Skip to main content
Erschienen in: Cancer and Metastasis Reviews 1/2011

01.03.2011

Improving cancer immunotherapy by targeting tumor-induced immune suppression

verfasst von: Trina J. Stewart, Mark J. Smyth

Erschienen in: Cancer and Metastasis Reviews | Ausgabe 1/2011

Einloggen, um Zugang zu erhalten

Abstract

The status of a host’s immune response influences both the development and progression of a malignancy such that immune responses can have both pro- and anti-tumorigenic effects. Cancer immunotherapy is a form of treatment that aims to improve the ability of a cancer-bearing individual to reject the tumor immunologically. However, antitumor immunity elicited by the host or by immunotherapeutic strategies, can be actively attenuated by mechanisms that limit the strength and/or duration of immune responses, including the presence of immunoregulatory cell types or the production of immunosuppressive factors. As our knowledge of tumor-induced immune suppression increases, it has become obvious that these mechanisms are probably a major barrier to effective therapy. The identification of multiple mechanisms of tumor-induced immune suppression also provides a range of novel targets for new cancer therapies. Given the vital role that a host’s immune response is known to play in cancer progression, therapies that target immune suppressive mechanisms have the potential to enhance anticancer immune responses thus leading to better immune surveillance and the limitation of tumor escape. In this review, mechanisms of tumor-associated immune suppression have been divided into four forms that we have designated as (1) regulatory cells; (2) cytokines/chemokines; (3) T cell tolerance/exhaustion and (4) metabolic. We discuss select mechanisms representing each of these forms of immunosuppression that have been shown to aid tumors in evading host immune surveillance and overview therapeutic strategies that have been recently devised to “suppress these suppressors.”
Literatur
1.
Zurück zum Zitat Stewart, T. J., Greeneltch, K. M., Lutsiak, M. E., & Abrams, S. I. (2007). Immunological responses can have both pro- and antitumour effects: implications for immunotherapy. Expert Reviews in Molecular Medicine, 9(4), 1–20. doi:10.1017/S1462399407000233.PubMed Stewart, T. J., Greeneltch, K. M., Lutsiak, M. E., & Abrams, S. I. (2007). Immunological responses can have both pro- and antitumour effects: implications for immunotherapy. Expert Reviews in Molecular Medicine, 9(4), 1–20. doi:10.​1017/​S146239940700023​3.PubMed
2.
Zurück zum Zitat Hamai, A., Benlalam, H., Meslin, F., Hasmim, M., Carre, T., Akalay, I., et al. Immune surveillance of human cancer: If the cytotoxic t-lymphocytes play the music, does the tumoral system call the tune? Tissue Antigens, 75(1), 1–8, doi:10.1111/j.1399-0039.2009.01401.x. Hamai, A., Benlalam, H., Meslin, F., Hasmim, M., Carre, T., Akalay, I., et al. Immune surveillance of human cancer: If the cytotoxic t-lymphocytes play the music, does the tumoral system call the tune? Tissue Antigens, 75(1), 1–8, doi:10.​1111/​j.​1399-0039.​2009.​01401.​x.
3.
Zurück zum Zitat Knutson, K. L., & Disis, M. L. (2005). Tumor antigen-specific T helper cells in cancer immunity and immunotherapy. Cancer Immunology, Immunotherapy, 54(8), 721–728.PubMed Knutson, K. L., & Disis, M. L. (2005). Tumor antigen-specific T helper cells in cancer immunity and immunotherapy. Cancer Immunology, Immunotherapy, 54(8), 721–728.PubMed
5.
Zurück zum Zitat Dunn, G. P., Old, L. J., & Schreiber, R. D. (2004). The immunobiology of cancer immunosurveillance and immunoediting. Immunity, 21(2), 137–148.PubMed Dunn, G. P., Old, L. J., & Schreiber, R. D. (2004). The immunobiology of cancer immunosurveillance and immunoediting. Immunity, 21(2), 137–148.PubMed
6.
9.
Zurück zum Zitat Weiner, L. M., Surana, R., & Wang, S. Monoclonal antibodies: versatile platforms for cancer immunotherapy. Nature Reviews. Immunology, 10(5), 317–327, doi:10.1038/nri2744. Weiner, L. M., Surana, R., & Wang, S. Monoclonal antibodies: versatile platforms for cancer immunotherapy. Nature Reviews. Immunology, 10(5), 317–327, doi:10.​1038/​nri2744.
12.
Zurück zum Zitat Huye, L. E., & Dotti, G. Designing t cells for cancer immunotherapy. Discov Med, 9(47), 297–303. Huye, L. E., & Dotti, G. Designing t cells for cancer immunotherapy. Discov Med, 9(47), 297–303.
13.
Zurück zum Zitat Westwood, J. A., & Kershaw, M. H. Genetic redirection of t cells for cancer therapy. Journal of Leukocyte Biology, 87(5), 791–803, doi:10.1189/jlb.1209824. Westwood, J. A., & Kershaw, M. H. Genetic redirection of t cells for cancer therapy. Journal of Leukocyte Biology, 87(5), 791–803, doi:10.​1189/​jlb.​1209824.
14.
Zurück zum Zitat Spagnoli, G. C., Ebrahimi, M., Iezzi, G., Mengus, C., & Zajac, P. Contemporary immunotherapy of solid tumors: From tumor-associated antigens to combination treatments. Current Opinion in Drug Discovery & Development, 13(2), 184–192. Spagnoli, G. C., Ebrahimi, M., Iezzi, G., Mengus, C., & Zajac, P. Contemporary immunotherapy of solid tumors: From tumor-associated antigens to combination treatments. Current Opinion in Drug Discovery & Development, 13(2), 184–192.
16.
17.
Zurück zum Zitat Nishikawa, H., & Sakaguchi, S. Regulatory t cells in tumor immunity. International Journal of Cancer, 127(4), 759–767, doi:10.1002/ijc.25429. Nishikawa, H., & Sakaguchi, S. Regulatory t cells in tumor immunity. International Journal of Cancer, 127(4), 759–767, doi:10.​1002/​ijc.​25429.
18.
Zurück zum Zitat Teng, M. W., Ritchie, D. S., Neeson, P., & Smyth, M. J. Biology and clinical observations of regulatory t cells in cancer immunology. Current topics in Microbiology and Immunology, doi:10.1007/82_2010_50. Teng, M. W., Ritchie, D. S., Neeson, P., & Smyth, M. J. Biology and clinical observations of regulatory t cells in cancer immunology. Current topics in Microbiology and Immunology, doi:10.​1007/​82_​2010_​50.
19.
Zurück zum Zitat Serafini, P., Borrello, I., & Bronte, V. (2006). Myeloid suppressor cells in cancer: recruitment, phenotype, properties, and mechanisms of immune suppression. Seminars in Cancer Biology, 16(1), 53–65.PubMed Serafini, P., Borrello, I., & Bronte, V. (2006). Myeloid suppressor cells in cancer: recruitment, phenotype, properties, and mechanisms of immune suppression. Seminars in Cancer Biology, 16(1), 53–65.PubMed
21.
Zurück zum Zitat Gabrilovich, D. I., & Nagaraj, S. (2009). Myeloid-derived suppressor cells as regulators of the immune system. Nature Reviews. Immunology, 9(3), 162–174. doi:10.1038/nri2506.PubMed Gabrilovich, D. I., & Nagaraj, S. (2009). Myeloid-derived suppressor cells as regulators of the immune system. Nature Reviews. Immunology, 9(3), 162–174. doi:10.​1038/​nri2506.PubMed
23.
Zurück zum Zitat Almand, B., Clark, J. I., Nikitina, E., van Beynen, J., English, N. R., Knight, S. C., et al. (2001). Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer. Journal of Immunology, 166(1), 678–689. Almand, B., Clark, J. I., Nikitina, E., van Beynen, J., English, N. R., Knight, S. C., et al. (2001). Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer. Journal of Immunology, 166(1), 678–689.
24.
Zurück zum Zitat Diaz-Montero, C. M., Salem, M. L., Nishimura, M. I., Garrett-Mayer, E., Cole, D. J., & Montero, A. J. (2009). Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy. Cancer Immunology, Immunotherapy, 58(1), 49–59. doi:10.1007/s00262-008-0523-4.PubMed Diaz-Montero, C. M., Salem, M. L., Nishimura, M. I., Garrett-Mayer, E., Cole, D. J., & Montero, A. J. (2009). Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy. Cancer Immunology, Immunotherapy, 58(1), 49–59. doi:10.​1007/​s00262-008-0523-4.PubMed
25.
Zurück zum Zitat Sica, A., & Bronte, V. (2007). Altered macrophage differentiation and immune dysfunction in tumor development. Journal of Clinical Investigation, 117(5), 1155–1166. doi:10.1172/JCI31422.PubMed Sica, A., & Bronte, V. (2007). Altered macrophage differentiation and immune dysfunction in tumor development. Journal of Clinical Investigation, 117(5), 1155–1166. doi:10.​1172/​JCI31422.PubMed
26.
Zurück zum Zitat Young, M. R., Kolesiak, K., Wright, M. A., & Gabrilovich, D. I. (1999). Chemoattraction of femoral cd34+ progenitor cells by tumor-derived vascular endothelial cell growth factor. Clinical & Experimental Metastasis, 17(10), 881–888. Young, M. R., Kolesiak, K., Wright, M. A., & Gabrilovich, D. I. (1999). Chemoattraction of femoral cd34+ progenitor cells by tumor-derived vascular endothelial cell growth factor. Clinical & Experimental Metastasis, 17(10), 881–888.
27.
Zurück zum Zitat Zea, A. H., Rodriguez, P. C., Atkins, M. B., Hernandez, C., Signoretti, S., Zabaleta, J., et al. (2005). Arginase-producing myeloid suppressor cells in renal cell carcinoma patients: a mechanism of tumor evasion. Cancer Research, 65(8), 3044–3048. doi:10.1158/0008-5472.CAN-04-4505.PubMed Zea, A. H., Rodriguez, P. C., Atkins, M. B., Hernandez, C., Signoretti, S., Zabaleta, J., et al. (2005). Arginase-producing myeloid suppressor cells in renal cell carcinoma patients: a mechanism of tumor evasion. Cancer Research, 65(8), 3044–3048. doi:10.​1158/​0008-5472.​CAN-04-4505.PubMed
28.
