefPubMed
49.
Zurück zum Zitat Voo, K. S., Wang, Y. H., Santori, F. R., Boggiano, C., Wang, Y. H., Arima, K., et al. (2009). Identification of IL-17-producing FoxP3+ regulatory T cells in humans. Proceedings of the National Academy of Sciences of USA, 106, 4793–4798.CrossRef Voo, K. S., Wang, Y. H., Santori, F. R., Boggiano, C., Wang, Y. H., Arima, K., et al. (2009). Identification of IL-17-producing FoxP3+ regulatory T cells in humans. Proceedings of the National Academy of Sciences of USA, 106, 4793–4798.CrossRef
50.
Zurück zum Zitat Beyer, M., Kochanek, M., Giese, T., Endl, E., Weihrauch, M. R., Knolle, P. A., et al. (2006). In vivo peripheral expansion of naive CD4+CD25highFoxP3+ regulatory T cells in patients with multiple myeloma. Blood, 107, 3940–3949.CrossRefPubMed Beyer, M., Kochanek, M., Giese, T., Endl, E., Weihrauch, M. R., Knolle, P. A., et al. (2006). In vivo peripheral expansion of naive CD4+CD25highFoxP3+ regulatory T cells in patients with multiple myeloma. Blood, 107, 3940–3949.CrossRefPubMed
51.
Zurück zum Zitat Wang, H. Y., & Wang, R. F. (2007). Regulatory T cells and cancer. Current Opinion in Immunology, 19, 217–223.CrossRefPubMed Wang, H. Y., & Wang, R. F. (2007). Regulatory T cells and cancer. Current Opinion in Immunology, 19, 217–223.CrossRefPubMed
52.
Zurück zum Zitat Liu, Z., Kim, J. H., Falo, L. D., Jr., & You, Z. (2009). Tumor regulatory T cells potently abrogate antitumor immunity. Journal of Immunology, 182, 6160–6167.CrossRef Liu, Z., Kim, J. H., Falo, L. D., Jr., & You, Z. (2009). Tumor regulatory T cells potently abrogate antitumor immunity. Journal of Immunology, 182, 6160–6167.CrossRef
53.
Zurück zum Zitat Konwar, R., Chaudhary, P., Kumar, S., Mishra, D., Chattopadhyay, N., & Bid, H. K. (2009). Breast cancer risks associated with polymorphisms of IL-1RN and IL-4 gene in Indian women. Oncology Research, 17, 367–372.CrossRefPubMed Konwar, R., Chaudhary, P., Kumar, S., Mishra, D., Chattopadhyay, N., & Bid, H. K. (2009). Breast cancer risks associated with polymorphisms of IL-1RN and IL-4 gene in Indian women. Oncology Research, 17, 367–372.CrossRefPubMed
54.
Zurück zum Zitat Zhou, X., Bailey-Bucktrout, S., Jeker, L. T., & Bluestone, J. A. (2009). Plasticity of CD4(+) FoxP3(+) T cells. Current Opinion in Immunology, 21, 281–285.CrossRefPubMed Zhou, X., Bailey-Bucktrout, S., Jeker, L. T., & Bluestone, J. A. (2009). Plasticity of CD4(+) FoxP3(+) T cells. Current Opinion in Immunology, 21, 281–285.CrossRefPubMed
55.
Zurück zum Zitat Kosmaczewska, A., Ciszak, L., Potoczek, S., & Frydecka, I. (2008). The significance of Treg cells in defective tumor immunity. Archivum Immunologiae et Therapie Experimentalis, 56, 181–191.CrossRef Kosmaczewska, A., Ciszak, L., Potoczek, S., & Frydecka, I. (2008). The significance of Treg cells in defective tumor immunity. Archivum Immunologiae et Therapie Experimentalis, 56, 181–191.CrossRef
56.
Zurück zum Zitat Gupta, S., Joshi, K., Wig, J. D., & Arora, S. K. (2007). Intratumoral FoxP3 expression in infiltrating breast carcinoma: Its association with clinicopathologic parameters and angiogenesis. Acta Oncológica, 46, 792–797.CrossRefPubMed Gupta, S., Joshi, K., Wig, J. D., & Arora, S. K. (2007). Intratumoral FoxP3 expression in infiltrating breast carcinoma: Its association with clinicopathologic parameters and angiogenesis. Acta Oncológica, 46, 792–797.CrossRefPubMed
57.
