Skip to main content
Erschienen in: Cancer and Metastasis Reviews 4/2010

01.12.2010 | NON-THEMATIC REVIEW

CXCL12 / CXCR4 / CXCR7 chemokine axis and cancer progression

verfasst von: Xueqing Sun, Guangcun Cheng, Mingang Hao, Jianghua Zheng, Xiaoming Zhou, Jian Zhang, Russell S. Taichman, Kenneth J. Pienta, Jianhua Wang

Erschienen in: Cancer and Metastasis Reviews | Ausgabe 4/2010

Einloggen, um Zugang zu erhalten

Abstract

Chemokines, small pro-inflammatory chemoattractant cytokines that bind to specific G-protein-coupled seven-span transmembrane receptors, are major regulators of cell trafficking and adhesion. The chemokine CXCL12 (also called stromal-derived factor-1) is an important α-chemokine that binds primarily to its cognate receptor CXCR4 and thus regulates the trafficking of normal and malignant cells. For many years, it was believed that CXCR4 was the only receptor for CXCL12. Yet, recent work has demonstrated that CXCL12 also binds to another seven-transmembrane span receptor called CXCR7. Our group and others have established critical roles for CXCR4 and CXCR7 on mediating tumor metastasis in several types of cancers, in addition to their contributions as biomarkers of tumor behavior as well as potential therapeutic targets. Here, we review the current concepts regarding the role of CXCL12 / CXCR4 / CXCR7 axis activation, which regulates the pattern of tumor growth and metastatic spread to organs expressing high levels of CXCL12 to develop secondary tumors. We also summarize recent therapeutic approaches to target these receptors and/or their ligands.
Literatur
1.
Zurück zum Zitat Vindrieux, D., Escobar, P., & Lazennec, G. (2009). Emerging roles of chemokines in prostate cancer. Endocrine-Related Cancer, 16(3), 663–673.PubMedCrossRef Vindrieux, D., Escobar, P., & Lazennec, G. (2009). Emerging roles of chemokines in prostate cancer. Endocrine-Related Cancer, 16(3), 663–673.PubMedCrossRef
2.
Zurück zum Zitat Ransohoff, R. M. (2009). Chemokines and chemokine receptors: Standing at the crossroads of immunobiology and neurobiology. Immunity, 31(5), 711–721.PubMedCrossRef Ransohoff, R. M. (2009). Chemokines and chemokine receptors: Standing at the crossroads of immunobiology and neurobiology. Immunity, 31(5), 711–721.PubMedCrossRef
3.
Zurück zum Zitat Bieche, I., Chavey, C., Andrieu, C., Busson, M., Vacher, S., Le Corre, L., et al. (2007). Cxc chemokines located in the 4q21 region are up-regulated in breast cancer. Endocrine-Related Cancer, 14(4), 1039–1052.PubMedCrossRef Bieche, I., Chavey, C., Andrieu, C., Busson, M., Vacher, S., Le Corre, L., et al. (2007). Cxc chemokines located in the 4q21 region are up-regulated in breast cancer. Endocrine-Related Cancer, 14(4), 1039–1052.PubMedCrossRef
4.
Zurück zum Zitat New, D. C., & Wong, Y. H. (2003). Cc chemokine receptor-coupled signalling pathways. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai), 35(9), 779–788. New, D. C., & Wong, Y. H. (2003). Cc chemokine receptor-coupled signalling pathways. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai), 35(9), 779–788.
5.
Zurück zum Zitat Rot, A., & von Andrian, U. H. (2004). Chemokines in innate and adaptive host defense: Basic chemokinese grammar for immune cells. Annual Review of Immunology, 22, 891–928.PubMedCrossRef Rot, A., & von Andrian, U. H. (2004). Chemokines in innate and adaptive host defense: Basic chemokinese grammar for immune cells. Annual Review of Immunology, 22, 891–928.PubMedCrossRef
6.
Zurück zum Zitat Lazennec, G., & Richmond, A. (2010). Chemokines and chemokine receptors: New insights into cancer-related inflammation. Trends Mol Med, 16(3), 133–144.PubMedCrossRef Lazennec, G., & Richmond, A. (2010). Chemokines and chemokine receptors: New insights into cancer-related inflammation. Trends Mol Med, 16(3), 133–144.PubMedCrossRef
7.
Zurück zum Zitat Keeley, E. C., Mehrad, B., & Strieter, R. M. (2010). Cxc chemokines in cancer angiogenesis and metastases. Adv Cancer Res, 106, 91–111.PubMedCrossRef Keeley, E. C., Mehrad, B., & Strieter, R. M. (2010). Cxc chemokines in cancer angiogenesis and metastases. Adv Cancer Res, 106, 91–111.PubMedCrossRef
8.
Zurück zum Zitat Kruizinga, R. C., Bestebroer, J., Berghuis, P., de Haas, C. J., Links, T. P., de Vries, E. G., et al. (2009). Role of chemokines and their receptors in cancer. Current Pharmaceutical Design, 15(29), 3396–3416.PubMedCrossRef Kruizinga, R. C., Bestebroer, J., Berghuis, P., de Haas, C. J., Links, T. P., de Vries, E. G., et al. (2009). Role of chemokines and their receptors in cancer. Current Pharmaceutical Design, 15(29), 3396–3416.PubMedCrossRef
9.
Zurück zum Zitat Allinen, M., Beroukhim, R., Cai, L., Brennan, C., Lahti-Domenici, J., Huang, H., et al. (2004). Molecular characterization of the tumor microenvironment in breast cancer. Cancer Cell, 6(1), 17–32.PubMedCrossRef Allinen, M., Beroukhim, R., Cai, L., Brennan, C., Lahti-Domenici, J., Huang, H., et al. (2004). Molecular characterization of the tumor microenvironment in breast cancer. Cancer Cell, 6(1), 17–32.PubMedCrossRef
10.
Zurück zum Zitat Hartmann, T. N., Burger, M., & Burger, J. A. (2004). The role of adhesion molecules and chemokine receptor cxcr4 (cd184) in small cell lung cancer. Journal of Biological Regulators and Homeostatic Agents, 18(2), 126–130.PubMed Hartmann, T. N., Burger, M., & Burger, J. A. (2004). The role of adhesion molecules and chemokine receptor cxcr4 (cd184) in small cell lung cancer. Journal of Biological Regulators and Homeostatic Agents, 18(2), 126–130.PubMed
11.
Zurück zum Zitat Secchiero, P., Celeghini, C., Cutroneo, G., Di Baldassarre, A., Rana, R., & Zauli, G. (2000). Differential effects of stromal derived factor-1 alpha (sdf-1 alpha) on early and late stages of human megakaryocytic development. The Anatomical Record, 260(2), 141–147.PubMedCrossRef Secchiero, P., Celeghini, C., Cutroneo, G., Di Baldassarre, A., Rana, R., & Zauli, G. (2000). Differential effects of stromal derived factor-1 alpha (sdf-1 alpha) on early and late stages of human megakaryocytic development. The Anatomical Record, 260(2), 141–147.PubMedCrossRef
12.
Zurück zum Zitat Wright, L. M., Maloney, W., Yu, X., Kindle, L., Collin-Osdoby, P., & Osdoby, P. (2005). Stromal cell-derived factor-1 binding to its chemokine receptor cxcr4 on precursor cells promotes the chemotactic recruitment, development and survival of human osteoclasts. Bone, 36(5), 840–853.PubMedCrossRef Wright, L. M., Maloney, W., Yu, X., Kindle, L., Collin-Osdoby, P., & Osdoby, P. (2005). Stromal cell-derived factor-1 binding to its chemokine receptor cxcr4 on precursor cells promotes the chemotactic recruitment, development and survival of human osteoclasts. Bone, 36(5), 840–853.PubMedCrossRef
13.
Zurück zum Zitat Gillette, J. M., Larochelle, A., Dunbar, C. E., & Lippincott-Schwartz, J. (2009). Intercellular transfer to signalling endosomes regulates an ex vivo bone marrow niche. Nature Cell Biology, 11(3), 303–311.PubMedCrossRef Gillette, J. M., Larochelle, A., Dunbar, C. E., & Lippincott-Schwartz, J. (2009). Intercellular transfer to signalling endosomes regulates an ex vivo bone marrow niche. Nature Cell Biology, 11(3), 303–311.PubMedCrossRef
14.
Zurück zum Zitat Hayakawa, J., Migita, M., Ueda, T., Fukazawa, R., Adachi, K., Ooue, Y., et al. (2009). Dextran sulfate and stromal cell derived factor-1 promote cxcr4 expression and improve bone marrow homing efficiency of infused hematopoietic stem cells. Journal of Nippon Medical School, 76(4), 198–208.PubMedCrossRef Hayakawa, J., Migita, M., Ueda, T., Fukazawa, R., Adachi, K., Ooue, Y., et al. (2009). Dextran sulfate and stromal cell derived factor-1 promote cxcr4 expression and improve bone marrow homing efficiency of infused hematopoietic stem cells. Journal of Nippon Medical School, 76(4), 198–208.PubMedCrossRef
15.
Zurück zum Zitat Kyriakou, C., Rabin, N., Pizzey, A., Nathwani, A., & Yong, K. (2008). Factors that influence short-term homing of human bone marrow-derived mesenchymal stem cells in a xenogeneic animal model. Haematologica, 93(10), 1457–1465.PubMedCrossRef Kyriakou, C., Rabin, N., Pizzey, A., Nathwani, A., & Yong, K. (2008). Factors that influence short-term homing of human bone marrow-derived mesenchymal stem cells in a xenogeneic animal model. Haematologica, 93(10), 1457–1465.PubMedCrossRef
16.
Zurück zum Zitat Tashiro, K., Tada, H., Heilker, R., Shirozu, M., Nakano, T., & Honjo, T. (1993). Signal sequence trap: A cloning strategy for secreted proteins and type i membrane proteins. Science, 261(5121), 600–603.PubMedCrossRef Tashiro, K., Tada, H., Heilker, R., Shirozu, M., Nakano, T., & Honjo, T. (1993). Signal sequence trap: A cloning strategy for secreted proteins and type i membrane proteins. Science, 261(5121), 600–603.PubMedCrossRef
17.
Zurück zum Zitat Dettin, M., Pasquato, A., Scarinci, C., Zanchetta, M., De Rossi, A., & Di Bello, C. (2004). Anti-hiv activity and conformational studies of peptides derived from the c-terminal sequence of sdf-1. Journal of Medicinal Chemistry, 47(12), 3058–3064.PubMedCrossRef Dettin, M., Pasquato, A., Scarinci, C., Zanchetta, M., De Rossi, A., & Di Bello, C. (2004). Anti-hiv activity and conformational studies of peptides derived from the c-terminal sequence of sdf-1. Journal of Medicinal Chemistry, 47(12), 3058–3064.PubMedCrossRef
18.
