Skip to main content
Erschienen in: Cancer and Metastasis Reviews 1/2011

01.03.2011

The significant role of mast cells in cancer

verfasst von: Khashayarsha Khazaie, Nichole R. Blatner, Mohammad Wasim Khan, Fotini Gounari, Elias Gounaris, Kristen Dennis, Andreas Bonertz, Fu-Nien Tsai, Matthew J. Strouch, Eric Cheon, Joseph D. Phillips, Philipp Beckhove, David J. Bentrem

Erschienen in: Cancer and Metastasis Reviews | Ausgabe 1/2011

Einloggen, um Zugang zu erhalten

Abstract

Mast cells (MC) are a bone marrow-derived, long-lived, heterogeneous cellular population that function both as positive and negative regulators of immune responses. They are arguably the most productive chemical factory in the body and influence other cells through both soluble mediators and cell-to-cell interaction. MC are commonly seen in various tumors and have been attributed alternatively with tumor rejection or tumor promotion. Tumor-infiltrating MC are derived both from sentinel and recruited progenitor cells. MC can directly influence tumor cell proliferation and invasion but also help tumors indirectly by organizing its microenvironment and modulating immune responses to tumor cells. Best known for orchestrating inflammation and angiogenesis, the role of MC in shaping adaptive immune responses has become a focus of recent investigations. MC mobilize T cells and antigen-presenting dendritic cells. They function as intermediaries in regulatory T cells (Treg)-induced tolerance but can also modify or reverse Treg-suppressive properties. The central role of MC in the control of innate and adaptive immunity endows them with the ability to tune the nature of host responses to cancer and ultimately influence the outcome of disease and fate of the cancer patient.
Literatur
1.
Zurück zum Zitat Chen, C. C., Grimbaldeston, M. A., Tsai, M., Weissman, I. L., & Galli, S. J. (2005). Identification of mast cell progenitors in adult mice. Proceedings of the National Academy of Sciences of the United States of America, 102, 11408–11413.PubMedCrossRef Chen, C. C., Grimbaldeston, M. A., Tsai, M., Weissman, I. L., & Galli, S. J. (2005). Identification of mast cell progenitors in adult mice. Proceedings of the National Academy of Sciences of the United States of America, 102, 11408–11413.PubMedCrossRef
2.
Zurück zum Zitat Arinobu, Y., Iwasaki, H., & Akashi, K. (2009). Origin of basophils and mast cells. Allergology International, 58, 21–28.PubMedCrossRef Arinobu, Y., Iwasaki, H., & Akashi, K. (2009). Origin of basophils and mast cells. Allergology International, 58, 21–28.PubMedCrossRef
3.
Zurück zum Zitat Enerback, L. (1966). Mast cells in rat gastrointestinal mucosa. 2. Dye-binding and metachromatic properties. Acta Pathologica et Microbiologica Scandinavica, 66, 303–312.PubMed Enerback, L. (1966). Mast cells in rat gastrointestinal mucosa. 2. Dye-binding and metachromatic properties. Acta Pathologica et Microbiologica Scandinavica, 66, 303–312.PubMed
4.
Zurück zum Zitat Enerbaeck, L. (1986). Mast cell heterogeneity: The evolution of the concept of a specific mucosal mast cell. In A. D. Befus, J. Bienenstock, & J. A. Denburg (Eds.) Mast cell differentiation and heterogeneity (pp. 1–26). Raven Press. Enerbaeck, L. (1986). Mast cell heterogeneity: The evolution of the concept of a specific mucosal mast cell. In A. D. Befus, J. Bienenstock, & J. A. Denburg (Eds.) Mast cell differentiation and heterogeneity (pp. 1–26). Raven Press.
5.
Zurück zum Zitat Befus, A. D., Pearce, F. L., Gauldie, J., Horsewood, P., & Bienenstock, J. (1982). Mucosal mast cells. I. Isolation and functional characteristics of rat intestinal mast cells. Journal of Immunology, 128, 2475–2480. Befus, A. D., Pearce, F. L., Gauldie, J., Horsewood, P., & Bienenstock, J. (1982). Mucosal mast cells. I. Isolation and functional characteristics of rat intestinal mast cells. Journal of Immunology, 128, 2475–2480.