Zurück zum Zitat Karanikas, V., Speletas, M., Zamanakou, M., Kalala, F., Loules, G., Kerenidi, T., et al. (2008). FoxP3 expression in human cancer cells. Journal of Translational Medicine, 6, 19.CrossRefPubMed Karanikas, V., Speletas, M., Zamanakou, M., Kalala, F., Loules, G., Kerenidi, T., et al. (2008). FoxP3 expression in human cancer cells. Journal of Translational Medicine, 6, 19.CrossRefPubMed
58.
Zurück zum Zitat Liu, L., Wu, G., Yao, J. X., Liu, L., Wu, G., Yao, J. X., et al. (2008). CD4+CD25high regulatory cells in peripheral blood of cancer patients. Neuro Endocrinology Letters, 29, 240–245.PubMed Liu, L., Wu, G., Yao, J. X., Liu, L., Wu, G., Yao, J. X., et al. (2008). CD4+CD25high regulatory cells in peripheral blood of cancer patients. Neuro Endocrinology Letters, 29, 240–245.PubMed
59.
Zurück zum Zitat Bates, G. J., Fox, S. B., Han, C., Leek, R. D., Garcia, J. F., Harris, A. L., et al. (2006). Quantification of regulatory T cells enables the identification of high-risk breast cancer patients and those at risk of late relapse. Journal of Clinical Oncology, 24, 5373–5380.CrossRefPubMed Bates, G. J., Fox, S. B., Han, C., Leek, R. D., Garcia, J. F., Harris, A. L., et al. (2006). Quantification of regulatory T cells enables the identification of high-risk breast cancer patients and those at risk of late relapse. Journal of Clinical Oncology, 24, 5373–5380.CrossRefPubMed
60.
Zurück zum Zitat Liu, Y., & Zheng, P. (2007). FoxP3 and breast cancer: Implications for therapy and diagnosis. Pharmacogenomics, 8, 1485–1487.CrossRefPubMed Liu, Y., & Zheng, P. (2007). FoxP3 and breast cancer: Implications for therapy and diagnosis. Pharmacogenomics, 8, 1485–1487.CrossRefPubMed
61.
Zurück zum Zitat Zuo, T., Wang, L., Morrison, C., Chang, X., Zhang, H., Li, W., et al. (2007). FoxP3 is an X-linked breast cancer suppressor gene and an important repressor of HER-2/ErbB2 oncogene. Cell, 129, 1275–1286.CrossRefPubMed Zuo, T., Wang, L., Morrison, C., Chang, X., Zhang, H., Li, W., et al. (2007). FoxP3 is an X-linked breast cancer suppressor gene and an important repressor of HER-2/ErbB2 oncogene. Cell, 129, 1275–1286.CrossRefPubMed
62.
Zurück zum Zitat Ohara, M., Yamaguchi, Y., Matsuura, K., Murakami, S., Arihiro, K., & Okada, M. (2009). Possible involvement of regulatory T cells in tumor onset and progression in primary breast cancer. Cancer Immunology Immunotherapy: CII, 58, 441–447.CrossRef Ohara, M., Yamaguchi, Y., Matsuura, K., Murakami, S., Arihiro, K., & Okada, M. (2009). Possible involvement of regulatory T cells in tumor onset and progression in primary breast cancer. Cancer Immunology Immunotherapy: CII, 58, 441–447.CrossRef
63.
Zurück zum Zitat Ladoire, S., Arnould, L., Mignot, G., Coudert, B., Rébé, C., Chalmin, F., et al. (2010). Presence of FoxP3 expression in tumor cells predicts better survival in HER2-overexpressing breast cancer patients treated with neoadjuvant chemotherapy. Breast Cancer Research and Treatment, doi:10.1007/s10549-010-0831-1 Ladoire, S., Arnould, L., Mignot, G., Coudert, B., Rébé, C., Chalmin, F., et al. (2010). Presence of FoxP3 expression in tumor cells predicts better survival in HER2-overexpressing breast cancer patients treated with neoadjuvant chemotherapy. Breast Cancer Research and Treatment, doi:10.​1007/​s10549-010-0831-1
64.