Zurück zum Zitat Janowski, M. (2009). Functional diversity of sdf-1 splicing variants. Cell Adhesion & Migration, 3(3), 243–249.CrossRef Janowski, M. (2009). Functional diversity of sdf-1 splicing variants. Cell Adhesion & Migration, 3(3), 243–249.CrossRef
19.
Zurück zum Zitat Kucia, M., Wojakowski, W., Reca, R., Machalinski, B., Gozdzik, J., Majka, M., et al. (2006). The migration of bone marrow-derived non-hematopoietic tissue-committed stem cells is regulated in an sdf-1-, hgf-, and life-dependent manner. Archivum Immunologiae et Therapiae Experimentalis (Warsz), 54(2), 121–135.CrossRef Kucia, M., Wojakowski, W., Reca, R., Machalinski, B., Gozdzik, J., Majka, M., et al. (2006). The migration of bone marrow-derived non-hematopoietic tissue-committed stem cells is regulated in an sdf-1-, hgf-, and life-dependent manner. Archivum Immunologiae et Therapiae Experimentalis (Warsz), 54(2), 121–135.CrossRef
20.
Zurück zum Zitat Yu, L., Cecil, J., Peng, S. B., Schrementi, J., Kovacevic, S., Paul, D., et al. (2006). Identification and expression of novel isoforms of human stromal cell-derived factor 1. Gene, 374, 174–179.PubMedCrossRef Yu, L., Cecil, J., Peng, S. B., Schrementi, J., Kovacevic, S., Paul, D., et al. (2006). Identification and expression of novel isoforms of human stromal cell-derived factor 1. Gene, 374, 174–179.PubMedCrossRef
21.
Zurück zum Zitat Neiva, K., Sun, Y. X., & Taichman, R. S. (2005). The role of osteoblasts in regulating hematopoietic stem cell activity and tumor metastasis. Brazilian Journal of Medical and Biological Research, 38(10), 1449–1454.PubMedCrossRef Neiva, K., Sun, Y. X., & Taichman, R. S. (2005). The role of osteoblasts in regulating hematopoietic stem cell activity and tumor metastasis. Brazilian Journal of Medical and Biological Research, 38(10), 1449–1454.PubMedCrossRef
22.
Zurück zum Zitat Jung, Y., Wang, J., Schneider, A., Sun, Y. X., Koh-Paige, A. J., Osman, N. I., et al. (2006). Regulation of sdf-1 (cxcl12) production by osteoblasts; a possible mechanism for stem cell homing. Bone, 38(4), 497–508.PubMedCrossRef Jung, Y., Wang, J., Schneider, A., Sun, Y. X., Koh-Paige, A. J., Osman, N. I., et al. (2006). Regulation of sdf-1 (cxcl12) production by osteoblasts; a possible mechanism for stem cell homing. Bone, 38(4), 497–508.PubMedCrossRef
23.
Zurück zum Zitat Taichman, R. S., Cooper, C., Keller, E. T., Pienta, K. J., Taichman, N. S., & McCauley, L. K. (2002). Use of the stromal cell-derived factor-1/cxcr4 pathway in prostate cancer metastasis to bone. Cancer Research, 62(6), 1832–1837.PubMed Taichman, R. S., Cooper, C., Keller, E. T., Pienta, K. J., Taichman, N. S., & McCauley, L. K. (2002). Use of the stromal cell-derived factor-1/cxcr4 pathway in prostate cancer metastasis to bone. Cancer Research, 62(6), 1832–1837.PubMed
24.
Zurück zum Zitat Peled, A., Petit, I., Kollet, O., Magid, M., Ponomaryov, T., Byk, T., et al. (1999). Dependence of human stem cell engraftment and repopulation of nod/scid mice on cxcr4. Science, 283(5403), 845–848.PubMedCrossRef Peled, A., Petit, I., Kollet, O., Magid, M., Ponomaryov, T., Byk, T., et al. (1999). Dependence of human stem cell engraftment and repopulation of nod/scid mice on cxcr4. Science, 283(5403), 845–848.PubMedCrossRef
25.
Zurück zum Zitat Ponomaryov, T., Peled, A., Petit, I., Taichman, R. S., Habler, L., Sandbank, J., et al. (2000). Induction of the chemokine stromal-derived factor-1 following DNA damage improves human stem cell function. Journal of Clinical Investigation, 106(11), 1331–1339.PubMedCrossRef Ponomaryov, T., Peled, A., Petit, I., Taichman, R. S., Habler, L., Sandbank, J., et al. (2000). Induction of the chemokine stromal-derived factor-1 following DNA damage improves human stem cell function. Journal of Clinical Investigation, 106(11), 1331–1339.PubMedCrossRef
26.
Zurück zum Zitat Petit, I., Szyper-Kravitz, M., Nagler, A., Lahav, M., Peled, A., Habler, L., et al. (2002). G-csf induces stem cell mobilization by decreasing bone marrow sdf-1 and up-regulating cxcr4. Nature Immunology, 3(7), 687–694.PubMedCrossRef Petit, I., Szyper-Kravitz, M., Nagler, A., Lahav, M., Peled, A., Habler, L., et al. (2002). G-csf induces stem cell mobilization by decreasing bone marrow sdf-1 and up-regulating cxcr4. Nature Immunology, 3(7), 687–694.PubMedCrossRef
27.
Zurück zum Zitat Ceradini, D. J., Kulkarni, A. R., Callaghan, M. J., Tepper, O. M., Bastidas, N., Kleinman, M. E., et al. (2004). Progenitor cell trafficking is regulated by hypoxic gradients through hif-1 induction of sdf-1. Natural Medicines, 10(8), 858–864.CrossRef Ceradini, D. J., Kulkarni, A. R., Callaghan, M. J., Tepper, O. M., Bastidas, N., Kleinman, M. E., et al. (2004). Progenitor cell trafficking is regulated by hypoxic gradients through hif-1 induction of sdf-1. Natural Medicines, 10(8), 858–864.CrossRef
28.
Zurück zum Zitat Caruz, A., Samsom, M., Alonso, J. M., Alcami, J., Baleux, F., Virelizier, J. L., et al. (1998). Genomic organization and promoter characterization of human cxcr4 gene. FEBS Letters, 426(2), 271–278.PubMedCrossRef Caruz, A., Samsom, M., Alonso, J. M., Alcami, J., Baleux, F., Virelizier, J. L., et al. (1998). Genomic organization and promoter characterization of human cxcr4 gene. FEBS Letters, 426(2), 271–278.PubMedCrossRef
29.
Zurück zum Zitat Gupta, S. K., & Pillarisetti, K. (1999). Cutting edge: Cxcr4-lo: Molecular cloning and functional expression of a novel human cxcr4 splice variant. Journal of Immunology, 163(5), 2368–2372. Gupta, S. K., & Pillarisetti, K. (1999). Cutting edge: Cxcr4-lo: Molecular cloning and functional expression of a novel human cxcr4 splice variant. Journal of Immunology, 163(5), 2368–2372.
30.
Zurück zum Zitat Wegner, S. A., Ehrenberg, P. K., Chang, G., Dayhoff, D. E., Sleeker, A. L., & Michael, N. L. (1998). Genomic organization and functional characterization of the chemokine receptor cxcr4, a major entry co-receptor for human immunodeficiency virus type 1. The Journal of Biological Chemistry, 273(8), 4754–4760.PubMedCrossRef Wegner, S. A., Ehrenberg, P. K., Chang, G., Dayhoff, D. E., Sleeker, A. L., & Michael, N. L. (1998). Genomic organization and functional characterization of the chemokine receptor cxcr4, a major entry co-receptor for human immunodeficiency virus type 1. The Journal of Biological Chemistry, 273(8), 4754–4760.PubMedCrossRef
31.
Zurück zum Zitat Zou, Y. R., Kottmann, A. H., Kuroda, M., Taniuchi, I., & Littman, D. R. (1998). Function of the chemokine receptor cxcr4 in haematopoiesis and in cerebellar development. Nature, 393(6685), 595–599.PubMedCrossRef Zou, Y. R., Kottmann, A. H., Kuroda, M., Taniuchi, I., & Littman, D. R. (1998). Function of the chemokine receptor cxcr4 in haematopoiesis and in cerebellar development. Nature, 393(6685), 595–599.PubMedCrossRef
32.
Zurück zum Zitat Feil, C., & Augustin, H. G. (1998). Endothelial cells differentially express functional cxc-chemokine receptor-4 (cxcr-4/fusin) under the control of autocrine activity and exogenous cytokines. Biochemical and Biophysical Research Communications, 247(1), 38–45.PubMedCrossRef Feil, C., & Augustin, H. G. (1998). Endothelial cells differentially express functional cxc-chemokine receptor-4 (cxcr-4/fusin) under the control of autocrine activity and exogenous cytokines. Biochemical and Biophysical Research Communications, 247(1), 38–45.PubMedCrossRef
33.
Zurück zum Zitat Lazarini, F., Casanova, P., Tham, T. N., De Clercq, E., Arenzana-Seisdedos, F., Baleux, F., et al. (2000). Differential signalling of the chemokine receptor cxcr4 by stromal cell-derived factor 1 and the hiv glycoprotein in rat neurons and astrocytes. The European Journal of Neuroscience, 12(1), 117–125.PubMedCrossRef Lazarini, F., Casanova, P., Tham, T. N., De Clercq, E., Arenzana-Seisdedos, F., Baleux, F., et al. (2000). Differential signalling of the chemokine receptor cxcr4 by stromal cell-derived factor 1 and the hiv glycoprotein in rat neurons and astrocytes. The European Journal of Neuroscience, 12(1), 117–125.PubMedCrossRef
34.
Zurück zum Zitat Aiuti, A., Tavian, M., Cipponi, A., Ficara, F., Zappone, E., Hoxie, J., et al. (1999). Expression of cxcr4, the receptor for stromal cell-derived factor-1 on fetal and adult human lympho-hematopoietic progenitors. European Journal of Immunology, 29(6), 1823–1831.PubMedCrossRef Aiuti, A., Tavian, M., Cipponi, A., Ficara, F., Zappone, E., Hoxie, J., et al. (1999). Expression of cxcr4, the receptor for stromal cell-derived factor-1 on fetal and adult human lympho-hematopoietic progenitors. European Journal of Immunology, 29(6), 1823–1831.PubMedCrossRef
35.