6.
Zurück zum Zitat Metcalfe, D. D., Baram, D., & Mekori, Y. A. (1997). Mast cells. Physiological Reviews, 77, 1033–1079.PubMed Metcalfe, D. D., Baram, D., & Mekori, Y. A. (1997). Mast cells. Physiological Reviews, 77, 1033–1079.PubMed
7.
Zurück zum Zitat Irani, A. A., Schechter, N. M., Craig, S. S., DeBlois, G., & Schwartz, L. B. (1986). Two types of human mast cells that have distinct neutral protease compositions. Proceedings of the National Academy of Sciences of the United States of America, 83, 4464–4468.PubMedCrossRef Irani, A. A., Schechter, N. M., Craig, S. S., DeBlois, G., & Schwartz, L. B. (1986). Two types of human mast cells that have distinct neutral protease compositions. Proceedings of the National Academy of Sciences of the United States of America, 83, 4464–4468.PubMedCrossRef
8.
Zurück zum Zitat Arck, P. C., Handjiski, B., Hagen, E., Joachim, R., Klapp, B. F., & Paus, R. (2001). Indications for a ‘brain-hair follicle axis (BHA)’: Inhibition of keratinocyte proliferation and up-regulation of keratinocyte apoptosis in telogen hair follicles by stress and substance P. The FASEB Journal, 15, 2536–2538.PubMed Arck, P. C., Handjiski, B., Hagen, E., Joachim, R., Klapp, B. F., & Paus, R. (2001). Indications for a ‘brain-hair follicle axis (BHA)’: Inhibition of keratinocyte proliferation and up-regulation of keratinocyte apoptosis in telogen hair follicles by stress and substance P. The FASEB Journal, 15, 2536–2538.PubMed
9.
Zurück zum Zitat Hallgren, J., & Gurish, M. F. (2007). Pathways of murine mast cell development and trafficking: Tracking the roots and routes of the mast cell. Immunological Reviews, 217, 8–18.PubMedCrossRef Hallgren, J., & Gurish, M. F. (2007). Pathways of murine mast cell development and trafficking: Tracking the roots and routes of the mast cell. Immunological Reviews, 217, 8–18.PubMedCrossRef
10.
Zurück zum Zitat Gounaris, E., Erdman, S. E., Restaino, C., Gurish, M. F., Friend, D. S., Gounari, F., et al. (2007). Mast cells are an essential hematopoietic component for polyp development. Proceedings of the National Academy of Sciences of the United States of America, 104, 19977–19982.PubMedCrossRef Gounaris, E., Erdman, S. E., Restaino, C., Gurish, M. F., Friend, D. S., Gounari, F., et al. (2007). Mast cells are an essential hematopoietic component for polyp development. Proceedings of the National Academy of Sciences of the United States of America, 104, 19977–19982.PubMedCrossRef
11.
Zurück zum Zitat Kumamoto, T., Shalhevet, D., Matsue, H., Mummert, M. E., Ward, B. R., Jester, J. V., et al. (2003). Hair follicles serve as local reservoirs of skin mast cell precursors. Blood, 102, 1654–1660.PubMedCrossRef Kumamoto, T., Shalhevet, D., Matsue, H., Mummert, M. E., Ward, B. R., Jester, J. V., et al. (2003). Hair follicles serve as local reservoirs of skin mast cell precursors. Blood, 102, 1654–1660.PubMedCrossRef
12.
Zurück zum Zitat Kasugai, T., Tei, H., Okada, M., Hirota, S., Morimoto, M., Yamada, M., et al. (1995). Infection with Nippostrongylus brasiliensis induces invasion of mast cell precursors from peripheral blood to small intestine. Blood, 85, 1334–1340.PubMed Kasugai, T., Tei, H., Okada, M., Hirota, S., Morimoto, M., Yamada, M., et al. (1995). Infection with Nippostrongylus brasiliensis induces invasion of mast cell precursors from peripheral blood to small intestine. Blood, 85, 1334–1340.PubMed
13.