Zurück zum Zitat Filipazzi, P., Valenti, R., Huber, V., Pilla, L., Canese, P., Iero, M., et al. (2007). Identification of a new subset of myeloid suppressor cells in peripheral blood of melanoma patients with modulation by a granulocyte-macrophage colony-stimulation factor-based antitumor vaccine. Journal of Clinical Oncology, 25(18), 2546–2553. doi:10.1200/JCO.2006.08.5829.PubMed Filipazzi, P., Valenti, R., Huber, V., Pilla, L., Canese, P., Iero, M., et al. (2007). Identification of a new subset of myeloid suppressor cells in peripheral blood of melanoma patients with modulation by a granulocyte-macrophage colony-stimulation factor-based antitumor vaccine. Journal of Clinical Oncology, 25(18), 2546–2553. doi:10.​1200/​JCO.​2006.​08.​5829.PubMed
29.
Zurück zum Zitat Hoechst, B., Ormandy, L. A., Ballmaier, M., Lehner, F., Kruger, C., Manns, M. P., et al. (2008). A new population of myeloid-derived suppressor cells in hepatocellular carcinoma patients induces cd4(+)cd25(+)foxp3(+) T cells. Gastroenterology, 135(1), 234–243. doi:10.1053/j.gastro.2008.03.020.PubMed Hoechst, B., Ormandy, L. A., Ballmaier, M., Lehner, F., Kruger, C., Manns, M. P., et al. (2008). A new population of myeloid-derived suppressor cells in hepatocellular carcinoma patients induces cd4(+)cd25(+)foxp3(+) T cells. Gastroenterology, 135(1), 234–243. doi:10.​1053/​j.​gastro.​2008.​03.​020.PubMed
30.
Zurück zum Zitat Danna, E. A., Sinha, P., Gilbert, M., Clements, V. K., Pulaski, B. A., & Ostrand-Rosenberg, S. (2004). Surgical removal of primary tumor reverses tumor-induced immunosuppression despite the presence of metastatic disease. Cancer Research, 64(6), 2205–2211.PubMed Danna, E. A., Sinha, P., Gilbert, M., Clements, V. K., Pulaski, B. A., & Ostrand-Rosenberg, S. (2004). Surgical removal of primary tumor reverses tumor-induced immunosuppression despite the presence of metastatic disease. Cancer Research, 64(6), 2205–2211.PubMed
31.
Zurück zum Zitat Serafini, P., De Santo, C., Marigo, I., Cingarlini, S., Dolcetti, L., Gallina, G., et al. (2004). Derangement of immune responses by myeloid suppressor cells. Cancer Immunology, Immunotherapy, 53(2), 64–72.PubMed Serafini, P., De Santo, C., Marigo, I., Cingarlini, S., Dolcetti, L., Gallina, G., et al. (2004). Derangement of immune responses by myeloid suppressor cells. Cancer Immunology, Immunotherapy, 53(2), 64–72.PubMed
32.
Zurück zum Zitat de Waal Malefyt, R., Yssel, H., & de Vries, J. E. (1993). Direct effects of il-10 on subsets of human cd4+ t cell clones and resting t cells. Specific inhibition of il-2 production and proliferation. Journal of Immunology, 150(11), 4754–4765. de Waal Malefyt, R., Yssel, H., & de Vries, J. E. (1993). Direct effects of il-10 on subsets of human cd4+ t cell clones and resting t cells. Specific inhibition of il-2 production and proliferation. Journal of Immunology, 150(11), 4754–4765.
33.
Zurück zum Zitat Koch, F., Stanzl, U., Jennewein, P., Janke, K., Heufler, C., Kampgen, E., et al. (1996). High level IL-12 production by murine dendritic cells: upregulation via MHC class II and CD40 molecules and downregulation by IL-4 and IL-10. The Journal of Experimental Medicine, 184(2), 741–746.PubMed Koch, F., Stanzl, U., Jennewein, P., Janke, K., Heufler, C., Kampgen, E., et al. (1996). High level IL-12 production by murine dendritic cells: upregulation via MHC class II and CD40 molecules and downregulation by IL-4 and IL-10. The Journal of Experimental Medicine, 184(2), 741–746.PubMed
35.
Zurück zum Zitat Bronte, V., Wang, M., Overwijk, W. W., Surman, D. R., Pericle, F., Rosenberg, S. A., et al. (1998). Apoptotic death of CD8+ T lymphocytes after immunization: induction of a suppressive population of Mac-1+/Gr-1+ cells. Journal of Immunology, 161(10), 5313–5320. Bronte, V., Wang, M., Overwijk, W. W., Surman, D. R., Pericle, F., Rosenberg, S. A., et al. (1998). Apoptotic death of CD8+ T lymphocytes after immunization: induction of a suppressive population of Mac-1+/Gr-1+ cells. Journal of Immunology, 161(10), 5313–5320.
36.
Zurück zum Zitat Gallina, G., Dolcetti, L., Serafini, P., De Santo, C., Marigo, I., Colombo, M. P., et al. (2006). Tumors induce a subset of inflammatory monocytes with immunosuppressive activity on CD8+ T cells. Journal of Clinical Investigation, 116(10), 2777–2790.PubMed Gallina, G., Dolcetti, L., Serafini, P., De Santo, C., Marigo, I., Colombo, M. P., et al. (2006). Tumors induce a subset of inflammatory monocytes with immunosuppressive activity on CD8+ T cells. Journal of Clinical Investigation, 116(10), 2777–2790.PubMed
37.
Zurück zum Zitat Zea, A. H., Rodriguez, P. C., Culotta, K. S., Hernandez, C. P., DeSalvo, J., Ochoa, J. B., et al. (2004). l-Arginine modulates CD3zeta expression and T cell function in activated human T lymphocytes. Cellular Immunology, 232(1–2), 21–31.PubMed Zea, A. H., Rodriguez, P. C., Culotta, K. S., Hernandez, C. P., DeSalvo, J., Ochoa, J. B., et al. (2004). l-Arginine modulates CD3zeta expression and T cell function in activated human T lymphocytes. Cellular Immunology, 232(1–2), 21–31.PubMed
38.
Zurück zum Zitat De Santo, C., Serafini, P., Marigo, I., Dolcetti, L., Bolla, M., Del Soldato, P., et al. (2005). Nitroaspirin corrects immune dysfunction in tumor-bearing hosts and promotes tumor eradication by cancer vaccination. Proceedings of the National Academy of Sciences of the United States of America, 102(11), 4185–4190.PubMed De Santo, C., Serafini, P., Marigo, I., Dolcetti, L., Bolla, M., Del Soldato, P., et al. (2005). Nitroaspirin corrects immune dysfunction in tumor-bearing hosts and promotes tumor eradication by cancer vaccination. Proceedings of the National Academy of Sciences of the United States of America, 102(11), 4185–4190.PubMed
39.
Zurück zum Zitat Pekarek, L. A., Starr, B. A., Toledano, A. Y., & Schreiber, H. (1995). Inhibition of tumor growth by elimination of granulocytes. The Journal of Experimental Medicine, 181(1), 435–440.PubMed Pekarek, L. A., Starr, B. A., Toledano, A. Y., & Schreiber, H. (1995). Inhibition of tumor growth by elimination of granulocytes. The Journal of Experimental Medicine, 181(1), 435–440.PubMed
40.
Zurück zum Zitat Stewart, T. J., Liewehr, D. J., Steinberg, S. M., Greeneltch, K. M., & Abrams, S. I. (2009). Modulating the expression of IFN regulatory factor 8 alters the protumorigenic behavior of CD11b+Gr-1+ myeloid cells. Journal of Immunology, 183(1), 117–128. doi:10.4049/jimmunol.0804132. Stewart, T. J., Liewehr, D. J., Steinberg, S. M., Greeneltch, K. M., & Abrams, S. I. (2009). Modulating the expression of IFN regulatory factor 8 alters the protumorigenic behavior of CD11b+Gr-1+ myeloid cells. Journal of Immunology, 183(1), 117–128. doi:10.​4049/​jimmunol.​0804132.
41.
Zurück zum Zitat Stewart, T. J., Greeneltch, K. M., Reid, J. E., Liewehr, D. J., Steinberg, S. M., Liu, K., et al. (2009). Interferon regulatory factor-8 modulates the development of tumour-induced CD11B+Gr-1+ myeloid cells. Journal of Cellular and Molecular Medicine, 13(9B), 3939–3950. doi:10.1111/j.1582-4934.2009.00685.x.PubMed Stewart, T. J., Greeneltch, K. M., Reid, J. E., Liewehr, D. J., Steinberg, S. M., Liu, K., et al. (2009). Interferon regulatory factor-8 modulates the development of tumour-induced CD11B+Gr-1+ myeloid cells. Journal of Cellular and Molecular Medicine, 13(9B), 3939–3950. doi:10.​1111/​j.​1582-4934.​2009.​00685.​x.PubMed
42.
Zurück zum Zitat Kortylewski, M., Kujawski, M., Wang, T., Wei, S., Zhang, S., Pilon-Thomas, S., et al. (2005). Inhibiting stat3 signaling in the hematopoietic system elicits multicomponent antitumor immunity. Natural Medicines, 11(12), 1314–1321. doi:10.1038/nm1325. Kortylewski, M., Kujawski, M., Wang, T., Wei, S., Zhang, S., Pilon-Thomas, S., et al. (2005). Inhibiting stat3 signaling in the hematopoietic system elicits multicomponent antitumor immunity. Natural Medicines, 11(12), 1314–1321. doi:10.​1038/​nm1325.
43.
Zurück zum Zitat Nefedova, Y., Nagaraj, S., Rosenbauer, A., Muro-Cacho, C., Sebti, S. M., & Gabrilovich, D. I. (2005). Regulation of dendritic cell differentiation and antitumor immune response in cancer by pharmacologic-selective inhibition of the janus-activated kinase 2/signal transducers and activators of transcription 3 pathway. Cancer Research, 65(20), 9525–9535.PubMed Nefedova, Y., Nagaraj, S., Rosenbauer, A., Muro-Cacho, C., Sebti, S. M., & Gabrilovich, D. I. (2005). Regulation of dendritic cell differentiation and antitumor immune response in cancer by pharmacologic-selective inhibition of the janus-activated kinase 2/signal transducers and activators of transcription 3 pathway. Cancer Research, 65(20), 9525–9535.PubMed
44.
Zurück zum Zitat Sinha, P., Clements, V. K., & Ostrand-Rosenberg, S. (2005). Reduction of myeloid-derived suppressor cells and induction of m1 macrophages facilitate the rejection of established metastatic disease. Journal of Immunology, 174(2), 636–645. Sinha, P., Clements, V. K., & Ostrand-Rosenberg, S. (2005). Reduction of myeloid-derived suppressor cells and induction of m1 macrophages facilitate the rejection of established metastatic disease. Journal of Immunology, 174(2), 636–645.