Zurück zum Zitat Aiuti, A., Webb, I. J., Bleul, C., Springer, T., & Gutierrez-Ramos, J. C. (1997). The chemokine sdf-1 is a chemoattractant for human cd34+ hematopoietic progenitor cells and provides a new mechanism to explain the mobilization of cd34+ progenitors to peripheral blood. The Journal of Experimental Medicine, 185(1), 111–120.PubMedCrossRef Aiuti, A., Webb, I. J., Bleul, C., Springer, T., & Gutierrez-Ramos, J. C. (1997). The chemokine sdf-1 is a chemoattractant for human cd34+ hematopoietic progenitor cells and provides a new mechanism to explain the mobilization of cd34+ progenitors to peripheral blood. The Journal of Experimental Medicine, 185(1), 111–120.PubMedCrossRef
36.
Zurück zum Zitat Doitsidou, M., Reichman-Fried, M., Stebler, J., Koprunner, M., Dorries, J., Meyer, D., et al. (2002). Guidance of primordial germ cell migration by the chemokine sdf-1. Cell, 111(5), 647–659.PubMedCrossRef Doitsidou, M., Reichman-Fried, M., Stebler, J., Koprunner, M., Dorries, J., Meyer, D., et al. (2002). Guidance of primordial germ cell migration by the chemokine sdf-1. Cell, 111(5), 647–659.PubMedCrossRef
37.
Zurück zum Zitat Nagasawa, T., Hirota, S., Tachibana, K., Takakura, N., Nishikawa, S., Kitamura, Y., et al. (1996). Defects of b-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the cxc chemokine pbsf/sdf-1. Nature, 382(6592), 635–638.PubMedCrossRef Nagasawa, T., Hirota, S., Tachibana, K., Takakura, N., Nishikawa, S., Kitamura, Y., et al. (1996). Defects of b-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the cxc chemokine pbsf/sdf-1. Nature, 382(6592), 635–638.PubMedCrossRef
38.
Zurück zum Zitat Lee, R. L., Westendorf, J., & Gold, M. R. (2007). Differential role of reactive oxygen species in the activation of mitogen-activated protein kinases and akt by key receptors on b-lymphocytes: Cd40, the b cell antigen receptor, and cxcr4. Journal of Cell Communication and Signaling, 1(1), 33–43.PubMedCrossRef Lee, R. L., Westendorf, J., & Gold, M. R. (2007). Differential role of reactive oxygen species in the activation of mitogen-activated protein kinases and akt by key receptors on b-lymphocytes: Cd40, the b cell antigen receptor, and cxcr4. Journal of Cell Communication and Signaling, 1(1), 33–43.PubMedCrossRef
39.
Zurück zum Zitat Lu, D. Y., Tang, C. H., Yeh, W. L., Wong, K. L., Lin, C. P., Chen, Y. H., et al. (2009). Sdf-1alpha up-regulates interleukin-6 through cxcr4, pi3k/akt, erk, and nf-kappab-dependent pathway in microglia. European Journal of Pharmacology, 613(1–3), 146–154.PubMedCrossRef Lu, D. Y., Tang, C. H., Yeh, W. L., Wong, K. L., Lin, C. P., Chen, Y. H., et al. (2009). Sdf-1alpha up-regulates interleukin-6 through cxcr4, pi3k/akt, erk, and nf-kappab-dependent pathway in microglia. European Journal of Pharmacology, 613(1–3), 146–154.PubMedCrossRef
40.
Zurück zum Zitat Princen, K., Hatse, S., Vermeire, K., De Clercq, E., & Schols, D. (2003). Evaluation of sdf-1/cxcr4-induced ca2+ signaling by fluorometric imaging plate reader (flipr) and flow cytometry. Cytometry. Part A, 51(1), 35–45.CrossRef Princen, K., Hatse, S., Vermeire, K., De Clercq, E., & Schols, D. (2003). Evaluation of sdf-1/cxcr4-induced ca2+ signaling by fluorometric imaging plate reader (flipr) and flow cytometry. Cytometry. Part A, 51(1), 35–45.CrossRef
41.
Zurück zum Zitat Roland, J., Murphy, B. J., Ahr, B., Robert-Hebmann, V., Delauzun, V., Nye, K. E., et al. (2003). Role of the intracellular domains of cxcr4 in sdf-1-mediated signaling. Blood, 101(2), 399–406.PubMedCrossRef Roland, J., Murphy, B. J., Ahr, B., Robert-Hebmann, V., Delauzun, V., Nye, K. E., et al. (2003). Role of the intracellular domains of cxcr4 in sdf-1-mediated signaling. Blood, 101(2), 399–406.PubMedCrossRef
42.
Zurück zum Zitat Balkwill, F. (2004). Cancer and the chemokine network. Nature Reviews. Cancer, 4(7), 540–550.PubMedCrossRef Balkwill, F. (2004). Cancer and the chemokine network. Nature Reviews. Cancer, 4(7), 540–550.PubMedCrossRef
43.
Zurück zum Zitat Muller, A., Homey, B., Soto, H., Ge, N., Catron, D., Buchanan, M. E., et al. (2001). Involvement of chemokine receptors in breast cancer metastasis. Nature, 410(6824), 50–56.PubMedCrossRef Muller, A., Homey, B., Soto, H., Ge, N., Catron, D., Buchanan, M. E., et al. (2001). Involvement of chemokine receptors in breast cancer metastasis. Nature, 410(6824), 50–56.PubMedCrossRef
44.
Zurück zum Zitat Scotton, C. J., Wilson, J. L., Milliken, D., Stamp, G., & Balkwill, F. R. (2001). Epithelial cancer cell migration: A role for chemokine receptors? Cancer Research, 61(13), 4961–4965.PubMed Scotton, C. J., Wilson, J. L., Milliken, D., Stamp, G., & Balkwill, F. R. (2001). Epithelial cancer cell migration: A role for chemokine receptors? Cancer Research, 61(13), 4961–4965.PubMed
45.
Zurück zum Zitat Zagzag, D., Lukyanov, Y., Lan, L., Ali, M. A., Esencay, M., Mendez, O., et al. (2006). Hypoxia-inducible factor 1 and vegf upregulate cxcr4 in glioblastoma: Implications for angiogenesis and glioma cell invasion. Laboratory Investigation, 86(12), 1221–1232.PubMedCrossRef Zagzag, D., Lukyanov, Y., Lan, L., Ali, M. A., Esencay, M., Mendez, O., et al. (2006). Hypoxia-inducible factor 1 and vegf upregulate cxcr4 in glioblastoma: Implications for angiogenesis and glioma cell invasion. Laboratory Investigation, 86(12), 1221–1232.PubMedCrossRef
46.
Zurück zum Zitat Burns, J. M., Summers, B. C., Wang, Y., Melikian, A., Berahovich, R., Miao, Z., et al. (2006). A novel chemokine receptor for sdf-1 and i-tac involved in cell survival, cell adhesion, and tumor development. The Journal of Experimental Medicine, 203(9), 2201–2213.PubMedCrossRef Burns, J. M., Summers, B. C., Wang, Y., Melikian, A., Berahovich, R., Miao, Z., et al. (2006). A novel chemokine receptor for sdf-1 and i-tac involved in cell survival, cell adhesion, and tumor development. The Journal of Experimental Medicine, 203(9), 2201–2213.PubMedCrossRef
47.
Zurück zum Zitat Balabanian, K., Lagane, B., Infantino, S., Chow, K. Y., Harriague, J., Moepps, B., et al. (2005). The chemokine sdf-1/cxcl12 binds to and signals through the orphan receptor rdc1 in t lymphocytes. The Journal of Biological Chemistry, 280(42), 35760–35766.PubMedCrossRef Balabanian, K., Lagane, B., Infantino, S., Chow, K. Y., Harriague, J., Moepps, B., et al. (2005). The chemokine sdf-1/cxcl12 binds to and signals through the orphan receptor rdc1 in t lymphocytes. The Journal of Biological Chemistry, 280(42), 35760–35766.PubMedCrossRef
48.
Zurück zum Zitat Libert, F., Parmentier, M., Lefort, A., Dumont, J. E., & Vassart, G. (1990). Complete nucleotide sequence of a putative G protein coupled receptor: Rdc1. Nucleic Acids Research, 18(7), 1917.PubMedCrossRef Libert, F., Parmentier, M., Lefort, A., Dumont, J. E., & Vassart, G. (1990). Complete nucleotide sequence of a putative G protein coupled receptor: Rdc1. Nucleic Acids Research, 18(7), 1917.PubMedCrossRef
49.
Zurück zum Zitat Jones, S. W., Brockbank, S. M., Mobbs, M. L., Le Good, N. J., Soma-Haddrick, S., Heuze, A. J., et al. (2006). The orphan G-protein coupled receptor rdc1: Evidence for a role in chondrocyte hypertrophy and articular cartilage matrix turnover. Osteoarthritis and Cartilage, 14(6), 597–608.PubMedCrossRef Jones, S. W., Brockbank, S. M., Mobbs, M. L., Le Good, N. J., Soma-Haddrick, S., Heuze, A. J., et al. (2006). The orphan G-protein coupled receptor rdc1: Evidence for a role in chondrocyte hypertrophy and articular cartilage matrix turnover. Osteoarthritis and Cartilage, 14(6), 597–608.PubMedCrossRef
50.
Zurück zum Zitat Raggo, C., Ruhl, R., McAllister, S., Koon, H., Dezube, B. J., Fruh, K., et al. (2005). Novel cellular genes essential for transformation of endothelial cells by kaposi's sarcoma-associated herpesvirus. Cancer Research, 65(12), 5084–5095.PubMedCrossRef Raggo, C., Ruhl, R., McAllister, S., Koon, H., Dezube, B. J., Fruh, K., et al. (2005). Novel cellular genes essential for transformation of endothelial cells by kaposi's sarcoma-associated herpesvirus. Cancer Research, 65(12), 5084–5095.PubMedCrossRef
51.
Zurück zum Zitat Martinez, A., Kapas, S., Miller, M. J., Ward, Y., & Cuttitta, F. (2000). Coexpression of receptors for adrenomedullin, calcitonin gene-related peptide, and amylin in pancreatic beta-cells. Endocrinology, 141(1), 406–411.PubMedCrossRef Martinez, A., Kapas, S., Miller, M. J., Ward, Y., & Cuttitta, F. (2000). Coexpression of receptors for adrenomedullin, calcitonin gene-related peptide, and amylin in pancreatic beta-cells. Endocrinology, 141(1), 406–411.PubMedCrossRef
52.