Zurück zum Zitat Selenko-Gebauer, N., Majdic, O., Szekeres, A., Höfler, G., Guthann, E., Korthäuer, U., et al. (2003). B7-H1 (programmed death-1 ligand) on dendritic cells is involved in the induction and maintenance of T cell anergy. Journal of Immunology, 170, 3637–3644. Selenko-Gebauer, N., Majdic, O., Szekeres, A., Höfler, G., Guthann, E., Korthäuer, U., et al. (2003). B7-H1 (programmed death-1 ligand) on dendritic cells is involved in the induction and maintenance of T cell anergy. Journal of Immunology, 170, 3637–3644.
65.
Zurück zum Zitat Iwai, Y., Ishida, M., Tanaka, Y., Okazaki, T., Honjo, T., & Minato, N. (2002). Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proceedings of the National Academy of Sciences of the USA, 99, 12293–12297.CrossRefPubMed Iwai, Y., Ishida, M., Tanaka, Y., Okazaki, T., Honjo, T., & Minato, N. (2002). Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proceedings of the National Academy of Sciences of the USA, 99, 12293–12297.CrossRefPubMed
66.
Zurück zum Zitat Ghebeh, H., Barhoush, E., Tulbah, A., Elkum, N., Al-Tweigeri, T., & Dermime, S. (2008). FoxP3+ Tregs and B7-H1+/PD-1+ T lymphocytes co-infiltrate the tumor tissues of high-risk breast cancer patients: Implication for immunotherapy. BMC Cancer, 23, 8–57. Ghebeh, H., Barhoush, E., Tulbah, A., Elkum, N., Al-Tweigeri, T., & Dermime, S. (2008). FoxP3+ Tregs and B7-H1+/PD-1+ T lymphocytes co-infiltrate the tumor tissues of high-risk breast cancer patients: Implication for immunotherapy. BMC Cancer, 23, 8–57.
67.
Zurück zum Zitat Berger, C. L., Tigelaar, R., Cohen, J., Mariwalla, K., Trinh, J., Wang, N., et al. (2005). Cutaneous T cell lymphoma: Malignant proliferation of T regulatory cells. Blood, 105, 1640–1647.CrossRefPubMed Berger, C. L., Tigelaar, R., Cohen, J., Mariwalla, K., Trinh, J., Wang, N., et al. (2005). Cutaneous T cell lymphoma: Malignant proliferation of T regulatory cells. Blood, 105, 1640–1647.CrossRefPubMed
68.
Zurück zum Zitat Karube, K., Ohshima, K., Tsuchiya, T., Yamaguchi, T., Kawano, R., Suzumiya, J., et al. (2004). Expression of FoxP3, a key molecule in CD4+CD25+ regulatory T cells, in adult T cell leukaemia/lymphoma cells. British Journal Haematology, 126, 81–84.CrossRef Karube, K., Ohshima, K., Tsuchiya, T., Yamaguchi, T., Kawano, R., Suzumiya, J., et al. (2004). Expression of FoxP3, a key molecule in CD4+CD25+ regulatory T cells, in adult T cell leukaemia/lymphoma cells. British Journal Haematology, 126, 81–84.CrossRef
69.
Zurück zum Zitat Liyanage, U. K., Moore, T. T., Joo, H. G., Tanaka, Y., Herrmann, V., Doherty, G., et al. (2002). Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma. Journal of Immunology, 169, 2756–2761. Liyanage, U. K., Moore, T. T., Joo, H. G., Tanaka, Y., Herrmann, V., Doherty, G., et al. (2002). Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma. Journal of Immunology, 169, 2756–2761.
70.
Zurück zum Zitat Perez, S. A., Karamouzis, M. V., Skarlos, D. V., Ardavanis, A., Sotiriadou, N. N., Iliopoulou, E. G., et al. (2007). CD4+CD25+ regulatory T-cell frequency in HER-2/neu (HER)-positive and HER-negative advanced-stage breast cancer patients. Clinical Cancer Research, 13, 2714–2721.CrossRefPubMed Perez, S. A., Karamouzis, M. V., Skarlos, D. V., Ardavanis, A., Sotiriadou, N. N., Iliopoulou, E. G., et al. (2007). CD4+CD25+ regulatory T-cell frequency in HER-2/neu (HER)-positive and HER-negative advanced-stage breast cancer patients. Clinical Cancer Research, 13, 2714–2721.CrossRefPubMed
71.