Zurück zum Zitat Rodewald, H. R., Dessing, M., Dvorak, A. M., & Galli, S. J. (1996). Identification of a committed precursor for the mast cell lineage. Science, 271, 818–822.PubMedCrossRef Rodewald, H. R., Dessing, M., Dvorak, A. M., & Galli, S. J. (1996). Identification of a committed precursor for the mast cell lineage. Science, 271, 818–822.PubMedCrossRef
14.
Zurück zum Zitat Nakano, T., Sonoda, T., Hayashi, C., Yamatodani, A., Kanayama, Y., Yamamura, T., et al. (1985). Fate of bone marrow-derived cultured mast cells after intracutaneous, intraperitoneal, and intravenous transfer into genetically mast cell-deficient W/Wv mice. Evidence that cultured mast cells can give rise to both connective tissue type and mucosal mast cells. The Journal of Experimental Medicine, 162, 1025–1043.PubMedCrossRef Nakano, T., Sonoda, T., Hayashi, C., Yamatodani, A., Kanayama, Y., Yamamura, T., et al. (1985). Fate of bone marrow-derived cultured mast cells after intracutaneous, intraperitoneal, and intravenous transfer into genetically mast cell-deficient W/Wv mice. Evidence that cultured mast cells can give rise to both connective tissue type and mucosal mast cells. The Journal of Experimental Medicine, 162, 1025–1043.PubMedCrossRef
15.
Zurück zum Zitat Gurish, M. F., Pear, W. S., Stevens, R. L., Scott, M. L., Sokol, K., Ghildyal, N., et al. (1995). Tissue-regulated differentiation and maturation of a v-abl-immortalized mast cell-committed progenitor. Immunity, 3, 175–186.PubMedCrossRef Gurish, M. F., Pear, W. S., Stevens, R. L., Scott, M. L., Sokol, K., Ghildyal, N., et al. (1995). Tissue-regulated differentiation and maturation of a v-abl-immortalized mast cell-committed progenitor. Immunity, 3, 175–186.PubMedCrossRef
16.
Zurück zum Zitat Lu, L. F., Lind, E. F., Gondek, D. C., Bennett, K. A., Gleeson, M. W., Pino-Lagos, K., et al. (2006). Mast cells are essential intermediaries in regulatory T-cell tolerance. Nature, 442, 997–1002.PubMedCrossRef Lu, L. F., Lind, E. F., Gondek, D. C., Bennett, K. A., Gleeson, M. W., Pino-Lagos, K., et al. (2006). Mast cells are essential intermediaries in regulatory T-cell tolerance. Nature, 442, 997–1002.PubMedCrossRef
17.
Zurück zum Zitat Maltby, S., Khazaie, K., & McNagny, K. M. (2009). Mast cells in tumor growth: Angiogenesis, tissue remodelling and immune-modulation. Biochimica et Biophysica Acta, 1796, 19–26.PubMed Maltby, S., Khazaie, K., & McNagny, K. M. (2009). Mast cells in tumor growth: Angiogenesis, tissue remodelling and immune-modulation. Biochimica et Biophysica Acta, 1796, 19–26.PubMed
18.
Zurück zum Zitat Galli, S. J. (1990). New insights into “the riddle of the mast cells”: Microenvironmental regulation of mast cell development and phenotypic heterogeneity. Laboratory Investigation, 62, 5–33.PubMed Galli, S. J. (1990). New insights into “the riddle of the mast cells”: Microenvironmental regulation of mast cell development and phenotypic heterogeneity. Laboratory Investigation, 62, 5–33.PubMed
19.
Zurück zum Zitat Gurish, M. F., & Austen, K. F. (2001). The diverse roles of mast cells. The Journal of Experimental Medicine, 194, F1–F5.PubMedCrossRef Gurish, M. F., & Austen, K. F. (2001). The diverse roles of mast cells. The Journal of Experimental Medicine, 194, F1–F5.PubMedCrossRef
20.