Zurück zum Zitat Tripathi, V., Verma, R., Dinda, A., Malhotra, N., Kaur, J., & Luthra, K. (2009). Differential expression of rdc1/cxcr7 in the human placenta. Journal of Clinical Immunology, 29(3), 379–386.PubMedCrossRef Tripathi, V., Verma, R., Dinda, A., Malhotra, N., Kaur, J., & Luthra, K. (2009). Differential expression of rdc1/cxcr7 in the human placenta. Journal of Clinical Immunology, 29(3), 379–386.PubMedCrossRef
53.
Zurück zum Zitat Miao, Z., Luker, K. E., Summers, B. C., Berahovich, R., Bhojani, M. S., Rehemtulla, A., et al. (2007). Cxcr7 (rdc1) promotes breast and lung tumor growth in vivo and is expressed on tumor-associated vasculature. Proceedings of the National Academy of Sciences of the United States of America, 104(40), 15735–15740.PubMedCrossRef Miao, Z., Luker, K. E., Summers, B. C., Berahovich, R., Bhojani, M. S., Rehemtulla, A., et al. (2007). Cxcr7 (rdc1) promotes breast and lung tumor growth in vivo and is expressed on tumor-associated vasculature. Proceedings of the National Academy of Sciences of the United States of America, 104(40), 15735–15740.PubMedCrossRef
54.
Zurück zum Zitat Wang, J., Shiozawa, Y., Wang, Y., Jung, Y., Pienta, K. J., Mehra, R., et al. (2008). The role of cxcr7/rdc1 as a chemokine receptor for cxcl12/sdf-1 in prostate cancer. The Journal of Biological Chemistry, 283(7), 4283–4294.PubMedCrossRef Wang, J., Shiozawa, Y., Wang, Y., Jung, Y., Pienta, K. J., Mehra, R., et al. (2008). The role of cxcr7/rdc1 as a chemokine receptor for cxcl12/sdf-1 in prostate cancer. The Journal of Biological Chemistry, 283(7), 4283–4294.PubMedCrossRef
55.
Zurück zum Zitat Begley, L. A., MacDonald, J. W., Day, M. L., & Macoska, J. A. (2007). Cxcl12 activates a robust transcriptional response in human prostate epithelial cells. The Journal of Biological Chemistry, 282(37), 26767–26774.PubMedCrossRef Begley, L. A., MacDonald, J. W., Day, M. L., & Macoska, J. A. (2007). Cxcl12 activates a robust transcriptional response in human prostate epithelial cells. The Journal of Biological Chemistry, 282(37), 26767–26774.PubMedCrossRef
56.
Zurück zum Zitat Rajagopal, S., Kim, J., Ahn, S., Craig, S., Lam, C. M., Gerard, N. P., et al. (2010). Beta-arrestin- but not G protein-mediated signaling by the “Decoy” Receptor cxcr7. Proc Natl Acad Sci U S A, 107(2), 628–632.PubMedCrossRef Rajagopal, S., Kim, J., Ahn, S., Craig, S., Lam, C. M., Gerard, N. P., et al. (2010). Beta-arrestin- but not G protein-mediated signaling by the “Decoy” Receptor cxcr7. Proc Natl Acad Sci U S A, 107(2), 628–632.PubMedCrossRef
57.
Zurück zum Zitat Boldajipour, B., Mahabaleshwar, H., Kardash, E., Reichman-Fried, M., Blaser, H., Minina, S., et al. (2008). Control of chemokine-guided cell migration by ligand sequestration. Cell, 132(3), 463–473.PubMedCrossRef Boldajipour, B., Mahabaleshwar, H., Kardash, E., Reichman-Fried, M., Blaser, H., Minina, S., et al. (2008). Control of chemokine-guided cell migration by ligand sequestration. Cell, 132(3), 463–473.PubMedCrossRef
58.
Zurück zum Zitat Dambly-Chaudiere, C., Cubedo, N., & Ghysen, A. (2007). Control of cell migration in the development of the posterior lateral line: Antagonistic interactions between the chemokine receptors cxcr4 and cxcr7/rdc1. BMC Developmental Biology, 7, 23.PubMedCrossRef Dambly-Chaudiere, C., Cubedo, N., & Ghysen, A. (2007). Control of cell migration in the development of the posterior lateral line: Antagonistic interactions between the chemokine receptors cxcr4 and cxcr7/rdc1. BMC Developmental Biology, 7, 23.PubMedCrossRef
59.
Zurück zum Zitat Levoye, A., Balabanian, K., Baleux, F., Bachelerie, F., & Lagane, B. (2009). Cxcr7 heterodimerizes with cxcr4 and regulates cxcl12-mediated G protein signaling. Blood, 113(24), 6085–6093.PubMedCrossRef Levoye, A., Balabanian, K., Baleux, F., Bachelerie, F., & Lagane, B. (2009). Cxcr7 heterodimerizes with cxcr4 and regulates cxcl12-mediated G protein signaling. Blood, 113(24), 6085–6093.PubMedCrossRef
60.
Zurück zum Zitat Sierro, F., Biben, C., Martinez-Munoz, L., Mellado, M., Ransohoff, R. M., Li, M., et al. (2007). Disrupted cardiac development but normal hematopoiesis in mice deficient in the second cxcl12/sdf-1 receptor, cxcr7. Proceedings of the National Academy of Sciences of the United States of America, 104(37), 14759–14764.PubMedCrossRef Sierro, F., Biben, C., Martinez-Munoz, L., Mellado, M., Ransohoff, R. M., Li, M., et al. (2007). Disrupted cardiac development but normal hematopoiesis in mice deficient in the second cxcl12/sdf-1 receptor, cxcr7. Proceedings of the National Academy of Sciences of the United States of America, 104(37), 14759–14764.PubMedCrossRef
61.
Zurück zum Zitat Hartmann, T. N., Grabovsky, V., Pasvolsky, R., Shulman, Z., Buss, E. C., Spiegel, A., et al. (2008). A crosstalk between intracellular cxcr7 and cxcr4 involved in rapid cxcl12-triggered integrin activation but not in chemokine-triggered motility of human t lymphocytes and cd34+ cells. Journal of Leukocyte Biology, 84(4), 1130–1140.PubMedCrossRef Hartmann, T. N., Grabovsky, V., Pasvolsky, R., Shulman, Z., Buss, E. C., Spiegel, A., et al. (2008). A crosstalk between intracellular cxcr7 and cxcr4 involved in rapid cxcl12-triggered integrin activation but not in chemokine-triggered motility of human t lymphocytes and cd34+ cells. Journal of Leukocyte Biology, 84(4), 1130–1140.PubMedCrossRef
62.
Zurück zum Zitat Kalatskaya, I., Berchiche, Y. A., Gravel, S., Limberg, B. J., Rosenbaum, J. S., & Heveker, N. (2009). Amd3100 is a cxcr7 ligand with allosteric agonist properties. Molecular Pharmacology, 75(5), 1240–1247.PubMedCrossRef Kalatskaya, I., Berchiche, Y. A., Gravel, S., Limberg, B. J., Rosenbaum, J. S., & Heveker, N. (2009). Amd3100 is a cxcr7 ligand with allosteric agonist properties. Molecular Pharmacology, 75(5), 1240–1247.PubMedCrossRef
63.
Zurück zum Zitat Luker, K. E., Gupta, M., Steele, J. M., Foerster, B. R., & Luker, G. D. (2009). Imaging ligand-dependent activation of cxcr7. Neoplasia, 11(10), 1022–1035.PubMed Luker, K. E., Gupta, M., Steele, J. M., Foerster, B. R., & Luker, G. D. (2009). Imaging ligand-dependent activation of cxcr7. Neoplasia, 11(10), 1022–1035.PubMed
64.
Zurück zum Zitat Fernandis, A. Z., Cherla, R. P., Chernock, R. D., & Ganju, R. K. (2002). Cxcr4/ccr5 down-modulation and chemotaxis are regulated by the proteasome pathway. The Journal of Biological Chemistry, 277(20), 18111–18117.PubMedCrossRef Fernandis, A. Z., Cherla, R. P., Chernock, R. D., & Ganju, R. K. (2002). Cxcr4/ccr5 down-modulation and chemotaxis are regulated by the proteasome pathway. The Journal of Biological Chemistry, 277(20), 18111–18117.PubMedCrossRef
65.
Zurück zum Zitat Sun, Y. X., Schneider, A., Jung, Y., Wang, J., Dai, J., Cook, K., et al. (2005). Skeletal localization and neutralization of the sdf-1(cxcl12)/cxcr4 axis blocks prostate cancer metastasis and growth in osseous sites in vivo. Journal of Bone and Mineral Research, 20(2), 318–329.PubMedCrossRef Sun, Y. X., Schneider, A., Jung, Y., Wang, J., Dai, J., Cook, K., et al. (2005). Skeletal localization and neutralization of the sdf-1(cxcl12)/cxcr4 axis blocks prostate cancer metastasis and growth in osseous sites in vivo. Journal of Bone and Mineral Research, 20(2), 318–329.PubMedCrossRef
66.
Zurück zum Zitat Engl, T., Relja, B., Marian, D., Blumenberg, C., Muller, I., Beecken, W. D., et al. (2006). Cxcr4 chemokine receptor mediates prostate tumor cell adhesion through alpha5 and beta3 integrins. Neoplasia, 8(4), 290–301.PubMedCrossRef Engl, T., Relja, B., Marian, D., Blumenberg, C., Muller, I., Beecken, W. D., et al. (2006). Cxcr4 chemokine receptor mediates prostate tumor cell adhesion through alpha5 and beta3 integrins. Neoplasia, 8(4), 290–301.PubMedCrossRef
67.
Zurück zum Zitat Kukreja, P., Abdel-Mageed, A. B., Mondal, D., Liu, K., & Agrawal, K. C. (2005). Up-regulation of cxcr4 expression in pc-3 cells by stromal-derived factor-1alpha (cxcl12) increases endothelial adhesion and transendothelial migration: Role of mek/erk signaling pathway-dependent nf-kappab activation. Cancer Research, 65(21), 9891–9898.PubMedCrossRef Kukreja, P., Abdel-Mageed, A. B., Mondal, D., Liu, K., & Agrawal, K. C. (2005). Up-regulation of cxcr4 expression in pc-3 cells by stromal-derived factor-1alpha (cxcl12) increases endothelial adhesion and transendothelial migration: Role of mek/erk signaling pathway-dependent nf-kappab activation. Cancer Research, 65(21), 9891–9898.PubMedCrossRef
68.