Zurück zum Zitat Wolf, A. M., Wolf, D., Steurer, M., Gastl, G., Gunsilius, E., Grubeck-Loebenstein, B., et al. (2003). Increase of regulatory T cells in the peripheral blood of cancer patients. Clinical Cancer Research, 9(2), 606–612.PubMed Wolf, A. M., Wolf, D., Steurer, M., Gastl, G., Gunsilius, E., Grubeck-Loebenstein, B., et al. (2003). Increase of regulatory T cells in the peripheral blood of cancer patients. Clinical Cancer Research, 9(2), 606–612.PubMed
72.
Zurück zum Zitat Bi, Y., Wei, L., Mao, H. T., Zhang, L., & Zuo, W. S. (2008). Expressions of Fas, CTLA-4 and RhoBTB2 genes in breast carcinoma and their relationship with clinicopathological factors. Zhonghua ZhongLiu Za Zhi, 30, 749–753. Bi, Y., Wei, L., Mao, H. T., Zhang, L., & Zuo, W. S. (2008). Expressions of Fas, CTLA-4 and RhoBTB2 genes in breast carcinoma and their relationship with clinicopathological factors. Zhonghua ZhongLiu Za Zhi, 30, 749–753.
73.
Zurück zum Zitat Jaberipour, M., Habibagahi, M., Hosseini, A., Habibabad, S. R., Talei, A., & Ghaderi, A. (2010). Increased CTLA-4 and FOXP3 transcripts in peripheral blood mononuclear cells of patients with breast cancer. Pathology Oncology Research, doi:10.1007/s12253-010-9256-8 Jaberipour, M., Habibagahi, M., Hosseini, A., Habibabad, S. R., Talei, A., & Ghaderi, A. (2010). Increased CTLA-4 and FOXP3 transcripts in peripheral blood mononuclear cells of patients with breast cancer. Pathology Oncology Research, doi:10.​1007/​s12253-010-9256-8
74.
Zurück zum Zitat Raskin, L., Rennert, G., & Gruber, S. B. (2009). FoxP3 germline polymorphisms are not associated with risk of breast cancer. Cancer Genetics and Cytogenetics, 190, 40–42.CrossRefPubMed Raskin, L., Rennert, G., & Gruber, S. B. (2009). FoxP3 germline polymorphisms are not associated with risk of breast cancer. Cancer Genetics and Cytogenetics, 190, 40–42.CrossRefPubMed
75.
Zurück zum Zitat Fidler, I. J. (2003). The pathogenesis of cancer metastasis: The ‘seed and soil’ hypothesis revisited. Nature Reviews. Cancer, 3, 453–458.CrossRefPubMed Fidler, I. J. (2003). The pathogenesis of cancer metastasis: The ‘seed and soil’ hypothesis revisited. Nature Reviews. Cancer, 3, 453–458.CrossRefPubMed
76.
Zurück zum Zitat Gupta, G. P., & Massagué, J. (2006). Cancer metastasis: Building a framework. Cell, 127, 679–695.CrossRefPubMed Gupta, G. P., & Massagué, J. (2006). Cancer metastasis: Building a framework. Cell, 127, 679–695.CrossRefPubMed
77.
Zurück zum Zitat Audia, S., Nicolas, A., Cathelin, D., Larmonier, N., Ferrand, C., Foucher, P., et al. (2007). Increase of CD4+ CD25++ regulatory T cells in the peripheral blood of patients with metastatic carcinoma: A phase I clinical trial using cyclophosphamide and immunotherapy to eliminate CD4+CD25+ T lymphocytes. Clinical and Experimental Immunology, 150(3), 523–530.CrossRefPubMed Audia, S., Nicolas, A., Cathelin, D., Larmonier, N., Ferrand, C., Foucher, P., et al. (2007). Increase of CD4+ CD25++ regulatory T cells in the peripheral blood of patients with metastatic carcinoma: A phase I clinical trial using cyclophosphamide and immunotherapy to eliminate CD4+CD25+ T lymphocytes. Clinical and Experimental Immunology, 150(3), 523–530.CrossRefPubMed
78.