45.
Zurück zum Zitat Kusmartsev, S., Cheng, F., Yu, B., Nefedova, Y., Sotomayor, E., Lush, R., et al. (2003). All-trans-retinoic acid eliminates immature myeloid cells from tumor-bearing mice and improves the effect of vaccination. Cancer Research, 63(15), 4441–4449.PubMed Kusmartsev, S., Cheng, F., Yu, B., Nefedova, Y., Sotomayor, E., Lush, R., et al. (2003). All-trans-retinoic acid eliminates immature myeloid cells from tumor-bearing mice and improves the effect of vaccination. Cancer Research, 63(15), 4441–4449.PubMed
46.
Zurück zum Zitat Young, M. R., Lozano, Y., Ihm, J., Wright, M. A., & Prechel, M. M. (1996). Vitamin D3 treatment of tumor bearers can stimulate immune competence and reduce tumor growth when treatment coincides with a heightened presence of natural suppressor cells. Cancer Letters, 104(2), 153–161.PubMed Young, M. R., Lozano, Y., Ihm, J., Wright, M. A., & Prechel, M. M. (1996). Vitamin D3 treatment of tumor bearers can stimulate immune competence and reduce tumor growth when treatment coincides with a heightened presence of natural suppressor cells. Cancer Letters, 104(2), 153–161.PubMed
47.
Zurück zum Zitat Young, M. R., & Wright, M. A. (1992). Myelopoiesis-associated immune suppressor cells in mice bearing metastatic Lewis lung carcinoma tumors: gamma interferon plus tumor necrosis factor alpha synergistically reduces immune suppressor and tumor growth-promoting activities of bone marrow cells and diminishes tumor recurrence and metastasis. Cancer Research, 52(22), 6335–6340.PubMed Young, M. R., & Wright, M. A. (1992). Myelopoiesis-associated immune suppressor cells in mice bearing metastatic Lewis lung carcinoma tumors: gamma interferon plus tumor necrosis factor alpha synergistically reduces immune suppressor and tumor growth-promoting activities of bone marrow cells and diminishes tumor recurrence and metastasis. Cancer Research, 52(22), 6335–6340.PubMed
48.
Zurück zum Zitat Mirza, N., Fishman, M., Fricke, I., Dunn, M., Neuger, A. M., Frost, T. J., et al. (2006). All-trans-retinoic acid improves differentiation of myeloid cells and immune response in cancer patients. Cancer Research, 66(18), 9299–9307. doi:10.1158/0008-5472.CAN-06-1690.PubMed Mirza, N., Fishman, M., Fricke, I., Dunn, M., Neuger, A. M., Frost, T. J., et al. (2006). All-trans-retinoic acid improves differentiation of myeloid cells and immune response in cancer patients. Cancer Research, 66(18), 9299–9307. doi:10.​1158/​0008-5472.​CAN-06-1690.PubMed
49.
Zurück zum Zitat Ko, J. S., Rayman, P., Ireland, J., Swaidani, S., Li, G., Bunting, K. D., et al. Direct and differential suppression of myeloid-derived suppressor cell subsets by sunitinib is compartmentally constrained. Cancer Research, 70(9), 3526–3536, doi:10.1158/0008-5472.CAN-09-3278. Ko, J. S., Rayman, P., Ireland, J., Swaidani, S., Li, G., Bunting, K. D., et al. Direct and differential suppression of myeloid-derived suppressor cell subsets by sunitinib is compartmentally constrained. Cancer Research, 70(9), 3526–3536, doi:10.​1158/​0008-5472.​CAN-09-3278.
50.
Zurück zum Zitat Le, H. K., Graham, L., Cha, E., Morales, J. K., Manjili, M. H., & Bear, H. D. (2009). Gemcitabine directly inhibits myeloid derived suppressor cells in BALB/c mice bearing 4T1 mammary carcinoma and augments expansion of T cells from tumor-bearing mice. International Immunopharmacology, 9(7–8), 900–909. doi:10.1016/j.intimp.2009.03.015.PubMed Le, H. K., Graham, L., Cha, E., Morales, J. K., Manjili, M. H., & Bear, H. D. (2009). Gemcitabine directly inhibits myeloid derived suppressor cells in BALB/c mice bearing 4T1 mammary carcinoma and augments expansion of T cells from tumor-bearing mice. International Immunopharmacology, 9(7–8), 900–909. doi:10.​1016/​j.​intimp.​2009.​03.​015.PubMed
51.
Zurück zum Zitat Ozao-Choy, J., Ma, G., Kao, J., Wang, G. X., Meseck, M., Sung, M., et al. (2009). The novel role of tyrosine kinase inhibitor in the reversal of immune suppression and modulation of tumor microenvironment for immune-based cancer therapies. Cancer Research, 69(6), 2514–2522. doi:10.1158/0008-5472.CAN-08-4709.PubMed Ozao-Choy, J., Ma, G., Kao, J., Wang, G. X., Meseck, M., Sung, M., et al. (2009). The novel role of tyrosine kinase inhibitor in the reversal of immune suppression and modulation of tumor microenvironment for immune-based cancer therapies. Cancer Research, 69(6), 2514–2522. doi:10.​1158/​0008-5472.​CAN-08-4709.PubMed
52.
Zurück zum Zitat Suzuki, E., Kapoor, V., Jassar, A. S., Kaiser, L. R., & Albelda, S. M. (2005). Gemcitabine selectively eliminates splenic Gr-1+/CD11b+myeloid suppressor cells in tumor-bearing animals and enhances antitumor immune activity. Clinical Cancer Research, 11(18), 6713–6721.PubMed Suzuki, E., Kapoor, V., Jassar, A. S., Kaiser, L. R., & Albelda, S. M. (2005). Gemcitabine selectively eliminates splenic Gr-1+/CD11b+myeloid suppressor cells in tumor-bearing animals and enhances antitumor immune activity. Clinical Cancer Research, 11(18), 6713–6721.PubMed
53.
Zurück zum Zitat Vincent, J., Mignot, G., Chalmin, F., Ladoire, S., Bruchard, M., Chevriaux, A., et al. 5-fluorouracil selectively kills tumor-associated myeloid-derived suppressor cells resulting in enhanced t cell-dependent antitumor immunity. Cancer Research, 70(8), 3052–3061, doi:10.1158/0008-5472.CAN-09-3690. Vincent, J., Mignot, G., Chalmin, F., Ladoire, S., Bruchard, M., Chevriaux, A., et al. 5-fluorouracil selectively kills tumor-associated myeloid-derived suppressor cells resulting in enhanced t cell-dependent antitumor immunity. Cancer Research, 70(8), 3052–3061, doi:10.​1158/​0008-5472.​CAN-09-3690.
54.
Zurück zum Zitat Ko, J. S., Zea, A. H., Rini, B. I., Ireland, J. L., Elson, P., Cohen, P., et al. (2009). Sunitinib mediates reversal of myeloid-derived suppressor cell accumulation in renal cell carcinoma patients. Clinical Cancer Research, 15(6), 2148–2157. doi:10.1158/1078-0432.CCR-08-1332.PubMed Ko, J. S., Zea, A. H., Rini, B. I., Ireland, J. L., Elson, P., Cohen, P., et al. (2009). Sunitinib mediates reversal of myeloid-derived suppressor cell accumulation in renal cell carcinoma patients. Clinical Cancer Research, 15(6), 2148–2157. doi:10.​1158/​1078-0432.​CCR-08-1332.PubMed
55.
Zurück zum Zitat Fridlender, Z. G., Sun, J., Singhal, S., Kapoor, V., Cheng, G., Suzuki, E., et al. Chemotherapy delivered after viral immunogene therapy augments antitumor efficacy via multiple immune-mediated mechanisms. Molecular Therapy, doi:10.1038/mt.2010.159. Fridlender, Z. G., Sun, J., Singhal, S., Kapoor, V., Cheng, G., Suzuki, E., et al. Chemotherapy delivered after viral immunogene therapy augments antitumor efficacy via multiple immune-mediated mechanisms. Molecular Therapy, doi:10.​1038/​mt.​2010.​159.
56.
Zurück zum Zitat Godfrey, D. I., Hammond, K. J., Poulton, L. D., Smyth, M. J., & Baxter, A. G. (2000). NKT cells: facts, functions and fallacies. Immunology Today, 21(11), 573–583.PubMed Godfrey, D. I., Hammond, K. J., Poulton, L. D., Smyth, M. J., & Baxter, A. G. (2000). NKT cells: facts, functions and fallacies. Immunology Today, 21(11), 573–583.PubMed
58.
Zurück zum Zitat Smyth, M. J., Crowe, N. Y., Hayakawa, Y., Takeda, K., Yagita, H., & Godfrey, D. I. (2002). NKT cells—conductors of tumor immunity? Current Opinion in Immunology, 14(2), 165–171.PubMed Smyth, M. J., Crowe, N. Y., Hayakawa, Y., Takeda, K., Yagita, H., & Godfrey, D. I. (2002). NKT cells—conductors of tumor immunity? Current Opinion in Immunology, 14(2), 165–171.PubMed
59.
Zurück zum Zitat Smyth, M. J., & Godfrey, D. I. (2000). NKT cells and tumor immunity—a double-edged sword. Nature Immunology, 1(6), 459–460. doi:10.1038/82698.PubMed Smyth, M. J., & Godfrey, D. I. (2000). NKT cells and tumor immunity—a double-edged sword. Nature Immunology, 1(6), 459–460. doi:10.​1038/​82698.PubMed
60.
Zurück zum Zitat Cerundolo, V., Silk, J. D., Masri, S. H., & Salio, M. (2009). Harnessing invariant NKT cells in vaccination strategies. Nature Reviews. Immunology, 9(1), 28–38. doi:10.1038/nri2451.PubMed Cerundolo, V., Silk, J. D., Masri, S. H., & Salio, M. (2009). Harnessing invariant NKT cells in vaccination strategies. Nature Reviews. Immunology, 9(1), 28–38. doi:10.​1038/​nri2451.PubMed
61.
Zurück zum Zitat Smyth, M. J., Crowe, N. Y., Pellicci, D. G., Kyparissoudis, K., Kelly, J. M., Takeda, K., et al. (2002). Sequential production of interferon-gamma by nk1.1(+) t cells and natural killer cells is essential for the antimetastatic effect of alpha-galactosylceramide. Blood, 99(4), 1259–1266. Smyth, M. J., Crowe, N. Y., Pellicci, D. G., Kyparissoudis, K., Kelly, J. M., Takeda, K., et al. (2002). Sequential production of interferon-gamma by nk1.1(+) t cells and natural killer cells is essential for the antimetastatic effect of alpha-galactosylceramide. Blood, 99(4), 1259–1266.