Zurück zum Zitat Sun, Y. X., Wang, J., Shelburne, C. E., Lopatin, D. E., Chinnaiyan, A. M., Rubin, M. A., et al. (2003). Expression of cxcr4 and cxcl12 (sdf-1) in human prostate cancers (pca) in vivo. Journal of Cellular Biochemistry, 89(3), 462–473.PubMedCrossRef Sun, Y. X., Wang, J., Shelburne, C. E., Lopatin, D. E., Chinnaiyan, A. M., Rubin, M. A., et al. (2003). Expression of cxcr4 and cxcl12 (sdf-1) in human prostate cancers (pca) in vivo. Journal of Cellular Biochemistry, 89(3), 462–473.PubMedCrossRef
69.
Zurück zum Zitat Darash-Yahana, M., Pikarsky, E., Abramovitch, R., Zeira, E., Pal, B., Karplus, R., et al. (2004). Role of high expression levels of cxcr4 in tumor growth, vascularization, and metastasis. The FASEB Journal, 18(11), 1240–1242.PubMed Darash-Yahana, M., Pikarsky, E., Abramovitch, R., Zeira, E., Pal, B., Karplus, R., et al. (2004). Role of high expression levels of cxcr4 in tumor growth, vascularization, and metastasis. The FASEB Journal, 18(11), 1240–1242.PubMed
70.
Zurück zum Zitat Wang, J., Sun, Y., Song, W., Nor, J. E., Wang, C. Y., & Taichman, R. S. (2005). Diverse signaling pathways through the sdf-1/cxcr4 chemokine axis in prostate cancer cell lines leads to altered patterns of cytokine secretion and angiogenesis. Cellular Signalling, 17(12), 1578–1592.PubMedCrossRef Wang, J., Sun, Y., Song, W., Nor, J. E., Wang, C. Y., & Taichman, R. S. (2005). Diverse signaling pathways through the sdf-1/cxcr4 chemokine axis in prostate cancer cell lines leads to altered patterns of cytokine secretion and angiogenesis. Cellular Signalling, 17(12), 1578–1592.PubMedCrossRef
71.
Zurück zum Zitat Wang, J., Dai, J., Jung, Y., Wei, C. L., Wang, Y., Havens, A. M., et al. (2007). A glycolytic mechanism regulating an angiogenic switch in prostate cancer. Cancer Research, 67(1), 149–159.PubMedCrossRef Wang, J., Dai, J., Jung, Y., Wei, C. L., Wang, Y., Havens, A. M., et al. (2007). A glycolytic mechanism regulating an angiogenic switch in prostate cancer. Cancer Research, 67(1), 149–159.PubMedCrossRef
72.
Zurück zum Zitat Zhao, H., & Peehl, D. M. (2009). Tumor-promoting phenotype of cd90hi prostate cancer-associated fibroblasts. The Prostate, 69(9), 991–1000.PubMedCrossRef Zhao, H., & Peehl, D. M. (2009). Tumor-promoting phenotype of cd90hi prostate cancer-associated fibroblasts. The Prostate, 69(9), 991–1000.PubMedCrossRef
73.
Zurück zum Zitat Ratajczak, M. Z., Reca, R., Wysoczynski, M., Yan, J., & Ratajczak, J. (2006). Modulation of the sdf-1-cxcr4 axis by the third complement component (c3)—Implications for trafficking of cxcr4+ stem cells. Experimental Hematology, 34(8), 986–995.PubMedCrossRef Ratajczak, M. Z., Reca, R., Wysoczynski, M., Yan, J., & Ratajczak, J. (2006). Modulation of the sdf-1-cxcr4 axis by the third complement component (c3)—Implications for trafficking of cxcr4+ stem cells. Experimental Hematology, 34(8), 986–995.PubMedCrossRef
74.
Zurück zum Zitat Hermann, P. C., Huber, S. L., Herrler, T., Aicher, A., Ellwart, J. W., Guba, M., et al. (2007). Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell, 1(3), 313–323.PubMedCrossRef Hermann, P. C., Huber, S. L., Herrler, T., Aicher, A., Ellwart, J. W., Guba, M., et al. (2007). Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell, 1(3), 313–323.PubMedCrossRef
75.
Zurück zum Zitat Mazzinghi, B., Ronconi, E., Lazzeri, E., Sagrinati, C., Ballerini, L., Angelotti, M. L., et al. (2008). Essential but differential role for cxcr4 and cxcr7 in the therapeutic homing of human renal progenitor cells. The Journal of Experimental Medicine, 205(2), 479–490.PubMedCrossRef Mazzinghi, B., Ronconi, E., Lazzeri, E., Sagrinati, C., Ballerini, L., Angelotti, M. L., et al. (2008). Essential but differential role for cxcr4 and cxcr7 in the therapeutic homing of human renal progenitor cells. The Journal of Experimental Medicine, 205(2), 479–490.PubMedCrossRef
76.
Zurück zum Zitat Kang, Y., Siegel, P. M., Shu, W., Drobnjak, M., Kakonen, S. M., Cordon-Cardo, C., et al. (2003). A multigenic program mediating breast cancer metastasis to bone. Cancer Cell, 3(6), 537–549.PubMedCrossRef Kang, Y., Siegel, P. M., Shu, W., Drobnjak, M., Kakonen, S. M., Cordon-Cardo, C., et al. (2003). A multigenic program mediating breast cancer metastasis to bone. Cancer Cell, 3(6), 537–549.PubMedCrossRef
77.
Zurück zum Zitat Liang, Z., Yoon, Y., Votaw, J., Goodman, M. M., Williams, L., & Shim, H. (2005). Silencing of cxcr4 blocks breast cancer metastasis. Cancer Research, 65(3), 967–971.PubMed Liang, Z., Yoon, Y., Votaw, J., Goodman, M. M., Williams, L., & Shim, H. (2005). Silencing of cxcr4 blocks breast cancer metastasis. Cancer Research, 65(3), 967–971.PubMed
78.
Zurück zum Zitat Ueda, Y., Neel, N. F., Schutyser, E., Raman, D., & Richmond, A. (2006). Deletion of the cooh-terminal domain of cxc chemokine receptor 4 leads to the down-regulation of cell-to-cell contact, enhanced motility and proliferation in breast carcinoma cells. Cancer Research, 66(11), 5665–5675.PubMedCrossRef Ueda, Y., Neel, N. F., Schutyser, E., Raman, D., & Richmond, A. (2006). Deletion of the cooh-terminal domain of cxc chemokine receptor 4 leads to the down-regulation of cell-to-cell contact, enhanced motility and proliferation in breast carcinoma cells. Cancer Research, 66(11), 5665–5675.PubMedCrossRef
79.
Zurück zum Zitat Holland, J. D., Kochetkova, M., Akekawatchai, C., Dottore, M., Lopez, A., & McColl, S. R. (2006). Differential functional activation of chemokine receptor cxcr4 is mediated by G proteins in breast cancer cells. Cancer Research, 66(8), 4117–4124.PubMedCrossRef Holland, J. D., Kochetkova, M., Akekawatchai, C., Dottore, M., Lopez, A., & McColl, S. R. (2006). Differential functional activation of chemokine receptor cxcr4 is mediated by G proteins in breast cancer cells. Cancer Research, 66(8), 4117–4124.PubMedCrossRef
80.
Zurück zum Zitat Fulton, A. M. (2009). The chemokine receptors cxcr4 and cxcr3 in cancer. Current Oncology Reports, 11(2), 125–131.PubMedCrossRef Fulton, A. M. (2009). The chemokine receptors cxcr4 and cxcr3 in cancer. Current Oncology Reports, 11(2), 125–131.PubMedCrossRef
81.
Zurück zum Zitat Akekawatchai, C., Holland, J. D., Kochetkova, M., Wallace, J. C., & McColl, S. R. (2005). Transactivation of cxcr4 by the insulin-like growth factor-1 receptor (igf-1r) in human mda-mb-231 breast cancer epithelial cells. The Journal of Biological Chemistry, 280(48), 39701–39708.PubMedCrossRef Akekawatchai, C., Holland, J. D., Kochetkova, M., Wallace, J. C., & McColl, S. R. (2005). Transactivation of cxcr4 by the insulin-like growth factor-1 receptor (igf-1r) in human mda-mb-231 breast cancer epithelial cells. The Journal of Biological Chemistry, 280(48), 39701–39708.PubMedCrossRef
82.
Zurück zum Zitat Orimo, A., Gupta, P. B., Sgroi, D. C., Arenzana-Seisdedos, F., Delaunay, T., Naeem, R., et al. (2005). Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated sdf-1/cxcl12 secretion. Cell, 121(3), 335–348.PubMedCrossRef Orimo, A., Gupta, P. B., Sgroi, D. C., Arenzana-Seisdedos, F., Delaunay, T., Naeem, R., et al. (2005). Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated sdf-1/cxcl12 secretion. Cell, 121(3), 335–348.PubMedCrossRef
83.
Zurück zum Zitat Razmkhah, M., Talei, A. R., Doroudchi, M., Khalili-Azad, T., & Ghaderi, A. (2005). Stromal cell-derived factor-1 (sdf-1) alleles and susceptibility to breast carcinoma. Cancer Letters, 225(2), 261–266.PubMedCrossRef Razmkhah, M., Talei, A. R., Doroudchi, M., Khalili-Azad, T., & Ghaderi, A. (2005). Stromal cell-derived factor-1 (sdf-1) alleles and susceptibility to breast carcinoma. Cancer Letters, 225(2), 261–266.PubMedCrossRef
84.
Zurück zum Zitat Cabioglu, N., Summy, J., Miller, C., Parikh, N. U., Sahin, A. A., Tuzlali, S., et al. (2005). Cxcl-12/stromal cell-derived factor-1alpha transactivates her2-neu in breast cancer cells by a novel pathway involving src kinase activation. Cancer Research, 65(15), 6493–6497.PubMedCrossRef Cabioglu, N., Summy, J., Miller, C., Parikh, N. U., Sahin, A. A., Tuzlali, S., et al. (2005). Cxcl-12/stromal cell-derived factor-1alpha transactivates her2-neu in breast cancer cells by a novel pathway involving src kinase activation. Cancer Research, 65(15), 6493–6497.PubMedCrossRef
85.