Zurück zum Zitat Rech, A. J., Mick, R., Kaplan, D. E., Chang, K. M., Domchek, S. M., & Vonderheide, R. H. (2010). Homeostasis of peripheral FoxP3(+) CD4 (+) regulatory T cells in patients with early and late stage breast cancer. Cancer Immunology, Immunotherapy, 59(4), 599–607.CrossRefPubMed Rech, A. J., Mick, R., Kaplan, D. E., Chang, K. M., Domchek, S. M., & Vonderheide, R. H. (2010). Homeostasis of peripheral FoxP3(+) CD4 (+) regulatory T cells in patients with early and late stage breast cancer. Cancer Immunology, Immunotherapy, 59(4), 599–607.CrossRefPubMed
79.
Zurück zum Zitat Aruga, T., Suzuki, E., Saji, S., Horiguchi, S., Horiguchi, K., Sekine, S., et al. (2009). A low number of tumor-infiltrating FOXP3-positive cells during primary systemic chemotherapy correlates with favorable anti-tumor response in patients with breast cancer. Oncology Reports, 22, 273–278.PubMed Aruga, T., Suzuki, E., Saji, S., Horiguchi, S., Horiguchi, K., Sekine, S., et al. (2009). A low number of tumor-infiltrating FOXP3-positive cells during primary systemic chemotherapy correlates with favorable anti-tumor response in patients with breast cancer. Oncology Reports, 22, 273–278.PubMed
80.
Zurück zum Zitat Merlo, A., Casalini, P., Carcangiu, M. L., Malventano, C., Triulzi, T., Mènard, S., et al. (2009). FoxP3 expression and overall survival in breast cancer. Journal of Clinical Oncology, 27, 1746–1752.CrossRefPubMed Merlo, A., Casalini, P., Carcangiu, M. L., Malventano, C., Triulzi, T., Mènard, S., et al. (2009). FoxP3 expression and overall survival in breast cancer. Journal of Clinical Oncology, 27, 1746–1752.CrossRefPubMed
81.
Zurück zum Zitat Carneiro, J. L. V., Nixdorf, S. L., Mantovani, M. S., da Silva do Amaral Herrera, A. C., Aoki, M. N., Amarante, M. K., et al. (2009). Plasma malondialdehyde levels and CXCR4 expression in peripheral blood cells of breast cancer patients. Journal of Cancer Research and Clinical Oncology, 135, 997–1004.CrossRef Carneiro, J. L. V., Nixdorf, S. L., Mantovani, M. S., da Silva do Amaral Herrera, A. C., Aoki, M. N., Amarante, M. K., et al. (2009). Plasma malondialdehyde levels and CXCR4 expression in peripheral blood cells of breast cancer patients. Journal of Cancer Research and Clinical Oncology, 135, 997–1004.CrossRef
82.
Zurück zum Zitat Müller, A., Homey, B., Soto, H., Ge, N., Catron, D., Buchanan, M. E., et al. (2001). Involvement of chemokine receptors in breast cancer metastasis. Nature, 410(6824), 50–56.CrossRefPubMed Müller, A., Homey, B., Soto, H., Ge, N., Catron, D., Buchanan, M. E., et al. (2001). Involvement of chemokine receptors in breast cancer metastasis. Nature, 410(6824), 50–56.CrossRefPubMed
83.
Zurück zum Zitat Shimizu, Y., Dobashi, K., Imai, H., Sunaga, N., Ono, A., Sano, T., et al. (2009). CXCR4+FOXP3+CD25+ lymphocytes accumulate in CXCL12-expressing malignant pleural mesothelioma. International Journal of Immunopathology and Pharmacology, 22, 43–51.PubMed Shimizu, Y., Dobashi, K., Imai, H., Sunaga, N., Ono, A., Sano, T., et al. (2009). CXCR4+FOXP3+CD25+ lymphocytes accumulate in CXCL12-expressing malignant pleural mesothelioma. International Journal of Immunopathology and Pharmacology, 22, 43–51.PubMed
84.
Zurück zum Zitat Ishida, T., & Ueda, R. (2006). CCR4 as a novel molecular target for immunotherapy of cancer. Cancer Science, 97(11), 1139–1146.CrossRefPubMed Ishida, T., & Ueda, R. (2006). CCR4 as a novel molecular target for immunotherapy of cancer. Cancer Science, 97(11), 1139–1146.CrossRefPubMed
85.