Zurück zum Zitat Grimbaldeston, M. A., Metz, M., Yu, M., Tsai, M., & Galli, S. J. (2006). Effector and potential immunoregulatory roles of mast cells in IgE-associated acquired immune responses. Current Opinion in Immunology, 18, 751–760.PubMedCrossRef Grimbaldeston, M. A., Metz, M., Yu, M., Tsai, M., & Galli, S. J. (2006). Effector and potential immunoregulatory roles of mast cells in IgE-associated acquired immune responses. Current Opinion in Immunology, 18, 751–760.PubMedCrossRef
21.
Zurück zum Zitat Kanakura, Y., Thompson, H., Nakano, T., Yamamura, T., Asai, H., Kitamura, Y., et al. (1988). Multiple bidirectional alterations of phenotype and changes in proliferative potential during the in vitro and in vivo passage of clonal mast cell populations derived from mouse peritoneal mast cells. Blood, 72, 877–885.PubMed Kanakura, Y., Thompson, H., Nakano, T., Yamamura, T., Asai, H., Kitamura, Y., et al. (1988). Multiple bidirectional alterations of phenotype and changes in proliferative potential during the in vitro and in vivo passage of clonal mast cell populations derived from mouse peritoneal mast cells. Blood, 72, 877–885.PubMed
22.
Zurück zum Zitat Sonoda, S., Sonoda, T., Nakano, T., Kanayama, Y., Kanakura, Y., Asai, H., et al. (1986). Development of mucosal mast cells after injection of a single connective tissue-type mast cell in the stomach mucosa of genetically mast cell-deficient W/Wv mice. Journal of Immunology, 137, 1319–1322. Sonoda, S., Sonoda, T., Nakano, T., Kanayama, Y., Kanakura, Y., Asai, H., et al. (1986). Development of mucosal mast cells after injection of a single connective tissue-type mast cell in the stomach mucosa of genetically mast cell-deficient W/Wv mice. Journal of Immunology, 137, 1319–1322.
23.
Zurück zum Zitat Boyce, J. A., Mellor, E. A., Perkins, B., Lim, Y. C., & Luscinskas, F. W. (2002). Human mast cell progenitors use alpha4-integrin, VCAM-1, and PSGL-1 E-selectin for adhesive interactions with human vascular endothelium under flow conditions. Blood, 99, 2890–2896.PubMedCrossRef Boyce, J. A., Mellor, E. A., Perkins, B., Lim, Y. C., & Luscinskas, F. W. (2002). Human mast cell progenitors use alpha4-integrin, VCAM-1, and PSGL-1 E-selectin for adhesive interactions with human vascular endothelium under flow conditions. Blood, 99, 2890–2896.PubMedCrossRef
24.
Zurück zum Zitat Gurish, M. F., Tao, H., Abonia, J. P., Arya, A., Friend, D. S., Parker, C. M., et al. (2001). Intestinal mast cell progenitors require CD49dbeta7 (alpha4beta7 integrin) for tissue-specific homing. The Journal of Experimental Medicine, 194, 1243–1252.PubMedCrossRef Gurish, M. F., Tao, H., Abonia, J. P., Arya, A., Friend, D. S., Parker, C. M., et al. (2001). Intestinal mast cell progenitors require CD49dbeta7 (alpha4beta7 integrin) for tissue-specific homing. The Journal of Experimental Medicine, 194, 1243–1252.PubMedCrossRef
25.
Zurück zum Zitat Abonia, J. P., Austen, K. F., Rollins, B. J., Joshi, S. K., Flavell, R. A., Kuziel, W. A., et al. (2005). Constitutive homing of mast cell progenitors to the intestine depends on autologous expression of the chemokine receptor CXCR2. Blood, 105, 4308–4313.PubMedCrossRef Abonia, J. P., Austen, K. F., Rollins, B. J., Joshi, S. K., Flavell, R. A., Kuziel, W. A., et al. (2005). Constitutive homing of mast cell progenitors to the intestine depends on autologous expression of the chemokine receptor CXCR2. Blood, 105, 4308–4313.PubMedCrossRef
26.