Zurück zum Zitat Salmaggi, A., Maderna, E., Calatozzolo, C., Gaviani, P., Canazza, A., Milanesi, I., et al. (2009). Cxcl12, cxcr4 and cxcr7 expression in brain metastases. Cancer Biology & Therapy, 8(17), 1608–1614.CrossRef Salmaggi, A., Maderna, E., Calatozzolo, C., Gaviani, P., Canazza, A., Milanesi, I., et al. (2009). Cxcl12, cxcr4 and cxcr7 expression in brain metastases. Cancer Biology & Therapy, 8(17), 1608–1614.CrossRef
86.
Zurück zum Zitat Burger, J. A., & Kipps, T. J. (2006). Cxcr4: A key receptor in the crosstalk between tumor cells and their microenvironment. Blood, 107(5), 1761–1767.PubMedCrossRef Burger, J. A., & Kipps, T. J. (2006). Cxcr4: A key receptor in the crosstalk between tumor cells and their microenvironment. Blood, 107(5), 1761–1767.PubMedCrossRef
87.
Zurück zum Zitat Burger, M., Glodek, A., Hartmann, T., Schmitt-Graff, A., Silberstein, L. E., Fujii, N., et al. (2003). Functional expression of cxcr4 (cd184) on small-cell lung cancer cells mediates migration, integrin activation, and adhesion to stromal cells. Oncogene, 22(50), 8093–8101.PubMedCrossRef Burger, M., Glodek, A., Hartmann, T., Schmitt-Graff, A., Silberstein, L. E., Fujii, N., et al. (2003). Functional expression of cxcr4 (cd184) on small-cell lung cancer cells mediates migration, integrin activation, and adhesion to stromal cells. Oncogene, 22(50), 8093–8101.PubMedCrossRef
88.
Zurück zum Zitat Hartmann, T. N., Burger, J. A., Glodek, A., Fujii, N., & Burger, M. (2005). Cxcr4 chemokine receptor and integrin signaling co-operate in mediating adhesion and chemoresistance in small cell lung cancer (sclc) cells. Oncogene, 24(27), 4462–4471.PubMedCrossRef Hartmann, T. N., Burger, J. A., Glodek, A., Fujii, N., & Burger, M. (2005). Cxcr4 chemokine receptor and integrin signaling co-operate in mediating adhesion and chemoresistance in small cell lung cancer (sclc) cells. Oncogene, 24(27), 4462–4471.PubMedCrossRef
89.
Zurück zum Zitat Su, L. P., Zhang, J. P., Xu, H. B., Chen, J., Wang, Y., & Xiong, S. D. (2005). the role of cxcr4 in lung cancer metastasis and its possible mechanism. Zhonghua Yi Xue Za Zhi, 85(17), 1190–1194.PubMed Su, L. P., Zhang, J. P., Xu, H. B., Chen, J., Wang, Y., & Xiong, S. D. (2005). the role of cxcr4 in lung cancer metastasis and its possible mechanism. Zhonghua Yi Xue Za Zhi, 85(17), 1190–1194.PubMed
90.
Zurück zum Zitat Kijima, T., Maulik, G., Ma, P. C., Tibaldi, E. V., Turner, R. E., Rollins, B., et al. (2002). Regulation of cellular proliferation, cytoskeletal function, and signal transduction through cxcr4 and c-kit in small cell lung cancer cells. Cancer Research, 62(21), 6304–6311.PubMed Kijima, T., Maulik, G., Ma, P. C., Tibaldi, E. V., Turner, R. E., Rollins, B., et al. (2002). Regulation of cellular proliferation, cytoskeletal function, and signal transduction through cxcr4 and c-kit in small cell lung cancer cells. Cancer Research, 62(21), 6304–6311.PubMed
91.
Zurück zum Zitat Phillips, R. J., Mestas, J., Gharaee-Kermani, M., Burdick, M. D., Sica, A., Belperio, J. A., et al. (2005). Epidermal growth factor and hypoxia-induced expression of cxc chemokine receptor 4 on non-small cell lung cancer cells is regulated by the phosphatidylinositol 3-kinase/pten/akt/mammalian target of rapamycin signaling pathway and activation of hypoxia inducible factor-1alpha. The Journal of Biological Chemistry, 280(23), 22473–22481.PubMedCrossRef Phillips, R. J., Mestas, J., Gharaee-Kermani, M., Burdick, M. D., Sica, A., Belperio, J. A., et al. (2005). Epidermal growth factor and hypoxia-induced expression of cxc chemokine receptor 4 on non-small cell lung cancer cells is regulated by the phosphatidylinositol 3-kinase/pten/akt/mammalian target of rapamycin signaling pathway and activation of hypoxia inducible factor-1alpha. The Journal of Biological Chemistry, 280(23), 22473–22481.PubMedCrossRef
92.
Zurück zum Zitat Iwakiri, S., Mino, N., Takahashi, T., Sonobe, M., Nagai, S., Okubo, K., et al. (2009). Higher expression of chemokine receptor cxcr7 is linked to early and metastatic recurrence in pathological stage I nonsmall cell lung cancer. Cancer, 115(11), 2580–2593.PubMedCrossRef Iwakiri, S., Mino, N., Takahashi, T., Sonobe, M., Nagai, S., Okubo, K., et al. (2009). Higher expression of chemokine receptor cxcr7 is linked to early and metastatic recurrence in pathological stage I nonsmall cell lung cancer. Cancer, 115(11), 2580–2593.PubMedCrossRef
93.
Zurück zum Zitat Billadeau, D. D., Chatterjee, S., Bramati, P., Sreekumar, R., Shah, V., Hedin, K., et al. (2006). Characterization of the cxcr4 signaling in pancreatic cancer cells. International Journal of Gastrointestinal Cancer, 37(4), 110–119.PubMed Billadeau, D. D., Chatterjee, S., Bramati, P., Sreekumar, R., Shah, V., Hedin, K., et al. (2006). Characterization of the cxcr4 signaling in pancreatic cancer cells. International Journal of Gastrointestinal Cancer, 37(4), 110–119.PubMed
94.
Zurück zum Zitat Mori, T., Doi, R., Koizumi, M., Toyoda, E., Ito, D., Kami, K., et al. (2004). Cxcr4 antagonist inhibits stromal cell-derived factor 1-induced migration and invasion of human pancreatic cancer. Molecular Cancer Therapeutics, 3(1), 29–37.PubMed Mori, T., Doi, R., Koizumi, M., Toyoda, E., Ito, D., Kami, K., et al. (2004). Cxcr4 antagonist inhibits stromal cell-derived factor 1-induced migration and invasion of human pancreatic cancer. Molecular Cancer Therapeutics, 3(1), 29–37.PubMed
95.
Zurück zum Zitat Koshiba, T., Hosotani, R., Miyamoto, Y., Ida, J., Tsuji, S., Nakajima, S., et al. (2000). Expression of stromal cell-derived factor 1 and cxcr4 ligand receptor system in pancreatic cancer: A possible role for tumor progression. Clinical Cancer Research, 6(9), 3530–3535.PubMed Koshiba, T., Hosotani, R., Miyamoto, Y., Ida, J., Tsuji, S., Nakajima, S., et al. (2000). Expression of stromal cell-derived factor 1 and cxcr4 ligand receptor system in pancreatic cancer: A possible role for tumor progression. Clinical Cancer Research, 6(9), 3530–3535.PubMed
96.
Zurück zum Zitat Marchesi, F., Monti, P., Leone, B. E., Zerbi, A., Vecchi, A., Piemonti, L., et al. (2004). Increased survival, proliferation, and migration in metastatic human pancreatic tumor cells expressing functional cxcr4. Cancer Research, 64(22), 8420–8427.PubMedCrossRef Marchesi, F., Monti, P., Leone, B. E., Zerbi, A., Vecchi, A., Piemonti, L., et al. (2004). Increased survival, proliferation, and migration in metastatic human pancreatic tumor cells expressing functional cxcr4. Cancer Research, 64(22), 8420–8427.PubMedCrossRef
97.
Zurück zum Zitat Gao, Z., Wang, X., Wu, K., Zhao, Y., & Hu, G. (2010). Pancreatic stellate cells increase the invasion of human pancreatic cancer cells through the stromal cell-derived factor-1/cxcr4 axis. Pancreatology, 10(2–3), 186–193.PubMedCrossRef Gao, Z., Wang, X., Wu, K., Zhao, Y., & Hu, G. (2010). Pancreatic stellate cells increase the invasion of human pancreatic cancer cells through the stromal cell-derived factor-1/cxcr4 axis. Pancreatology, 10(2–3), 186–193.PubMedCrossRef
98.
Zurück zum Zitat Marechal, R., Demetter, P., Nagy, N., Berton, A., Decaestecker, C., Polus, M., et al. (2009). High expression of cxcr4 may predict poor survival in resected pancreatic adenocarcinoma. British Journal of Cancer, 100(9), 1444–1451.PubMedCrossRef Marechal, R., Demetter, P., Nagy, N., Berton, A., Decaestecker, C., Polus, M., et al. (2009). High expression of cxcr4 may predict poor survival in resected pancreatic adenocarcinoma. British Journal of Cancer, 100(9), 1444–1451.PubMedCrossRef
99.
Zurück zum Zitat Jankowski, K., Kucia, M., Wysoczynski, M., Reca, R., Zhao, D., Trzyna, E., et al. (2003). Both hepatocyte growth factor (hgf) and stromal-derived factor-1 regulate the metastatic behavior of human rhabdomyosarcoma cells, but only hgf enhances their resistance to radiochemotherapy. Cancer Research, 63(22), 7926–7935.PubMed Jankowski, K., Kucia, M., Wysoczynski, M., Reca, R., Zhao, D., Trzyna, E., et al. (2003). Both hepatocyte growth factor (hgf) and stromal-derived factor-1 regulate the metastatic behavior of human rhabdomyosarcoma cells, but only hgf enhances their resistance to radiochemotherapy. Cancer Research, 63(22), 7926–7935.PubMed
100.
Zurück zum Zitat Balkwill, F. (2004). The significance of cancer cell expression of the chemokine receptor cxcr4. Seminars in Cancer Biology, 14(3), 171–179.PubMedCrossRef Balkwill, F. (2004). The significance of cancer cell expression of the chemokine receptor cxcr4. Seminars in Cancer Biology, 14(3), 171–179.PubMedCrossRef
101.
Zurück zum Zitat Bertolini, F., Dell’Agnola, C., Mancuso, P., Rabascio, C., Burlini, A., Monestiroli, S., et al. (2002). Cxcr4 neutralization, a novel therapeutic approach for non-Hodgkin’s lymphoma. Cancer Research, 62(11), 3106–3112.PubMed Bertolini, F., Dell’Agnola, C., Mancuso, P., Rabascio, C., Burlini, A., Monestiroli, S., et al. (2002). Cxcr4 neutralization, a novel therapeutic approach for non-Hodgkin’s lymphoma. Cancer Research, 62(11), 3106–3112.PubMed
102.