62.
Zurück zum Zitat Ambrosino, E., Terabe, M., Halder, R. C., Peng, J., Takaku, S., Miyake, S., et al. (2007). Cross-regulation between type I and type II nkt cells in regulating tumor immunity: a new immunoregulatory axis. Journal of Immunology, 179(8), 5126–5136. Ambrosino, E., Terabe, M., Halder, R. C., Peng, J., Takaku, S., Miyake, S., et al. (2007). Cross-regulation between type I and type II nkt cells in regulating tumor immunity: a new immunoregulatory axis. Journal of Immunology, 179(8), 5126–5136.
63.
Zurück zum Zitat Moodycliffe, A. M., Nghiem, D., Clydesdale, G., & Ullrich, S. E. (2000). Immune suppression and skin cancer development: regulation by NKT cells. Nature Immunology, 1(6), 521–525. doi:10.1038/82782.PubMed Moodycliffe, A. M., Nghiem, D., Clydesdale, G., & Ullrich, S. E. (2000). Immune suppression and skin cancer development: regulation by NKT cells. Nature Immunology, 1(6), 521–525. doi:10.​1038/​82782.PubMed
64.
Zurück zum Zitat Terabe, M., Khanna, C., Bose, S., Melchionda, F., Mendoza, A., Mackall, C. L., et al. (2006). Cd1d-restricted natural killer t cells can down-regulate tumor immunosurveillance independent of interleukin-4 receptor-signal transducer and activator of transcription 6 or transforming growth factor-beta. Cancer Research, 66(7), 3869–3875.PubMed Terabe, M., Khanna, C., Bose, S., Melchionda, F., Mendoza, A., Mackall, C. L., et al. (2006). Cd1d-restricted natural killer t cells can down-regulate tumor immunosurveillance independent of interleukin-4 receptor-signal transducer and activator of transcription 6 or transforming growth factor-beta. Cancer Research, 66(7), 3869–3875.PubMed
65.
Zurück zum Zitat Terabe, M., Matsui, S., Noben-Trauth, N., Chen, H., Watson, C., Donaldson, D. D., et al. (2000). NKT cell-mediated repression of tumor immunosurveillance by IL-13 and the IL-4R-STAT6 pathway. Nature Immunology, 1(6), 515–520.PubMed Terabe, M., Matsui, S., Noben-Trauth, N., Chen, H., Watson, C., Donaldson, D. D., et al. (2000). NKT cell-mediated repression of tumor immunosurveillance by IL-13 and the IL-4R-STAT6 pathway. Nature Immunology, 1(6), 515–520.PubMed
66.
Zurück zum Zitat Terabe, M., Swann, J., Ambrosino, E., Sinha, P., Takaku, S., Hayakawa, Y., et al. (2005). A nonclassical non-Valpha14Jalpha18 CD1d-restricted (type II) NKT cell is sufficient for down-regulation of tumor immunosurveillance. The Journal of Experimental Medicine, 202(12), 1627–1633.PubMed Terabe, M., Swann, J., Ambrosino, E., Sinha, P., Takaku, S., Hayakawa, Y., et al. (2005). A nonclassical non-Valpha14Jalpha18 CD1d-restricted (type II) NKT cell is sufficient for down-regulation of tumor immunosurveillance. The Journal of Experimental Medicine, 202(12), 1627–1633.PubMed
67.
Zurück zum Zitat Park, J. M., Terabe, M., Donaldson, D. D., Forni, G., & Berzofsky, J. A. (2008). Natural immunosurveillance against spontaneous, autochthonous breast cancers revealed and enhanced by blockade of IL-13-mediated negative regulation. Cancer Immunology, Immunotherapy, 57(6), 907–912. doi:10.1007/s00262-007-0414-0.PubMed Park, J. M., Terabe, M., Donaldson, D. D., Forni, G., & Berzofsky, J. A. (2008). Natural immunosurveillance against spontaneous, autochthonous breast cancers revealed and enhanced by blockade of IL-13-mediated negative regulation. Cancer Immunology, Immunotherapy, 57(6), 907–912. doi:10.​1007/​s00262-007-0414-0.PubMed
68.
Zurück zum Zitat Terabe, M., Matsui, S., Park, J. M., Mamura, M., Noben-Trauth, N., Donaldson, D. D., et al. (2003). Transforming growth factor-beta production and myeloid cells are an effector mechanism through which CD1d-restricted t cells block cytotoxic T lymphocyte-mediated tumor immunosurveillance: abrogation prevents tumor recurrence. The Journal of Experimental Medicine, 198(11), 1741–1752.PubMed Terabe, M., Matsui, S., Park, J. M., Mamura, M., Noben-Trauth, N., Donaldson, D. D., et al. (2003). Transforming growth factor-beta production and myeloid cells are an effector mechanism through which CD1d-restricted t cells block cytotoxic T lymphocyte-mediated tumor immunosurveillance: abrogation prevents tumor recurrence. The Journal of Experimental Medicine, 198(11), 1741–1752.PubMed
69.
Zurück zum Zitat Terabe, M., Park, J. M., & Berzofsky, J. A. (2004). Role of IL-13 in regulation of anti-tumor immunity and tumor growth. Cancer Immunology, Immunotherapy, 53(2), 79–85.PubMed Terabe, M., Park, J. M., & Berzofsky, J. A. (2004). Role of IL-13 in regulation of anti-tumor immunity and tumor growth. Cancer Immunology, Immunotherapy, 53(2), 79–85.PubMed
70.
Zurück zum Zitat Parmiani, G., Rivoltini, L., Andreola, G., & Carrabba, M. (2000). Cytokines in cancer therapy. Immunology Letters, 74(1), 41–44.PubMed Parmiani, G., Rivoltini, L., Andreola, G., & Carrabba, M. (2000). Cytokines in cancer therapy. Immunology Letters, 74(1), 41–44.PubMed
72.
Zurück zum Zitat Gorelik, L., & Flavell, R. A. (2002). Transforming growth factor-beta in T-cell biology. Nature Reviews. Immunology, 2(1), 46–53. doi:10.1038/nri704.PubMed Gorelik, L., & Flavell, R. A. (2002). Transforming growth factor-beta in T-cell biology. Nature Reviews. Immunology, 2(1), 46–53. doi:10.​1038/​nri704.PubMed
75.
Zurück zum Zitat Borkowski, T. A., Letterio, J. J., Farr, A. G., & Udey, M. C. (1996). A role for endogenous transforming growth factor beta 1 in langerhans cell biology: the skin of transforming growth factor beta 1 null mice is devoid of epidermal langerhans cells. The Journal of Experimental Medicine, 184(6), 2417–2422.PubMed Borkowski, T. A., Letterio, J. J., Farr, A. G., & Udey, M. C. (1996). A role for endogenous transforming growth factor beta 1 in langerhans cell biology: the skin of transforming growth factor beta 1 null mice is devoid of epidermal langerhans cells. The Journal of Experimental Medicine, 184(6), 2417–2422.PubMed
76.
Zurück zum Zitat Geissmann, F., Revy, P., Regnault, A., Lepelletier, Y., Dy, M., Brousse, N., et al. (1999). TGF-beta 1 prevents the noncognate maturation of human dendritic langerhans cells. Journal of Immunology, 162(8), 4567–4575. Geissmann, F., Revy, P., Regnault, A., Lepelletier, Y., Dy, M., Brousse, N., et al. (1999). TGF-beta 1 prevents the noncognate maturation of human dendritic langerhans cells. Journal of Immunology, 162(8), 4567–4575.
77.
Zurück zum Zitat Bierie, B., & Moses, H. L. (2006). Tumour microenvironment: TGFbeta: the molecular Jekyll and Hyde of cancer. Nature Reviews. Cancer, 6(7), 506–520. doi:10.1038/nrc1926.PubMed Bierie, B., & Moses, H. L. (2006). Tumour microenvironment: TGFbeta: the molecular Jekyll and Hyde of cancer. Nature Reviews. Cancer, 6(7), 506–520. doi:10.​1038/​nrc1926.PubMed
78.
Zurück zum Zitat Takaku, S., Terabe, M., Ambrosino, E., Peng, J., Lonning, S., McPherson, J. M., et al. Blockade of tgf-beta enhances tumor vaccine efficacy mediated by cd8(+) t cells. International Journal of Cancer, 126(7), 1666–1674, doi:10.1002/ijc.24961. Takaku, S., Terabe, M., Ambrosino, E., Peng, J., Lonning, S., McPherson, J. M., et al. Blockade of tgf-beta enhances tumor vaccine efficacy mediated by cd8(+) t cells. International Journal of Cancer, 126(7), 1666–1674, doi:10.​1002/​ijc.​24961.
79.
Zurück zum Zitat Terabe, M., Ambrosino, E., Takaku, S., O’Konek, J. J., Venzon, D., Lonning, S., et al. (2009). Synergistic enhancement of CD8+ T cell-mediated tumor vaccine efficacy by an anti-transforming growth factor-beta monoclonal antibody. Clinical Cancer Research, 15(21), 6560–6569. doi:10.1158/1078-0432.CCR-09-1066.PubMed Terabe, M., Ambrosino, E., Takaku, S., O’Konek, J. J., Venzon, D., Lonning, S., et al. (2009). Synergistic enhancement of CD8+ T cell-mediated tumor vaccine efficacy by an anti-transforming growth factor-beta monoclonal antibody. Clinical Cancer Research, 15(21), 6560–6569. doi:10.​1158/​1078-0432.​CCR-09-1066.PubMed
80.
Zurück zum Zitat Ueda, R., Fujita, M., Zhu, X., Sasaki, K., Kastenhuber, E. R., Kohanbash, G., et al. (2009). Systemic inhibition of transforming growth factor-beta in glioma-bearing mice improves the therapeutic efficacy of glioma-associated antigen peptide vaccines. Clinical Cancer Research, 15(21), 6551–6559. doi:10.1158/1078-0432.CCR-09-1067.PubMed Ueda, R., Fujita, M., Zhu, X., Sasaki, K., Kastenhuber, E. R., Kohanbash, G., et al. (2009). Systemic inhibition of transforming growth factor-beta in glioma-bearing mice improves the therapeutic efficacy of glioma-associated antigen peptide vaccines. Clinical Cancer Research, 15(21), 6551–6559. doi:10.​1158/​1078-0432.​CCR-09-1067.PubMed
81.