Zurück zum Zitat Abonia, J. P., Hallgren, J., Jones, T., Shi, T., Xu, Y., Koni, P., et al. (2006). Alpha-4 integrins and VCAM-1, but not MAdCAM-1, are essential for recruitment of mast cell progenitors to the inflamed lung. Blood, 108, 1588–1594.PubMedCrossRef Abonia, J. P., Hallgren, J., Jones, T., Shi, T., Xu, Y., Koni, P., et al. (2006). Alpha-4 integrins and VCAM-1, but not MAdCAM-1, are essential for recruitment of mast cell progenitors to the inflamed lung. Blood, 108, 1588–1594.PubMedCrossRef
27.
Zurück zum Zitat Hallgren, J., Jones, T. G., Abonia, J. P., Xing, W., Humbles, A., Austen, K. F., et al. (2007). Pulmonary CXCR2 regulates VCAM-1 and antigen-induced recruitment of mast cell progenitors. Proceedings of the National Academy of Sciences of the United States of America, 104, 20478–20483.PubMedCrossRef Hallgren, J., Jones, T. G., Abonia, J. P., Xing, W., Humbles, A., Austen, K. F., et al. (2007). Pulmonary CXCR2 regulates VCAM-1 and antigen-induced recruitment of mast cell progenitors. Proceedings of the National Academy of Sciences of the United States of America, 104, 20478–20483.PubMedCrossRef
28.
Zurück zum Zitat Galli, S. J., Tsai, M., & Wershil, B. K. (1993). The c-kit receptor, stem cell factor, and mast cells. What each is teaching us about the others. The American Journal of Pathology, 142, 965–974.PubMed Galli, S. J., Tsai, M., & Wershil, B. K. (1993). The c-kit receptor, stem cell factor, and mast cells. What each is teaching us about the others. The American Journal of Pathology, 142, 965–974.PubMed
29.
Zurück zum Zitat Moller, C., Alfredsson, J., Engstrom, M., Wootz, H., Xiang, Z., Lennartsson, J., et al. (2005). Stem cell factor promotes mast cell survival via inactivation of FOXO3a-mediated transcriptional induction and MEK-regulated phosphorylation of the proapoptotic protein Bim. Blood, 106, 1330–1336.PubMedCrossRef Moller, C., Alfredsson, J., Engstrom, M., Wootz, H., Xiang, Z., Lennartsson, J., et al. (2005). Stem cell factor promotes mast cell survival via inactivation of FOXO3a-mediated transcriptional induction and MEK-regulated phosphorylation of the proapoptotic protein Bim. Blood, 106, 1330–1336.PubMedCrossRef
30.
Zurück zum Zitat Meininger, C. J., Yano, H., Rottapel, R., Bernstein, A., Zsebo, K. M., & Zetter, B. R. (1992). The c-kit receptor ligand functions as a mast cell chemoattractant. Blood, 79, 958–963.PubMed Meininger, C. J., Yano, H., Rottapel, R., Bernstein, A., Zsebo, K. M., & Zetter, B. R. (1992). The c-kit receptor ligand functions as a mast cell chemoattractant. Blood, 79, 958–963.PubMed
31.
Zurück zum Zitat Gilfillan, A. M., & Rivera, J. (2009). The tyrosine kinase network regulating mast cell activation. Immunological Reviews, 228, 149–169.PubMedCrossRef Gilfillan, A. M., & Rivera, J. (2009). The tyrosine kinase network regulating mast cell activation. Immunological Reviews, 228, 149–169.PubMedCrossRef
32.
Zurück zum Zitat Okayama, Y., & Kawakami, T. (2006). Development, migration, and survival of mast cells. Immunologic Research, 34, 97–115.PubMedCrossRef Okayama, Y., & Kawakami, T. (2006). Development, migration, and survival of mast cells. Immunologic Research, 34, 97–115.PubMedCrossRef
33.