Zurück zum Zitat Mougiakakos, D., Choudhury, A., Lladser, A., Kiessling, R., & Johansson, C. C. (2010). Regulatory T cells in cancer. Advances in Cancer Research, 107, 57–117.CrossRefPubMed Mougiakakos, D., Choudhury, A., Lladser, A., Kiessling, R., & Johansson, C. C. (2010). Regulatory T cells in cancer. Advances in Cancer Research, 107, 57–117.CrossRefPubMed
86.
Zurück zum Zitat Xu, L., Xu, W., Qiu, S., & Xiong, S. (2010). Enrichment of CCR6(+)Foxp3(+) regulatory T cells in the tumor mass correlates with impaired CD8(+) T cell function and poor prognosis of breast cancer. Clinical Immunology, 135, 466–475.CrossRefPubMed Xu, L., Xu, W., Qiu, S., & Xiong, S. (2010). Enrichment of CCR6(+)Foxp3(+) regulatory T cells in the tumor mass correlates with impaired CD8(+) T cell function and poor prognosis of breast cancer. Clinical Immunology, 135, 466–475.CrossRefPubMed
87.
Zurück zum Zitat Tannock, I. F., Hill, R. P., Bristow, R. G., & Harrington, L. (2005). The basic science of oncology. New York: McGraw-Hill. Tannock, I. F., Hill, R. P., Bristow, R. G., & Harrington, L. (2005). The basic science of oncology. New York: McGraw-Hill.
88.
Zurück zum Zitat Nguyen, D. X., & Massagué, J. (2007). Genetic determinants of cancer metastasis. Nature Reviews Genetics, 8, 341–352.CrossRefPubMed Nguyen, D. X., & Massagué, J. (2007). Genetic determinants of cancer metastasis. Nature Reviews Genetics, 8, 341–352.CrossRefPubMed
89.
Zurück zum Zitat Alam, S. M., Clark, J. S., George, W. D., & Campbell, A. M. (1993). Altered lymphocyte populations in tumour invaded nodes of breast cancer patients. Immunology Letters, 35(3), 229–234.CrossRefPubMed Alam, S. M., Clark, J. S., George, W. D., & Campbell, A. M. (1993). Altered lymphocyte populations in tumour invaded nodes of breast cancer patients. Immunology Letters, 35(3), 229–234.CrossRefPubMed
90.
Zurück zum Zitat Nakamura, R., Sakakibara, M., Nagashima, T., Sangai, T., Arai, M., Fujimori, T., et al. (2009). Accumulation of regulatory T cells in sentinel lymph nodes is a prognostic predictor in patients with node-negative breast cancer. European Journal of Cancer, 45, 2123–2131.CrossRefPubMed Nakamura, R., Sakakibara, M., Nagashima, T., Sangai, T., Arai, M., Fujimori, T., et al. (2009). Accumulation of regulatory T cells in sentinel lymph nodes is a prognostic predictor in patients with node-negative breast cancer. European Journal of Cancer, 45, 2123–2131.CrossRefPubMed
91.
Zurück zum Zitat Matsuura, K., Yamaguchi, Y., Osaki, A., Ohara, M., Okita, R., Emi, A., et al. (2009). FoxP3 expression of micrometastasis-positive sentinel nodes in breast cancer patients. Oncology Reports, 22(5), 1181–1187.CrossRefPubMed Matsuura, K., Yamaguchi, Y., Osaki, A., Ohara, M., Okita, R., Emi, A., et al. (2009). FoxP3 expression of micrometastasis-positive sentinel nodes in breast cancer patients. Oncology Reports, 22(5), 1181–1187.CrossRefPubMed
92.
Zurück zum Zitat Akhurst, R. J., & Derynck, R. (2001). TGF-beta signalling in cancer—A double-edged sword. Trends in Cell Biology, 11, S44–S51.PubMed Akhurst, R. J., & Derynck, R. (2001). TGF-beta signalling in cancer—A double-edged sword. Trends in Cell Biology, 11, S44–S51.PubMed
93.
Zurück zum Zitat Kalluri, R., & Zeisberg, M. (2006). Fibroblasts in cancer. Nature Reviews Cancer, 6, 392–401.CrossRefPubMed Kalluri, R., & Zeisberg, M. (2006). Fibroblasts in cancer. Nature Reviews Cancer, 6, 392–401.CrossRefPubMed
94.