Zurück zum Zitat Nagaraj, N. S., & Datta, P. K. Targeting the transforming growth factor-beta signaling pathway in human cancer. Expert Opinion on Investigational Drugs, 19(1), 77-91, doi:10.1517/13543780903382609. Nagaraj, N. S., & Datta, P. K. Targeting the transforming growth factor-beta signaling pathway in human cancer. Expert Opinion on Investigational Drugs, 19(1), 77-91, doi:10.​1517/​1354378090338260​9.
82.
Zurück zum Zitat Uhl, M., Aulwurm, S., Wischhusen, J., Weiler, M., Ma, J. Y., Almirez, R., et al. (2004). SD-208, a novel transforming growth factor beta receptor I kinase inhibitor, inhibits growth and invasiveness and enhances immunogenicity of murine and human glioma cells in vitro and in vivo. Cancer Research, 64(21), 7954–7961. doi:10.1158/0008-5472.CAN-04-1013.PubMed Uhl, M., Aulwurm, S., Wischhusen, J., Weiler, M., Ma, J. Y., Almirez, R., et al. (2004). SD-208, a novel transforming growth factor beta receptor I kinase inhibitor, inhibits growth and invasiveness and enhances immunogenicity of murine and human glioma cells in vitro and in vivo. Cancer Research, 64(21), 7954–7961. doi:10.​1158/​0008-5472.​CAN-04-1013.PubMed
83.
Zurück zum Zitat Hau, P., Jachimczak, P., & Bogdahn, U. (2009). Treatment of malignant gliomas with TGF-beta2 antisense oligonucleotides. Expert Review of Anticancer Therapy, 9(11), 1663–1674. doi:10.1586/era.09.138.PubMed Hau, P., Jachimczak, P., & Bogdahn, U. (2009). Treatment of malignant gliomas with TGF-beta2 antisense oligonucleotides. Expert Review of Anticancer Therapy, 9(11), 1663–1674. doi:10.​1586/​era.​09.​138.PubMed
84.
Zurück zum Zitat Hau, P., Jachimczak, P., Schlingensiepen, R., Schulmeyer, F., Jauch, T., Steinbrecher, A., et al. (2007). Inhibition of TGF-beta2 with AP 12009 in recurrent malignant gliomas: from preclinical to phase I/II studies. Oligonucleotides, 17(2), 201–212. doi:10.1089/oli.2006.0053.PubMed Hau, P., Jachimczak, P., Schlingensiepen, R., Schulmeyer, F., Jauch, T., Steinbrecher, A., et al. (2007). Inhibition of TGF-beta2 with AP 12009 in recurrent malignant gliomas: from preclinical to phase I/II studies. Oligonucleotides, 17(2), 201–212. doi:10.​1089/​oli.​2006.​0053.PubMed
85.
Zurück zum Zitat Nemunaitis, J., Nemunaitis, M., Senzer, N., Snitz, P., Bedell, C., Kumar, P., et al. (2009). Phase II trial of Belagenpumatucel-l, a TGF-beta2 antisense gene modified allogeneic tumor vaccine in advanced non small cell lung cancer (NSCLC) patients. Cancer Gene Therapy, 16(8), 620–624. doi:10.1038/cgt.2009.15.PubMed Nemunaitis, J., Nemunaitis, M., Senzer, N., Snitz, P., Bedell, C., Kumar, P., et al. (2009). Phase II trial of Belagenpumatucel-l, a TGF-beta2 antisense gene modified allogeneic tumor vaccine in advanced non small cell lung cancer (NSCLC) patients. Cancer Gene Therapy, 16(8), 620–624. doi:10.​1038/​cgt.​2009.​15.PubMed
87.
88.
Zurück zum Zitat Johnson, B., Osada, T., Clay, T., Lyerly, H., & Morse, M. (2009). Physiology and therapeutics of vascular endothelial growth factor in tumor immunosuppression. Current Molecular Medicine, 9(6), 702–707.PubMed Johnson, B., Osada, T., Clay, T., Lyerly, H., & Morse, M. (2009). Physiology and therapeutics of vascular endothelial growth factor in tumor immunosuppression. Current Molecular Medicine, 9(6), 702–707.PubMed
89.
Zurück zum Zitat Gabrilovich, D. I., Ishida, T., Nadaf, S., Ohm, J. E., & Carbone, D. P. (1999). Antibodies to vascular endothelial growth factor enhance the efficacy of cancer immunotherapy by improving endogenous dendritic cell function. Clinical Cancer Research, 5(10), 2963–2970.PubMed Gabrilovich, D. I., Ishida, T., Nadaf, S., Ohm, J. E., & Carbone, D. P. (1999). Antibodies to vascular endothelial growth factor enhance the efficacy of cancer immunotherapy by improving endogenous dendritic cell function. Clinical Cancer Research, 5(10), 2963–2970.PubMed
90.
Zurück zum Zitat Alfaro, C., Suarez, N., Gonzalez, A., Solano, S., Erro, L., Dubrot, J., et al. (2009). Influence of bevacizumab, sunitinib and sorafenib as single agents or in combination on the inhibitory effects of VEGF on human dendritic cell differentiation from monocytes. British Journal of Cancer, 100(7), 1111–1119. doi:10.1038/sj.bjc.6604965.PubMed Alfaro, C., Suarez, N., Gonzalez, A., Solano, S., Erro, L., Dubrot, J., et al. (2009). Influence of bevacizumab, sunitinib and sorafenib as single agents or in combination on the inhibitory effects of VEGF on human dendritic cell differentiation from monocytes. British Journal of Cancer, 100(7), 1111–1119. doi:10.​1038/​sj.​bjc.​6604965.PubMed
91.
Zurück zum Zitat Li, B., Lalani, A. S., Harding, T. C., Luan, B., Koprivnikar, K., Huan Tu, G., et al. (2006). Vascular endothelial growth factor blockade reduces intratumoral regulatory T cells and enhances the efficacy of a GM-CSF-secreting cancer immunotherapy. Clinical Cancer Research, 12(22), 6808–6816. doi:10.1158/1078-0432.CCR-06-1558.PubMed Li, B., Lalani, A. S., Harding, T. C., Luan, B., Koprivnikar, K., Huan Tu, G., et al. (2006). Vascular endothelial growth factor blockade reduces intratumoral regulatory T cells and enhances the efficacy of a GM-CSF-secreting cancer immunotherapy. Clinical Cancer Research, 12(22), 6808–6816. doi:10.​1158/​1078-0432.​CCR-06-1558.PubMed
92.
Zurück zum Zitat Osada, T., Chong, G., Tansik, R., Hong, T., Spector, N., Kumar, R., et al. (2008). The effect of anti-VEGF therapy on immature myeloid cell and dendritic cells in cancer patients. Cancer Immunology, Immunotherapy, 57(8), 1115–1124. doi:10.1007/s00262-007-0441-x.PubMed Osada, T., Chong, G., Tansik, R., Hong, T., Spector, N., Kumar, R., et al. (2008). The effect of anti-VEGF therapy on immature myeloid cell and dendritic cells in cancer patients. Cancer Immunology, Immunotherapy, 57(8), 1115–1124. doi:10.​1007/​s00262-007-0441-x.PubMed
93.
Zurück zum Zitat Rini, B. I., Weinberg, V., Fong, L., Conry, S., Hershberg, R. M., & Small, E. J. (2006). Combination immunotherapy with prostatic acid phosphatase pulsed antigen-presenting cells (provenge) plus bevacizumab in patients with serologic progression of prostate cancer after definitive local therapy. Cancer, 107(1), 67–74. doi:10.1002/cncr.21956.PubMed Rini, B. I., Weinberg, V., Fong, L., Conry, S., Hershberg, R. M., & Small, E. J. (2006). Combination immunotherapy with prostatic acid phosphatase pulsed antigen-presenting cells (provenge) plus bevacizumab in patients with serologic progression of prostate cancer after definitive local therapy. Cancer, 107(1), 67–74. doi:10.​1002/​cncr.​21956.PubMed
94.
Zurück zum Zitat Conti, I., & Rollins, B. J. (2004). CCL2 (monocyte chemoattractant protein-1) and cancer. Seminars in Cancer Biology, 14(3), 149–154.PubMed Conti, I., & Rollins, B. J. (2004). CCL2 (monocyte chemoattractant protein-1) and cancer. Seminars in Cancer Biology, 14(3), 149–154.PubMed
95.
Zurück zum Zitat Hasegawa, H., Inoue, A., Muraoka, M., Yamanouchi, J., Miyazaki, T., & Yasukawa, M. (2007). Therapy for pneumonitis and sialadenitis by accumulation of CCR2-expressing CD4+CD25+ regulatory T cells in MRL/lpr mice. Arthritis Research & Therapy, 9(1), R15. doi:10.1186/ar2122. Hasegawa, H., Inoue, A., Muraoka, M., Yamanouchi, J., Miyazaki, T., & Yasukawa, M. (2007). Therapy for pneumonitis and sialadenitis by accumulation of CCR2-expressing CD4+CD25+ regulatory T cells in MRL/lpr mice. Arthritis Research & Therapy, 9(1), R15. doi:10.​1186/​ar2122.
96.
Zurück zum Zitat Hu, K., Xiong, J., Ji, K., Sun, H., Wang, J., & Liu, H. (2007). Recombined CC chemokine ligand 2 into B16 cells induces production of th2-dominant [correction of dominanted] cytokines and inhibits melanoma metastasis. Immunology Letters, 113(1), 19–28. doi:10.1016/j.imlet.2007.07.004.PubMed Hu, K., Xiong, J., Ji, K., Sun, H., Wang, J., & Liu, H. (2007). Recombined CC chemokine ligand 2 into B16 cells induces production of th2-dominant [correction of dominanted] cytokines and inhibits melanoma metastasis. Immunology Letters, 113(1), 19–28. doi:10.​1016/​j.​imlet.​2007.​07.​004.PubMed
97.
Zurück zum Zitat Peng, L., Shu, S., & Krauss, J. C. (1997). Monocyte chemoattractant protein inhibits the generation of tumor-reactive t cells. Cancer Research, 57(21), 4849–4854.PubMed Peng, L., Shu, S., & Krauss, J. C. (1997). Monocyte chemoattractant protein inhibits the generation of tumor-reactive t cells. Cancer Research, 57(21), 4849–4854.PubMed
98.
Zurück zum Zitat Ueno, T., Toi, M., Saji, H., Muta, M., Bando, H., Kuroi, K., et al. (2000). Significance of macrophage chemoattractant protein-1 in macrophage recruitment, angiogenesis, and survival in human breast cancer. Clinical Cancer Research, 6(8), 3282–3289.PubMed Ueno, T., Toi, M., Saji, H., Muta, M., Bando, H., Kuroi, K., et al. (2000). Significance of macrophage chemoattractant protein-1 in macrophage recruitment, angiogenesis, and survival in human breast cancer. Clinical Cancer Research, 6(8), 3282–3289.PubMed
99.