Zurück zum Zitat Taylor, A. M., Galli, S. J., & Coleman, J. W. (1995). Stem-cell factor, the kit ligand, induces direct degranulation of rat peritoneal mast cells in vitro and in vivo: Dependence of the in vitro effect on period of culture and comparisons of stem-cell factor with other mast cell-activating agents. Immunology, 86, 427–433.PubMed Taylor, A. M., Galli, S. J., & Coleman, J. W. (1995). Stem-cell factor, the kit ligand, induces direct degranulation of rat peritoneal mast cells in vitro and in vivo: Dependence of the in vitro effect on period of culture and comparisons of stem-cell factor with other mast cell-activating agents. Immunology, 86, 427–433.PubMed
34.
Zurück zum Zitat Galli, S. J., Tsai, M., Gordon, J. R., Geissler, E. N., & Wershil, B. K. (1992). Analyzing mast cell development and function using mice carrying mutations at W/c-kit or Sl/MGF (SCF) loci. Annals of the New York Academy of Sciences, 664, 69–88.PubMedCrossRef Galli, S. J., Tsai, M., Gordon, J. R., Geissler, E. N., & Wershil, B. K. (1992). Analyzing mast cell development and function using mice carrying mutations at W/c-kit or Sl/MGF (SCF) loci. Annals of the New York Academy of Sciences, 664, 69–88.PubMedCrossRef
35.
Zurück zum Zitat Nocka, K., Tan, J. C., Chiu, E., Chu, T. Y., Ray, P., Traktman, P., et al. (1990). Molecular bases of dominant negative and loss of function mutations at the murine c-kit/white spotting locus: W37, Wv, W41 and W. The EMBO Journal, 9, 1805–1813.PubMed Nocka, K., Tan, J. C., Chiu, E., Chu, T. Y., Ray, P., Traktman, P., et al. (1990). Molecular bases of dominant negative and loss of function mutations at the murine c-kit/white spotting locus: W37, Wv, W41 and W. The EMBO Journal, 9, 1805–1813.PubMed
36.
Zurück zum Zitat Pittoni, P., Piconese, S., Tripodo, C., & Colombo, M. P. (2010). Tumor-intrinsic and -extrinsic roles of c-Kit: Mast cells as the primary off-target of tyrosine kinase inhibitors. Oncogene. Pittoni, P., Piconese, S., Tripodo, C., & Colombo, M. P. (2010). Tumor-intrinsic and -extrinsic roles of c-Kit: Mast cells as the primary off-target of tyrosine kinase inhibitors. Oncogene.
37.
Zurück zum Zitat Bellone, G., Smirne, C., Carbone, A., Buffolino, A., Scirelli, T., Prati, A., et al. (2006). KIT/stem cell factor expression in premalignant and malignant lesions of the colon mucosa in relationship to disease progression and outcomes. International Journal of Oncology, 29, 851–859.PubMed Bellone, G., Smirne, C., Carbone, A., Buffolino, A., Scirelli, T., Prati, A., et al. (2006). KIT/stem cell factor expression in premalignant and malignant lesions of the colon mucosa in relationship to disease progression and outcomes. International Journal of Oncology, 29, 851–859.PubMed
38.
Zurück zum Zitat Huang, B., Lei, Z., Zhang, G. M., Li, D., Song, C., Li, B., et al. (2008). SCF-mediated mast cell infiltration and activation exacerbate the inflammation and immunosuppression in tumor microenvironment. Blood, 112, 1269–1279.PubMedCrossRef Huang, B., Lei, Z., Zhang, G. M., Li, D., Song, C., Li, B., et al. (2008). SCF-mediated mast cell infiltration and activation exacerbate the inflammation and immunosuppression in tumor microenvironment. Blood, 112, 1269–1279.PubMedCrossRef
39.
Zurück zum Zitat Lu-Kuo, J. M., Fruman, D. A., Joyal, D. M., Cantley, L. C., & Katz, H. R. (2000). Impaired kit- but not FcepsilonRI-initiated mast cell activation in the absence of phosphoinositide 3-kinase p85alpha gene products. The Journal of Biological Chemistry, 275, 6022–6029.PubMedCrossRef Lu-Kuo, J. M., Fruman, D. A., Joyal, D. M., Cantley, L. C., & Katz, H. R. (2000). Impaired kit- but not FcepsilonRI-initiated mast cell activation in the absence of phosphoinositide 3-kinase p85alpha gene products. The Journal of Biological Chemistry, 275, 6022–6029.PubMedCrossRef
40.