Zurück zum Zitat Scotton, C. J., Wilson, J. L., Scott, K., Stamp, G., Wilbanks, G. D., Fricker, S., et al. (2002). Multiple actions of the chemokine cxcl12 on epithelial tumor cells in human ovarian cancer. Cancer Research, 62(20), 5930–5938.PubMed Scotton, C. J., Wilson, J. L., Scott, K., Stamp, G., Wilbanks, G. D., Fricker, S., et al. (2002). Multiple actions of the chemokine cxcl12 on epithelial tumor cells in human ovarian cancer. Cancer Research, 62(20), 5930–5938.PubMed
103.
Zurück zum Zitat Zhou, Y., Larsen, P. H., Hao, C., & Yong, V. W. (2002). Cxcr4 is a major chemokine receptor on glioma cells and mediates their survival. The Journal of Biological Chemistry, 277(51), 49481–49487.PubMedCrossRef Zhou, Y., Larsen, P. H., Hao, C., & Yong, V. W. (2002). Cxcr4 is a major chemokine receptor on glioma cells and mediates their survival. The Journal of Biological Chemistry, 277(51), 49481–49487.PubMedCrossRef
104.
Zurück zum Zitat Rubin, J. B., Kung, A. L., Klein, R. S., Chan, J. A., Sun, Y., Schmidt, K., et al. (2003). A small-molecule antagonist of cxcr4 inhibits intracranial growth of primary brain tumors. Proceedings of the National Academy of Sciences of the United States of America, 100(23), 13513–13518.PubMedCrossRef Rubin, J. B., Kung, A. L., Klein, R. S., Chan, J. A., Sun, Y., Schmidt, K., et al. (2003). A small-molecule antagonist of cxcr4 inhibits intracranial growth of primary brain tumors. Proceedings of the National Academy of Sciences of the United States of America, 100(23), 13513–13518.PubMedCrossRef
105.
Zurück zum Zitat Sehgal, A., Keener, C., Boynton, A. L., Warrick, J., & Murphy, G. P. (1998). Cxcr-4, a chemokine receptor, is overexpressed in and required for proliferation of glioblastoma tumor cells. Journal of Surgical Oncology, 69(2), 99–104.PubMedCrossRef Sehgal, A., Keener, C., Boynton, A. L., Warrick, J., & Murphy, G. P. (1998). Cxcr-4, a chemokine receptor, is overexpressed in and required for proliferation of glioblastoma tumor cells. Journal of Surgical Oncology, 69(2), 99–104.PubMedCrossRef
106.
Zurück zum Zitat Kim, J., Mori, T., Chen, S. L., Amersi, F. F., Martinez, S. R., Kuo, C., et al. (2006). Chemokine receptor cxcr4 expression in patients with melanoma and colorectal cancer liver metastases and the association with disease outcome. Annals of Surgery, 244(1), 113–120.PubMedCrossRef Kim, J., Mori, T., Chen, S. L., Amersi, F. F., Martinez, S. R., Kuo, C., et al. (2006). Chemokine receptor cxcr4 expression in patients with melanoma and colorectal cancer liver metastases and the association with disease outcome. Annals of Surgery, 244(1), 113–120.PubMedCrossRef
107.
Zurück zum Zitat Geminder, H., Sagi-Assif, O., Goldberg, L., Meshel, T., Rechavi, G., Witz, I. P., et al. (2001). A possible role for cxcr4 and its ligand, the cxc chemokine stromal cell-derived factor-1, in the development of bone marrow metastases in neuroblastoma. Journal of Immunology, 167(8), 4747–4757. Geminder, H., Sagi-Assif, O., Goldberg, L., Meshel, T., Rechavi, G., Witz, I. P., et al. (2001). A possible role for cxcr4 and its ligand, the cxc chemokine stromal cell-derived factor-1, in the development of bone marrow metastases in neuroblastoma. Journal of Immunology, 167(8), 4747–4757.
108.
Zurück zum Zitat Scala, S., Ottaiano, A., Ascierto, P. A., Cavalli, M., Simeone, E., Giuliano, P., et al. (2005). Expression of cxcr4 predicts poor prognosis in patients with malignant melanoma. Clinical Cancer Research, 11(5), 1835–1841.PubMedCrossRef Scala, S., Ottaiano, A., Ascierto, P. A., Cavalli, M., Simeone, E., Giuliano, P., et al. (2005). Expression of cxcr4 predicts poor prognosis in patients with malignant melanoma. Clinical Cancer Research, 11(5), 1835–1841.PubMedCrossRef
109.
Zurück zum Zitat Zeelenberg, I. S., Ruuls-Van Stalle, L., & Roos, E. (2003). The chemokine receptor cxcr4 is required for outgrowth of colon carcinoma micrometastases. Cancer Research, 63(13), 3833–3839.PubMed Zeelenberg, I. S., Ruuls-Van Stalle, L., & Roos, E. (2003). The chemokine receptor cxcr4 is required for outgrowth of colon carcinoma micrometastases. Cancer Research, 63(13), 3833–3839.PubMed
110..
Zurück zum Zitat Grymula, K., Tarnowski, M., Wysoczynski, M., Drukala, J., Barr, F. G., Ratajczak, J., et al. (2010) Overlapping and distinct role of cxcr7-sdf-1/itac and cxcr4-sdf-1 axes in regulating metastatic behavior of human rhabdomyosarcomas. Int J Cancer (in press). Grymula, K., Tarnowski, M., Wysoczynski, M., Drukala, J., Barr, F. G., Ratajczak, J., et al. (2010) Overlapping and distinct role of cxcr7-sdf-1/itac and cxcr4-sdf-1 axes in regulating metastatic behavior of human rhabdomyosarcomas. Int J Cancer (in press).
111.
Zurück zum Zitat Libura, J., Drukala, J., Majka, M., Tomescu, O., Navenot, J. M., Kucia, M., et al. (2002). Cxcr4-sdf-1 signaling is active in rhabdomyosarcoma cells and regulates locomotion, chemotaxis, and adhesion. Blood, 100(7), 2597–2606.PubMedCrossRef Libura, J., Drukala, J., Majka, M., Tomescu, O., Navenot, J. M., Kucia, M., et al. (2002). Cxcr4-sdf-1 signaling is active in rhabdomyosarcoma cells and regulates locomotion, chemotaxis, and adhesion. Blood, 100(7), 2597–2606.PubMedCrossRef
112.
Zurück zum Zitat Tarnowski, M., Grymula, K., Reca, R., Jankowski, K., Maksym, R., Tarnowska, J., et al. (2010). Regulation of expression of stromal-derived factor-1 receptors: Cxcr4 and cxcr7 in human rhabdomyosarcomas. Mol Cancer Res, 8(1), 1–14.PubMedCrossRef Tarnowski, M., Grymula, K., Reca, R., Jankowski, K., Maksym, R., Tarnowska, J., et al. (2010). Regulation of expression of stromal-derived factor-1 receptors: Cxcr4 and cxcr7 in human rhabdomyosarcomas. Mol Cancer Res, 8(1), 1–14.PubMedCrossRef
113.
Zurück zum Zitat Matsunaga, T., Takemoto, N., Sato, T., Takimoto, R., Tanaka, I., Fujimi, A., et al. (2003). Interaction between leukemic-cell vla-4 and stromal fibronectin is a decisive factor for minimal residual disease of acute myelogenous leukemia. Natural Medicines, 9(9), 1158–1165.CrossRef Matsunaga, T., Takemoto, N., Sato, T., Takimoto, R., Tanaka, I., Fujimi, A., et al. (2003). Interaction between leukemic-cell vla-4 and stromal fibronectin is a decisive factor for minimal residual disease of acute myelogenous leukemia. Natural Medicines, 9(9), 1158–1165.CrossRef
114.
Zurück zum Zitat Sanz-Rodriguez, F., Hidalgo, A., & Teixido, J. (2001). Chemokine stromal cell-derived factor-1alpha modulates vla-4 integrin-mediated multiple myeloma cell adhesion to cs-1/fibronectin and vcam-1. Blood, 97(2), 346–351.PubMedCrossRef Sanz-Rodriguez, F., Hidalgo, A., & Teixido, J. (2001). Chemokine stromal cell-derived factor-1alpha modulates vla-4 integrin-mediated multiple myeloma cell adhesion to cs-1/fibronectin and vcam-1. Blood, 97(2), 346–351.PubMedCrossRef
115.
Zurück zum Zitat Dvorak, H. F. (1986). Tumors: Wounds that do not heal. Similarities between tumor stroma generation and wound healing. The New England journal of medicine, 315(26), 1650–1659.PubMedCrossRef Dvorak, H. F. (1986). Tumors: Wounds that do not heal. Similarities between tumor stroma generation and wound healing. The New England journal of medicine, 315(26), 1650–1659.PubMedCrossRef
116.
Zurück zum Zitat Horgan, K., Jones, D. L., & Mansel, R. E. (1987). Mitogenicity of human fibroblasts in vivo for human breast cancer cells. The British Journal of Surgery, 74(3), 227–229.PubMedCrossRef Horgan, K., Jones, D. L., & Mansel, R. E. (1987). Mitogenicity of human fibroblasts in vivo for human breast cancer cells. The British Journal of Surgery, 74(3), 227–229.PubMedCrossRef
117.
Zurück zum Zitat Ronnov-Jessen, L., Petersen, O. W., Koteliansky, V. E., & Bissell, M. J. (1995). The origin of the myofibroblasts in breast cancer. Recapitulation of tumor environment in culture unravels diversity and implicates converted fibroblasts and recruited smooth muscle cells. The Journal of clinical investigation, 95(2), 859–873.PubMedCrossRef Ronnov-Jessen, L., Petersen, O. W., Koteliansky, V. E., & Bissell, M. J. (1995). The origin of the myofibroblasts in breast cancer. Recapitulation of tumor environment in culture unravels diversity and implicates converted fibroblasts and recruited smooth muscle cells. The Journal of clinical investigation, 95(2), 859–873.PubMedCrossRef
118.
Zurück zum Zitat Clarke, M. F., & Fuller, M. (2006). Stem cells and cancer: Two faces of eve. Cell, 124(6), 1111–1115.PubMedCrossRef Clarke, M. F., & Fuller, M. (2006). Stem cells and cancer: Two faces of eve. Cell, 124(6), 1111–1115.PubMedCrossRef
119.