Zurück zum Zitat Pollard, J. W. (2004). Tumour-educated macrophages promote tumor progression and metastasis. Nature Reviews. Cancer, 4, 71–78.CrossRefPubMed Pollard, J. W. (2004). Tumour-educated macrophages promote tumor progression and metastasis. Nature Reviews. Cancer, 4, 71–78.CrossRefPubMed
95.
Zurück zum Zitat Wels, J., Kaplan, R. N., Rafii, S., & Lyden, D. (2008). Migratory neighbors and distant invaders: Tumor-associated niche cells. Genes & Development, 22, 559–574.CrossRef Wels, J., Kaplan, R. N., Rafii, S., & Lyden, D. (2008). Migratory neighbors and distant invaders: Tumor-associated niche cells. Genes & Development, 22, 559–574.CrossRef
96.
Zurück zum Zitat Gobert, M., Treilleux, I., Bendriss-Vermare, N., Bachelot, T., Goddard-Leon, S., Arfi, V., et al. (2009). Regulatory T cells recruited through CCL22/CCR4 are selectively activated in lymphoid infiltrates surrounding primary breast tumors and lead to an adverse clinical outcome. Cancer Research, 69(5), 2000–2009.CrossRefPubMed Gobert, M., Treilleux, I., Bendriss-Vermare, N., Bachelot, T., Goddard-Leon, S., Arfi, V., et al. (2009). Regulatory T cells recruited through CCL22/CCR4 are selectively activated in lymphoid infiltrates surrounding primary breast tumors and lead to an adverse clinical outcome. Cancer Research, 69(5), 2000–2009.CrossRefPubMed
97.
Zurück zum Zitat Zheng, Y., & Rudensky, A. Y. (2007). Foxp3 in control of the regulatory T cell lineage. Nature Immunology, 8, 457–462.CrossRefPubMed Zheng, Y., & Rudensky, A. Y. (2007). Foxp3 in control of the regulatory T cell lineage. Nature Immunology, 8, 457–462.CrossRefPubMed
98.
Zurück zum Zitat Kodama, J., Hasengaowa, Kusumoto, T., Seki, N., Matsuo, T., Ojima, Y., et al. (2007). Association of CXCR4 and CCR7 chemokine receptorexpression and lymph node metastasis in human cervical cancer. Annals of Oncology, 18, 70–76.CrossRefPubMed Kodama, J., Hasengaowa, Kusumoto, T., Seki, N., Matsuo, T., Ojima, Y., et al. (2007). Association of CXCR4 and CCR7 chemokine receptorexpression and lymph node metastasis in human cervical cancer. Annals of Oncology, 18, 70–76.CrossRefPubMed
99.
Zurück zum Zitat Pitkin, L., Luangdilok, S., Corbishley, C., Wilson, P. O., Dalton, P., Bray, D., et al. (2007). Expression of CC chemokine receptor 7 in tonsillar cancer predicts cervical nodal metastasis, systemic relapse and survival. British Journal of Cancer, 97, 670–677.CrossRefPubMed Pitkin, L., Luangdilok, S., Corbishley, C., Wilson, P. O., Dalton, P., Bray, D., et al. (2007). Expression of CC chemokine receptor 7 in tonsillar cancer predicts cervical nodal metastasis, systemic relapse and survival. British Journal of Cancer, 97, 670–677.CrossRefPubMed
100.
Zurück zum Zitat Lu, H. (2009). FoxP3 expression and prognosis: Role of both the tumor and T cells. Journal of Clinical Oncology, 27(11), 1735–1736.CrossRefPubMed Lu, H. (2009). FoxP3 expression and prognosis: Role of both the tumor and T cells. Journal of Clinical Oncology, 27(11), 1735–1736.CrossRefPubMed
Metadaten
Titel
Regulatory T cells and breast cancer: implications for immunopathogenesis
verfasst von
Maria Angelica Ehara Watanabe
Julie Massayo Maeda Oda
Marla Karine Amarante
Julio Cesar Voltarelli
Publikationsdatum
01.12.2010
Verlag
Springer US
Erschienen in
Cancer and Metastasis Reviews / Ausgabe 4/2010
Print ISSN: 0167-7659
Elektronische ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-010-9247-y

Weitere Artikel der Ausgabe 4/2010

Cancer and Metastasis Reviews 4/2010 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.