Zurück zum Zitat Jordan, J. T., Sun, W., Hussain, S. F., DeAngulo, G., Prabhu, S. S., & Heimberger, A. B. (2008). Preferential migration of regulatory T cells mediated by glioma-secreted chemokines can be blocked with chemotherapy. Cancer Immunology, Immunotherapy, 57(1), 123–131. doi:10.1007/s00262-007-0336-x.PubMed Jordan, J. T., Sun, W., Hussain, S. F., DeAngulo, G., Prabhu, S. S., & Heimberger, A. B. (2008). Preferential migration of regulatory T cells mediated by glioma-secreted chemokines can be blocked with chemotherapy. Cancer Immunology, Immunotherapy, 57(1), 123–131. doi:10.​1007/​s00262-007-0336-x.PubMed
101.
Zurück zum Zitat Loberg, R. D., Ying, C., Craig, M., Day, L. L., Sargent, E., Neeley, C., et al. (2007). Targeting CCL2 with systemic delivery of neutralizing antibodies induces prostate cancer tumor regression in vivo. Cancer Research, 67(19), 9417–9424.PubMed Loberg, R. D., Ying, C., Craig, M., Day, L. L., Sargent, E., Neeley, C., et al. (2007). Targeting CCL2 with systemic delivery of neutralizing antibodies induces prostate cancer tumor regression in vivo. Cancer Research, 67(19), 9417–9424.PubMed
102.
Zurück zum Zitat Loberg, R. D., Ying, C., Craig, M., Yan, L., Snyder, L. A., & Pienta, K. J. (2007). CCL2 as an important mediator of prostate cancer growth in vivo through the regulation of macrophage infiltration. Neoplasia, 9(7), 556–562.PubMed Loberg, R. D., Ying, C., Craig, M., Yan, L., Snyder, L. A., & Pienta, K. J. (2007). CCL2 as an important mediator of prostate cancer growth in vivo through the regulation of macrophage infiltration. Neoplasia, 9(7), 556–562.PubMed
103.
104.
Zurück zum Zitat Li, J. H., Rosen, D., Sondel, P., & Berke, G. (2002). Immune privilege and FasL: two ways to inactivate effector cytotoxic t lymphocytes by FasL-expressing cells. Immunology, 105(3), 267–277.PubMed Li, J. H., Rosen, D., Sondel, P., & Berke, G. (2002). Immune privilege and FasL: two ways to inactivate effector cytotoxic t lymphocytes by FasL-expressing cells. Immunology, 105(3), 267–277.PubMed
106.
Zurück zum Zitat Greiner, J. W., Zeytin, H., Anver, M. R., & Schlom, J. (2002). Vaccine-based therapy directed against carcinoembryonic antigen demonstrates antitumor activity on spontaneous intestinal tumors in the absence of autoimmunity. Cancer Research, 62(23), 6944–6951.PubMed Greiner, J. W., Zeytin, H., Anver, M. R., & Schlom, J. (2002). Vaccine-based therapy directed against carcinoembryonic antigen demonstrates antitumor activity on spontaneous intestinal tumors in the absence of autoimmunity. Cancer Research, 62(23), 6944–6951.PubMed
107.
Zurück zum Zitat Eder, J. P., Kantoff, P. W., Roper, K., Xu, G. X., Bubley, G. J., Boyden, J., et al. (2000). A phase I trial of a recombinant vaccinia virus expressing prostate-specific antigen in advanced prostate cancer. Clinical Cancer Research, 6(5), 1632–1638.PubMed Eder, J. P., Kantoff, P. W., Roper, K., Xu, G. X., Bubley, G. J., Boyden, J., et al. (2000). A phase I trial of a recombinant vaccinia virus expressing prostate-specific antigen in advanced prostate cancer. Clinical Cancer Research, 6(5), 1632–1638.PubMed
108.
Zurück zum Zitat Marshall, J. L., Gulley, J. L., Arlen, P. M., Beetham, P. K., Tsang, K. Y., Slack, R., et al. (2005). Phase i study of sequential vaccinations with fowlpox-CEA(6D)-TRICOM alone and sequentially with vaccinia-CEA(6D)-TRICOM, with and without granulocyte-macrophage colony-stimulating factor, in patients with carcinoembryonic antigen-expressing carcinomas. Journal of Clinical Oncology, 23(4), 720–731. doi:10.1200/JCO.2005.10.206.PubMed Marshall, J. L., Gulley, J. L., Arlen, P. M., Beetham, P. K., Tsang, K. Y., Slack, R., et al. (2005). Phase i study of sequential vaccinations with fowlpox-CEA(6D)-TRICOM alone and sequentially with vaccinia-CEA(6D)-TRICOM, with and without granulocyte-macrophage colony-stimulating factor, in patients with carcinoembryonic antigen-expressing carcinomas. Journal of Clinical Oncology, 23(4), 720–731. doi:10.​1200/​JCO.​2005.​10.​206.PubMed
111.
Zurück zum Zitat Egen, J. G., Kuhns, M. S., & Allison, J. P. (2002). CTLA-4: new insights into its biological function and use in tumor immunotherapy. Nature Immunology, 3(7), 611–618.PubMed Egen, J. G., Kuhns, M. S., & Allison, J. P. (2002). CTLA-4: new insights into its biological function and use in tumor immunotherapy. Nature Immunology, 3(7), 611–618.PubMed
112.
Zurück zum Zitat Boasso, A., Herbeuval, J. P., Hardy, A. W., Winkler, C., & Shearer, G. M. (2005). Regulation of indoleamine 2, 3-dioxygenase and tryptophanyl-tRNA-synthetase by CTLA-4-Fc in human CD4+ T cells. Blood, 105(4), 1574–1581. doi:10.1182/blood-2004-06-2089.PubMed Boasso, A., Herbeuval, J. P., Hardy, A. W., Winkler, C., & Shearer, G. M. (2005). Regulation of indoleamine 2, 3-dioxygenase and tryptophanyl-tRNA-synthetase by CTLA-4-Fc in human CD4+ T cells. Blood, 105(4), 1574–1581. doi:10.​1182/​blood-2004-06-2089.PubMed
113.
Zurück zum Zitat Mangsbo, S. M., Sandin, L. C., Anger, K., Korman, A. J., Loskog, A., & Totterman, T. H. Enhanced tumor eradication by combining ctla-4 or pd-1 blockade with cpg therapy. Journal of Immunotherapy, 33(3), 225–235, doi:10.1097/CJI.0b013e3181c01fcb. Mangsbo, S. M., Sandin, L. C., Anger, K., Korman, A. J., Loskog, A., & Totterman, T. H. Enhanced tumor eradication by combining ctla-4 or pd-1 blockade with cpg therapy. Journal of Immunotherapy, 33(3), 225–235, doi:10.​1097/​CJI.​0b013e3181c01fcb​.
114.
Zurück zum Zitat Takeda, K., Kojima, Y., Uno, T., Hayakawa, Y., Teng, M. W., Yoshizawa, H., et al. Combination therapy of established tumors by antibodies targeting immune activating and suppressing molecules. Journal of Immunology, 184(10), 5493–5501, doi:10.4049/jimmunol.0903033. Takeda, K., Kojima, Y., Uno, T., Hayakawa, Y., Teng, M. W., Yoshizawa, H., et al. Combination therapy of established tumors by antibodies targeting immune activating and suppressing molecules. Journal of Immunology, 184(10), 5493–5501, doi:10.​4049/​jimmunol.​0903033.
116.
Zurück zum Zitat Agarwala, S. S. Novel immunotherapies as potential therapeutic partners for traditional or targeted agents: Cytotoxic t-lymphocyte antigen-4 blockade in advanced melanoma. Melanoma Research, 20(1), 1–10, doi:10.1097/CMR.0b013e328333bbc8. Agarwala, S. S. Novel immunotherapies as potential therapeutic partners for traditional or targeted agents: Cytotoxic t-lymphocyte antigen-4 blockade in advanced melanoma. Melanoma Research, 20(1), 1–10, doi:10.​1097/​CMR.​0b013e328333bbc8​.
117.
Zurück zum Zitat Page, D. B., Yuan, J., & Wolchok, J. D. Targeting cytotoxic t-lymphocyte antigen 4 in immunotherapies for melanoma and other cancers. Immunotherapy, 2(3), 367–379, doi:10.2217/imt.10.21. Page, D. B., Yuan, J., & Wolchok, J. D. Targeting cytotoxic t-lymphocyte antigen 4 in immunotherapies for melanoma and other cancers. Immunotherapy, 2(3), 367–379, doi:10.​2217/​imt.​10.​21.
119.
Zurück zum Zitat Dong, H., Strome, S. E., Salomao, D. R., Tamura, H., Hirano, F., Flies, D. B., et al. (2002). Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Natural Medicines, 8(8), 793–800. Dong, H., Strome, S. E., Salomao, D. R., Tamura, H., Hirano, F., Flies, D. B., et al. (2002). Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Natural Medicines, 8(8), 793–800.
120.
Zurück zum Zitat Fourcade, J., Kudela, P., Sun, Z., Shen, H., Land, S. R., Lenzner, D., et al. (2009). PD-1 is a regulator of NY-ESO-1-specific CD8+ T cell expansion in melanoma patients. Journal of Immunology, 182(9), 5240–5249. doi:10.4049/jimmunol.0803245. Fourcade, J., Kudela, P., Sun, Z., Shen, H., Land, S. R., Lenzner, D., et al. (2009). PD-1 is a regulator of NY-ESO-1-specific CD8+ T cell expansion in melanoma patients. Journal of Immunology, 182(9), 5240–5249. doi:10.​4049/​jimmunol.​0803245.
121.
Zurück zum Zitat Matsuzaki, J., Gnjatic, S., Mhawech-Fauceglia, P., Beck, A., Miller, A., Tsuji, T., et al. Tumor-infiltrating ny-eso-1-specific cd8+ t cells are negatively regulated by lag-3 and pd-1 in human ovarian cancer. Proceedings of the National Academy of Sciences of the United States of America, 107(17), 7875–7880, doi:10.1073/pnas.1003345107. Matsuzaki, J., Gnjatic, S., Mhawech-Fauceglia, P., Beck, A., Miller, A., Tsuji, T., et al. Tumor-infiltrating ny-eso-1-specific cd8+ t cells are negatively regulated by lag-3 and pd-1 in human ovarian cancer. Proceedings of the National Academy of Sciences of the United States of America, 107(17), 7875–7880, doi:10.​1073/​pnas.​1003345107.