Zurück zum Zitat Li, L., & Neaves, W. B. (2006). Normal stem cells and cancer stem cells: The niche matters. Cancer Research, 66(9), 4553–4557.PubMedCrossRef Li, L., & Neaves, W. B. (2006). Normal stem cells and cancer stem cells: The niche matters. Cancer Research, 66(9), 4553–4557.PubMedCrossRef
120.
Zurück zum Zitat Polyak, K., & Hahn, W. C. (2006). Roots and stems: Stem cells in cancer. Natural Medicines, 12(3), 296–300.CrossRef Polyak, K., & Hahn, W. C. (2006). Roots and stems: Stem cells in cancer. Natural Medicines, 12(3), 296–300.CrossRef
121.
Zurück zum Zitat Rak, J. (2006). Is cancer stem cell a cell, or a multicellular unit capable of inducing angiogenesis? Medical Hypotheses, 66(3), 601–604.PubMedCrossRef Rak, J. (2006). Is cancer stem cell a cell, or a multicellular unit capable of inducing angiogenesis? Medical Hypotheses, 66(3), 601–604.PubMedCrossRef
122.
Zurück zum Zitat Yilmaz, O. H., Valdez, R., Theisen, B. K., Guo, W., Ferguson, D. O., Wu, H., et al. (2006). Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature, 441(7092), 475–482.PubMedCrossRef Yilmaz, O. H., Valdez, R., Theisen, B. K., Guo, W., Ferguson, D. O., Wu, H., et al. (2006). Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature, 441(7092), 475–482.PubMedCrossRef
123.
Zurück zum Zitat Begley, L., Monteleon, C., Shah, R. B., Macdonald, J. W., & Macoska, J. A. (2005). Cxcl12 overexpression and secretion by aging fibroblasts enhance human prostate epithelial proliferation in vitro. Aging Cell, 4(6), 291–298.PubMedCrossRef Begley, L., Monteleon, C., Shah, R. B., Macdonald, J. W., & Macoska, J. A. (2005). Cxcl12 overexpression and secretion by aging fibroblasts enhance human prostate epithelial proliferation in vitro. Aging Cell, 4(6), 291–298.PubMedCrossRef
124.
Zurück zum Zitat Kaplan, R. N., Riba, R. D., Zacharoulis, S., Bramley, A. H., Vincent, L., Costa, C., et al. (2005). Vegfr1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature, 438(7069), 820–827.PubMedCrossRef Kaplan, R. N., Riba, R. D., Zacharoulis, S., Bramley, A. H., Vincent, L., Costa, C., et al. (2005). Vegfr1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature, 438(7069), 820–827.PubMedCrossRef
125.
Zurück zum Zitat Houshmand, P., & Zlotnik, A. (2003). Targeting tumor cells. Current Opinion in Cell Biology, 15(5), 640–644.PubMedCrossRef Houshmand, P., & Zlotnik, A. (2003). Targeting tumor cells. Current Opinion in Cell Biology, 15(5), 640–644.PubMedCrossRef
126.
Zurück zum Zitat Ao, M., Franco, O. E., Park, D., Raman, D., Williams, K., & Hayward, S. W. (2007). Cross-talk between paracrine-acting cytokine and chemokine pathways promotes malignancy in benign human prostatic epithelium. Cancer Research, 67(9), 4244–4253.PubMedCrossRef Ao, M., Franco, O. E., Park, D., Raman, D., Williams, K., & Hayward, S. W. (2007). Cross-talk between paracrine-acting cytokine and chemokine pathways promotes malignancy in benign human prostatic epithelium. Cancer Research, 67(9), 4244–4253.PubMedCrossRef
127.
Zurück zum Zitat Zhang, L., Yeger, H., Das, B., Irwin, M. S., & Baruchel, S. (2007). Tissue microenvironment modulates cxcr4 expression and tumor metastasis in neuroblastoma. Neoplasia, 9(1), 36–46.PubMedCrossRef Zhang, L., Yeger, H., Das, B., Irwin, M. S., & Baruchel, S. (2007). Tissue microenvironment modulates cxcr4 expression and tumor metastasis in neuroblastoma. Neoplasia, 9(1), 36–46.PubMedCrossRef
128.
Zurück zum Zitat Donahue, R. E., Jin, P., Bonifacino, A. C., Metzger, M. E., Ren, J., Wang, E., et al. (2009). Plerixafor (amd3100) and granulocyte colony-stimulating factor (g-csf) mobilize different cd34+ cell populations based on global gene and microrna expression signatures. Blood, 114(12), 2530–2541.PubMedCrossRef Donahue, R. E., Jin, P., Bonifacino, A. C., Metzger, M. E., Ren, J., Wang, E., et al. (2009). Plerixafor (amd3100) and granulocyte colony-stimulating factor (g-csf) mobilize different cd34+ cell populations based on global gene and microrna expression signatures. Blood, 114(12), 2530–2541.PubMedCrossRef
129.
Zurück zum Zitat Kim, S. Y., Lee, C. H., Midura, B. V., Yeung, C., Mendoza, A., Hong, S. H., et al. (2008). Inhibition of the cxcr4/cxcl12 chemokine pathway reduces the development of murine pulmonary metastases. Clinical & Experimental Metastasis, 25(3), 201–211.CrossRef Kim, S. Y., Lee, C. H., Midura, B. V., Yeung, C., Mendoza, A., Hong, S. H., et al. (2008). Inhibition of the cxcr4/cxcl12 chemokine pathway reduces the development of murine pulmonary metastases. Clinical & Experimental Metastasis, 25(3), 201–211.CrossRef
130.
Zurück zum Zitat Porvasnik, S., Sakamoto, N., Kusmartsev, S., Eruslanov, E., Kim, W. J., Cao, W., et al. (2009). Effects of cxcr4 antagonist ctce-9908 on prostate tumor growth. The Prostate, 69(13), 1460–1469.PubMedCrossRef Porvasnik, S., Sakamoto, N., Kusmartsev, S., Eruslanov, E., Kim, W. J., Cao, W., et al. (2009). Effects of cxcr4 antagonist ctce-9908 on prostate tumor growth. The Prostate, 69(13), 1460–1469.PubMedCrossRef
131.
Zurück zum Zitat Richert, M. M., Vaidya, K. S., Mills, C. N., Wong, D., Korz, W., Hurst, D. R., et al. (2009). Inhibition of cxcr4 by ctce-9908 inhibits breast cancer metastasis to lung and bone. Oncology Reports, 21(3), 761–767.PubMed Richert, M. M., Vaidya, K. S., Mills, C. N., Wong, D., Korz, W., Hurst, D. R., et al. (2009). Inhibition of cxcr4 by ctce-9908 inhibits breast cancer metastasis to lung and bone. Oncology Reports, 21(3), 761–767.PubMed
132.
Zurück zum Zitat Hojo, S., Koizumi, K., Tsuneyama, K., Arita, Y., Cui, Z., Shinohara, K., et al. (2007). High-level expression of chemokine cxcl16 by tumor cells correlates with a good prognosis and increased tumor-infiltrating lymphocytes in colorectal cancer. Cancer Research, 67(10), 4725–4731.PubMedCrossRef Hojo, S., Koizumi, K., Tsuneyama, K., Arita, Y., Cui, Z., Shinohara, K., et al. (2007). High-level expression of chemokine cxcl16 by tumor cells correlates with a good prognosis and increased tumor-infiltrating lymphocytes in colorectal cancer. Cancer Research, 67(10), 4725–4731.PubMedCrossRef
133.
Zurück zum Zitat Wysoczynski, M., Kucia, M., Ratajczak, J., & Ratajczak, M. Z. (2007). Cleavage fragments of the third complement component (c3) enhance stromal derived factor-1 (sdf-1)-mediated platelet production during reactive postbleeding thrombocytosis. Leukemia, 21(5), 973–982.PubMed Wysoczynski, M., Kucia, M., Ratajczak, J., & Ratajczak, M. Z. (2007). Cleavage fragments of the third complement component (c3) enhance stromal derived factor-1 (sdf-1)-mediated platelet production during reactive postbleeding thrombocytosis. Leukemia, 21(5), 973–982.PubMed
134.
Zurück zum Zitat Wysoczynski, M., Miekus, K., Jankowski, K., Wanzeck, J., Bertolone, S., Janowska-Wieczorek, A., et al. (2007). Leukemia inhibitory factor: A newly identified metastatic factor in rhabdomyosarcomas. Cancer Research, 67(5), 2131–2140.PubMedCrossRef Wysoczynski, M., Miekus, K., Jankowski, K., Wanzeck, J., Bertolone, S., Janowska-Wieczorek, A., et al. (2007). Leukemia inhibitory factor: A newly identified metastatic factor in rhabdomyosarcomas. Cancer Research, 67(5), 2131–2140.PubMedCrossRef
135.
Zurück zum Zitat McGrath, K. E., Koniski, A. D., Maltby, K. M., McGann, J. K., & Palis, J. (1999). Embryonic expression and function of the chemokine sdf-1 and its receptor, cxcr4. Developmental Biology, 213(2), 442–456.PubMedCrossRef McGrath, K. E., Koniski, A. D., Maltby, K. M., McGann, J. K., & Palis, J. (1999). Embryonic expression and function of the chemokine sdf-1 and its receptor, cxcr4. Developmental Biology, 213(2), 442–456.PubMedCrossRef
136.
Zurück zum Zitat Mohle, R., Moore, M. A., Nachman, R. L., & Rafii, S. (1997). Transendothelial migration of cd34+ and mature hematopoietic cells: An in vitro study using a human bone marrow endothelial cell line. Blood, 89(1), 72–80.PubMed Mohle, R., Moore, M. A., Nachman, R. L., & Rafii, S. (1997). Transendothelial migration of cd34+ and mature hematopoietic cells: An in vitro study using a human bone marrow endothelial cell line. Blood, 89(1), 72–80.PubMed
Metadaten
Titel
CXCL12 / CXCR4 / CXCR7 chemokine axis and cancer progression
verfasst von
Xueqing Sun
Guangcun Cheng
Mingang Hao
Jianghua Zheng
Xiaoming Zhou
Jian Zhang
Russell S. Taichman
Kenneth J. Pienta
Jianhua Wang
Publikationsdatum
01.12.2010
Verlag
Springer US
Erschienen in
Cancer and Metastasis Reviews / Ausgabe 4/2010
Print ISSN: 0167-7659
Elektronische ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-010-9256-x

Weitere Artikel der Ausgabe 4/2010

Cancer and Metastasis Reviews 4/2010 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.