122.
Zurück zum Zitat Fourcade, J., Sun, Z., Benallaoua, M., Guillaume, P., Luescher, I. F., Sander, C., et al. Upregulation of tim-3 and pd-1 expression is associated with tumor antigen-specific cd8+ t cell dysfunction in melanoma patients. Journal of Experimental Medicine, doi:10.1084/jem.20100637. Fourcade, J., Sun, Z., Benallaoua, M., Guillaume, P., Luescher, I. F., Sander, C., et al. Upregulation of tim-3 and pd-1 expression is associated with tumor antigen-specific cd8+ t cell dysfunction in melanoma patients. Journal of Experimental Medicine, doi:10.​1084/​jem.​20100637.
123.
Zurück zum Zitat Ichikawa, M., & Chen, L. (2005). Role of B7-H1 and B7-H4 molecules in down-regulating effector phase of T-cell immunity: novel cancer escaping mechanisms. Frontiers in Bioscience, 10, 2856–2860.PubMed Ichikawa, M., & Chen, L. (2005). Role of B7-H1 and B7-H4 molecules in down-regulating effector phase of T-cell immunity: novel cancer escaping mechanisms. Frontiers in Bioscience, 10, 2856–2860.PubMed
124.
Zurück zum Zitat Wang, W., Lau, R., Yu, D., Zhu, W., Korman, A., & Weber, J. (2009). PD1 blockade reverses the suppression of melanoma antigen-specific CTL by CD4+ CD25(hi) regulatory t cells. International Immunology, 21(9), 1065–1077. doi:10.1093/intimm/dxp072.PubMed Wang, W., Lau, R., Yu, D., Zhu, W., Korman, A., & Weber, J. (2009). PD1 blockade reverses the suppression of melanoma antigen-specific CTL by CD4+ CD25(hi) regulatory t cells. International Immunology, 21(9), 1065–1077. doi:10.​1093/​intimm/​dxp072.PubMed
125.
Zurück zum Zitat Curiel, T. J., Wei, S., Dong, H., Alvarez, X., Cheng, P., Mottram, P., et al. (2003). Blockade of B7-H1 improves myeloid dendritic cell-mediated antitumor immunity. Natural Medicines, 9(5), 562–567. doi:10.1038/nm863. Curiel, T. J., Wei, S., Dong, H., Alvarez, X., Cheng, P., Mottram, P., et al. (2003). Blockade of B7-H1 improves myeloid dendritic cell-mediated antitumor immunity. Natural Medicines, 9(5), 562–567. doi:10.​1038/​nm863.
126.
Zurück zum Zitat Brahmer, J. R., Drake, C. G., Wollner, I., Powderly, J. D., Picus, J., Sharfman, W. H., et al. Phase i study of single-agent anti-programmed death-1 (mdx-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. Journal of Clinical Oncology, 28(19), 3167–3175, doi:10.1200/JCO.2009.26.7609. Brahmer, J. R., Drake, C. G., Wollner, I., Powderly, J. D., Picus, J., Sharfman, W. H., et al. Phase i study of single-agent anti-programmed death-1 (mdx-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. Journal of Clinical Oncology, 28(19), 3167–3175, doi:10.​1200/​JCO.​2009.​26.​7609.
128.
Zurück zum Zitat Bronte, V., & Zanovello, P. (2005). Regulation of immune responses by l-arginine metabolism. Nature Reviews. Immunology, 5(8), 641–654.PubMed Bronte, V., & Zanovello, P. (2005). Regulation of immune responses by l-arginine metabolism. Nature Reviews. Immunology, 5(8), 641–654.PubMed
129.
Zurück zum Zitat Mocellin, S., Bronte, V., & Nitti, D. (2007). Nitric oxide, a double edged sword in cancer biology: searching for therapeutic opportunities. Medicinal Research Reviews, 27(3), 317–352. doi:10.1002/med.20092.PubMed Mocellin, S., Bronte, V., & Nitti, D. (2007). Nitric oxide, a double edged sword in cancer biology: searching for therapeutic opportunities. Medicinal Research Reviews, 27(3), 317–352. doi:10.​1002/​med.​20092.PubMed
130.
Zurück zum Zitat Rodriguez, P. C., Quiceno, D. G., Zabaleta, J., Ortiz, B., Zea, A. H., Piazuelo, M. B., et al. (2004). Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell responses. Cancer Research, 64(16), 5839–5849.PubMed Rodriguez, P. C., Quiceno, D. G., Zabaleta, J., Ortiz, B., Zea, A. H., Piazuelo, M. B., et al. (2004). Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell responses. Cancer Research, 64(16), 5839–5849.PubMed
131.
Zurück zum Zitat Bronte, V., Kasic, T., Gri, G., Gallana, K., Borsellino, G., Marigo, I., et al. (2005). Boosting antitumor responses of T lymphocytes infiltrating human prostate cancers. The Journal of Experimental Medicine, 201(8), 1257–1268.PubMed Bronte, V., Kasic, T., Gri, G., Gallana, K., Borsellino, G., Marigo, I., et al. (2005). Boosting antitumor responses of T lymphocytes infiltrating human prostate cancers. The Journal of Experimental Medicine, 201(8), 1257–1268.PubMed
133.
Zurück zum Zitat Mandapathil, M., Hilldorfer, B., Szczepanski, M. J., Czystowska, M., Szajnik, M., Ren, J., et al. Generation and accumulation of immunosuppressive adenosine by human cd4+cd25highfoxp3+ regulatory t cells. Journal of Biological Chemistry, 285(10), 7176–7186, doi:10.1074/jbc.M109.047423. Mandapathil, M., Hilldorfer, B., Szczepanski, M. J., Czystowska, M., Szajnik, M., Ren, J., et al. Generation and accumulation of immunosuppressive adenosine by human cd4+cd25highfoxp3+ regulatory t cells. Journal of Biological Chemistry, 285(10), 7176–7186, doi:10.​1074/​jbc.​M109.​047423.
134.
Zurück zum Zitat Jin, D., Fan, J., Wang, L., Thompson, L. F., Liu, A., Daniel, B. J., et al. Cd73 on tumor cells impairs antitumor t-cell responses: A novel mechanism of tumor-induced immune suppression. Cancer Research, 70(6), 2245–2255, doi:10.1158/0008-5472.CAN-09-3109. Jin, D., Fan, J., Wang, L., Thompson, L. F., Liu, A., Daniel, B. J., et al. Cd73 on tumor cells impairs antitumor t-cell responses: A novel mechanism of tumor-induced immune suppression. Cancer Research, 70(6), 2245–2255, doi:10.​1158/​0008-5472.​CAN-09-3109.
135.
Zurück zum Zitat Takedachi, M., Qu, D., Ebisuno, Y., Oohara, H., Joachims, M. L., McGee, S. T., et al. (2008). CD73-generated adenosine restricts lymphocyte migration into draining lymph nodes. Journal of Immunology, 180(9), 6288–6296. Takedachi, M., Qu, D., Ebisuno, Y., Oohara, H., Joachims, M. L., McGee, S. T., et al. (2008). CD73-generated adenosine restricts lymphocyte migration into draining lymph nodes. Journal of Immunology, 180(9), 6288–6296.
136.
Zurück zum Zitat Stagg, J., Divisekera, U., McLaughlin, N., Sharkey, J., Pommey, S., Denoyer, D., et al. Anti-cd73 antibody therapy inhibits breast tumor growth and metastasis. Proceedings of the National Academy of Sciences of the United States of America, 107(4), 1547–1552, doi:10.1073/pnas.0908801107. Stagg, J., Divisekera, U., McLaughlin, N., Sharkey, J., Pommey, S., Denoyer, D., et al. Anti-cd73 antibody therapy inhibits breast tumor growth and metastasis. Proceedings of the National Academy of Sciences of the United States of America, 107(4), 1547–1552, doi:10.​1073/​pnas.​0908801107.
137.
Zurück zum Zitat Uyttenhove, C., Pilotte, L., Theate, I., Stroobant, V., Colau, D., Parmentier, N., et al. (2003). Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2, 3-dioxygenase. Natural Medicines, 9(10), 1269–1274. doi:10.1038/nm934nm934. Uyttenhove, C., Pilotte, L., Theate, I., Stroobant, V., Colau, D., Parmentier, N., et al. (2003). Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2, 3-dioxygenase. Natural Medicines, 9(10), 1269–1274. doi:10.​1038/​nm934nm934.
138.
Zurück zum Zitat Liu, X., Newton, R. C., Friedman, S. M., & Scherle, P. A. (2009). Indoleamine 2, 3-dioxygenase, an emerging target for anti-cancer therapy. Current Cancer Drug Targets, 9(8), 938–952.PubMed Liu, X., Newton, R. C., Friedman, S. M., & Scherle, P. A. (2009). Indoleamine 2, 3-dioxygenase, an emerging target for anti-cancer therapy. Current Cancer Drug Targets, 9(8), 938–952.PubMed
139.
Zurück zum Zitat Lob, S., Konigsrainer, A., Rammensee, H. G., Opelz, G., & Terness, P. (2009). Inhibitors of indoleamine-2, 3-dioxygenase for cancer therapy: can we see the wood for the trees? Nature Reviews. Cancer, 9(6), 445–452. doi:10.1038/nrc2639.PubMed Lob, S., Konigsrainer, A., Rammensee, H. G., Opelz, G., & Terness, P. (2009). Inhibitors of indoleamine-2, 3-dioxygenase for cancer therapy: can we see the wood for the trees? Nature Reviews. Cancer, 9(6), 445–452. doi:10.​1038/​nrc2639.PubMed
140.
Zurück zum Zitat Munn, D. H., Zhou, M., Attwood, J. T., Bondarev, I., Conway, S. J., Marshall, B., et al. (1998). Prevention of allogeneic fetal rejection by tryptophan catabolism. Science, 281(5380), 1191–1193.PubMed Munn, D. H., Zhou, M., Attwood, J. T., Bondarev, I., Conway, S. J., Marshall, B., et al. (1998). Prevention of allogeneic fetal rejection by tryptophan catabolism. Science, 281(5380), 1191–1193.PubMed
141.
Zurück zum Zitat Grohmann, U., Orabona, C., Fallarino, F., Vacca, C., Calcinaro, F., Falorni, A., et al. (2002). CTLA-4-Ig regulates tryptophan catabolism in vivo. Nature Immunology, 3(11), 1097–1101. doi:10.1038/ni846ni846.PubMed Grohmann, U., Orabona, C., Fallarino, F., Vacca, C., Calcinaro, F., Falorni, A., et al. (2002). CTLA-4-Ig regulates tryptophan catabolism in vivo. Nature Immunology, 3(11), 1097–1101. doi:10.​1038/​ni846ni846.PubMed
142.
Zurück zum Zitat Munn, D. H., Sharma, M. D., Hou, D., Baban, B., Lee, J. R., Antonia, S. J., et al. (2004). Expression of indoleamine 2, 3-dioxygenase by plasmacytoid dendritic cells in tumor-draining lymph nodes. Journal of Clinical Investigation, 114(2), 280–290. doi:10.1172/JCI21583.PubMed Munn, D. H., Sharma, M. D., Hou, D., Baban, B., Lee, J. R., Antonia, S. J., et al. (2004). Expression of indoleamine 2, 3-dioxygenase by plasmacytoid dendritic cells in tumor-draining lymph nodes. Journal of Clinical Investigation, 114(2), 280–290. doi:10.​1172/​JCI21583.PubMed
143.
Zurück zum Zitat Munn, D. H., & Mellor, A. L. (2007). Indoleamine 2, 3-dioxygenase and tumor-induced tolerance. Journal of Clinical Investigation, 117(5), 1147–1154. doi:10.1172/JCI31178.PubMed Munn, D. H., & Mellor, A. L. (2007). Indoleamine 2, 3-dioxygenase and tumor-induced tolerance. Journal of Clinical Investigation, 117(5), 1147–1154. doi:10.​1172/​JCI31178.PubMed
144.
Zurück zum Zitat Muller, A. J., & Prendergast, G. C. (2007). Indoleamine 2, 3-dioxygenase in immune suppression and cancer. Current Cancer Drug Targets, 7(1), 31–40.PubMed Muller, A. J., & Prendergast, G. C. (2007). Indoleamine 2, 3-dioxygenase in immune suppression and cancer. Current Cancer Drug Targets, 7(1), 31–40.PubMed
145.
Zurück zum Zitat Muller, A. J., DuHadaway, J. B., Donover, P. S., Sutanto-Ward, E., & Prendergast, G. C. (2005). Inhibition of indoleamine 2, 3-dioxygenase, an immunoregulatory target of the cancer suppression gene Bin1, potentiates cancer chemotherapy. Natural Medicines, 11(3), 312–319. doi:10.1038/nm1196. Muller, A. J., DuHadaway, J. B., Donover, P. S., Sutanto-Ward, E., & Prendergast, G. C. (2005). Inhibition of indoleamine 2, 3-dioxygenase, an immunoregulatory target of the cancer suppression gene Bin1, potentiates cancer chemotherapy. Natural Medicines, 11(3), 312–319. doi:10.​1038/​nm1196.
147.
Zurück zum Zitat Gasparini, G., Longo, R., Sarmiento, R., & Morabito, A. (2003). Inhibitors of cyclo-oxygenase 2: a new class of anticancer agents? The Lancet Oncology, 4(10), 605–615.PubMed Gasparini, G., Longo, R., Sarmiento, R., & Morabito, A. (2003). Inhibitors of cyclo-oxygenase 2: a new class of anticancer agents? The Lancet Oncology, 4(10), 605–615.PubMed
148.
Zurück zum Zitat Sarkar, F. H., Adsule, S., Li, Y., & Padhye, S. (2007). Back to the future: COX-2 inhibitors for chemoprevention and cancer therapy. Mini Rev Med Chem, 7(6), 599–608.PubMed Sarkar, F. H., Adsule, S., Li, Y., & Padhye, S. (2007). Back to the future: COX-2 inhibitors for chemoprevention and cancer therapy. Mini Rev Med Chem, 7(6), 599–608.PubMed
149.
Zurück zum Zitat Greenhough, A., Smartt, H. J., Moore, A. E., Roberts, H. R., Williams, A. C., Paraskeva, C., et al. (2009). The COX-2/PGE2 pathway: key roles in the hallmarks of cancer and adaptation to the tumour microenvironment. Carcinogenesis, 30(3), 377–386. doi:10.1093/carcin/bgp014.PubMed Greenhough, A., Smartt, H. J., Moore, A. E., Roberts, H. R., Williams, A. C., Paraskeva, C., et al. (2009). The COX-2/PGE2 pathway: key roles in the hallmarks of cancer and adaptation to the tumour microenvironment. Carcinogenesis, 30(3), 377–386. doi:10.​1093/​carcin/​bgp014.PubMed
150.
Zurück zum Zitat Harris, S. G., Padilla, J., Koumas, L., Ray, D., & Phipps, R. P. (2002). Prostaglandins as modulators of immunity. Trends in Immunology, 23(3), 144–150.PubMed Harris, S. G., Padilla, J., Koumas, L., Ray, D., & Phipps, R. P. (2002). Prostaglandins as modulators of immunity. Trends in Immunology, 23(3), 144–150.PubMed
151.
Zurück zum Zitat Pockaj, B. A., Basu, G. D., Pathangey, L. B., Gray, R. J., Hernandez, J. L., Gendler, S. J., et al. (2004). Reduced T-cell and dendritic cell function is related to cyclooxygenase-2 overexpression and prostaglandin E2 secretion in patients with breast cancer. Annals of Surgical Oncology, 11(3), 328–339.PubMed Pockaj, B. A., Basu, G. D., Pathangey, L. B., Gray, R. J., Hernandez, J. L., Gendler, S. J., et al. (2004). Reduced T-cell and dendritic cell function is related to cyclooxygenase-2 overexpression and prostaglandin E2 secretion in patients with breast cancer. Annals of Surgical Oncology, 11(3), 328–339.PubMed
152.
Zurück zum Zitat Sharma, S., Yang, S. C., Zhu, L., Reckamp, K., Gardner, B., Baratelli, F., et al. (2005). Tumor cyclooxygenase-2/prostaglandin E2-dependent promotion of FOXP3 expression and CD4+ CD25+ T regulatory cell activities in lung cancer. Cancer Research, 65(12), 5211–5220. doi:10.1158/0008-5472.CAN-05-0141.PubMed Sharma, S., Yang, S. C., Zhu, L., Reckamp, K., Gardner, B., Baratelli, F., et al. (2005). Tumor cyclooxygenase-2/prostaglandin E2-dependent promotion of FOXP3 expression and CD4+ CD25+ T regulatory cell activities in lung cancer. Cancer Research, 65(12), 5211–5220. doi:10.​1158/​0008-5472.​CAN-05-0141.PubMed
153.
Zurück zum Zitat Stolina, M., Sharma, S., Lin, Y., Dohadwala, M., Gardner, B., Luo, J., et al. (2000). Specific inhibition of cyclooxygenase 2 restores antitumor reactivity by altering the balance of IL-10 and IL-12 synthesis. Journal of Immunology, 164(1), 361–370. Stolina, M., Sharma, S., Lin, Y., Dohadwala, M., Gardner, B., Luo, J., et al. (2000). Specific inhibition of cyclooxygenase 2 restores antitumor reactivity by altering the balance of IL-10 and IL-12 synthesis. Journal of Immunology, 164(1), 361–370.
154.
Zurück zum Zitat Basu, G. D., Tinder, T. L., Bradley, J. M., Tu, T., Hattrup, C. L., Pockaj, B. A., et al. (2006). Cyclooxygenase-2 inhibitor enhances the efficacy of a breast cancer vaccine: role of IDO. Journal of Immunology, 177(4), 2391–2402. Basu, G. D., Tinder, T. L., Bradley, J. M., Tu, T., Hattrup, C. L., Pockaj, B. A., et al. (2006). Cyclooxygenase-2 inhibitor enhances the efficacy of a breast cancer vaccine: role of IDO. Journal of Immunology, 177(4), 2391–2402.
155.
Zurück zum Zitat Zeytin, H. E., Patel, A. C., Rogers, C. J., Canter, D., Hursting, S. D., Schlom, J., et al. (2004). Combination of a poxvirus-based vaccine with a cyclooxygenase-2 inhibitor (celecoxib) elicits antitumor immunity and long-term survival in cea.Tg/min mice. Cancer Research, 64(10), 3668–3678, doi:10.1158/0008-5472.CAN-03-3878. Zeytin, H. E., Patel, A. C., Rogers, C. J., Canter, D., Hursting, S. D., Schlom, J., et al. (2004). Combination of a poxvirus-based vaccine with a cyclooxygenase-2 inhibitor (celecoxib) elicits antitumor immunity and long-term survival in cea.Tg/min mice. Cancer Research, 64(10), 3668–3678, doi:10.​1158/​0008-5472.​CAN-03-3878.
156.
Zurück zum Zitat Csiki, I., Morrow, J. D., Sandler, A., Shyr, Y., Oates, J., Williams, M. K., et al. (2005). Targeting cyclooxygenase-2 in recurrent non-small cell lung cancer: a phase ii trial of celecoxib and docetaxel. Clinical Cancer Research, 11(18), 6634–6640. doi:10.1158/1078-0432.CCR-05-0436.PubMed Csiki, I., Morrow, J. D., Sandler, A., Shyr, Y., Oates, J., Williams, M. K., et al. (2005). Targeting cyclooxygenase-2 in recurrent non-small cell lung cancer: a phase ii trial of celecoxib and docetaxel. Clinical Cancer Research, 11(18), 6634–6640. doi:10.​1158/​1078-0432.​CCR-05-0436.PubMed
157.
Zurück zum Zitat Ferrari, V., Valcamonico, F., Amoroso, V., Simoncini, E., Vassalli, L., Marpicati, P., et al. (2006). Gemcitabine plus celecoxib (GECO) in advanced pancreatic cancer: a phase ii trial. Cancer Chemotherapy and Pharmacology, 57(2), 185–190. doi:10.1007/s00280-005-0028-1.PubMed Ferrari, V., Valcamonico, F., Amoroso, V., Simoncini, E., Vassalli, L., Marpicati, P., et al. (2006). Gemcitabine plus celecoxib (GECO) in advanced pancreatic cancer: a phase ii trial. Cancer Chemotherapy and Pharmacology, 57(2), 185–190. doi:10.​1007/​s00280-005-0028-1.PubMed
Metadaten
Titel
Improving cancer immunotherapy by targeting tumor-induced immune suppression
verfasst von
Trina J. Stewart
Mark J. Smyth
Publikationsdatum
01.03.2011
Verlag
Springer US
Erschienen in
Cancer and Metastasis Reviews / Ausgabe 1/2011
Print ISSN: 0167-7659
Elektronische ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-011-9280-5

Weitere Artikel der Ausgabe 1/2011

Cancer and Metastasis Reviews 1/2011 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.