Zurück zum Zitat Samayawardhena, L. A., & Pallen, C. J. (2008). Protein-tyrosine phosphatase alpha regulates stem cell factor-dependent c-Kit activation and migration of mast cells. The Journal of Biological Chemistry, 283, 29175–29185.PubMedCrossRef Samayawardhena, L. A., & Pallen, C. J. (2008). Protein-tyrosine phosphatase alpha regulates stem cell factor-dependent c-Kit activation and migration of mast cells. The Journal of Biological Chemistry, 283, 29175–29185.PubMedCrossRef
41.
Zurück zum Zitat Gounaris, E., Blatner, N. R., Dennis, K., Magnusson, F., Gurish, M. F., Strom, T. B., et al. (2009). T-regulatory cells shift from a protective anti-inflammatory to a cancer-promoting proinflammatory phenotype in polyposis. Cancer Research, 69, 5490–5497.PubMedCrossRef Gounaris, E., Blatner, N. R., Dennis, K., Magnusson, F., Gurish, M. F., Strom, T. B., et al. (2009). T-regulatory cells shift from a protective anti-inflammatory to a cancer-promoting proinflammatory phenotype in polyposis. Cancer Research, 69, 5490–5497.PubMedCrossRef
42.
Zurück zum Zitat Jones, T. G., Hallgren, J., Humbles, A., Burwell, T., Finkelman, F. D., Alcaide, P., et al. (2009). Antigen-induced increases in pulmonary mast cell progenitor numbers depend on IL-9 and CD1d-restricted NKT cells. Journal of Immunology, 183, 5251–5260.CrossRef Jones, T. G., Hallgren, J., Humbles, A., Burwell, T., Finkelman, F. D., Alcaide, P., et al. (2009). Antigen-induced increases in pulmonary mast cell progenitor numbers depend on IL-9 and CD1d-restricted NKT cells. Journal of Immunology, 183, 5251–5260.CrossRef
43.
Zurück zum Zitat Chen, M. L., Pittet, M. J., Gorelik, L., Flavell, R. A., Weissleder, R., von Boehmer, H., et al. (2005). Regulatory T cells suppress tumor-specific CD8 T cell cytotoxicity through TGF-beta signals in vivo. Proceedings of the National Academy of Sciences of the United States of America, 102, 419–424.PubMedCrossRef Chen, M. L., Pittet, M. J., Gorelik, L., Flavell, R. A., Weissleder, R., von Boehmer, H., et al. (2005). Regulatory T cells suppress tumor-specific CD8 T cell cytotoxicity through TGF-beta signals in vivo. Proceedings of the National Academy of Sciences of the United States of America, 102, 419–424.PubMedCrossRef
44.
Zurück zum Zitat Mempel, T. R., Pittet, M. J., Khazaie, K., Weninger, W., Weissleder, R., von Boehmer, H., et al. (2006). Regulatory T cells reversibly suppress cytotoxic T cell function independent of effector differentiation. Immunity, 25, 129–141.PubMedCrossRef Mempel, T. R., Pittet, M. J., Khazaie, K., Weninger, W., Weissleder, R., von Boehmer, H., et al. (2006). Regulatory T cells reversibly suppress cytotoxic T cell function independent of effector differentiation. Immunity, 25, 129–141.PubMedCrossRef
45.
Zurück zum Zitat Nummer, D., Suri-Payer, E., Schmitz-Winnenthal, H., Bonertz, A., Galindo, L., Antolovich, D., et al. (2007). Role of tumor endothelium in CD4+ CD25+ regulatory T cell infiltration of human pancreatic carcinoma. Journal of the National Cancer Institute, 99, 1188–1199.PubMedCrossRef Nummer, D., Suri-Payer, E., Schmitz-Winnenthal, H., Bonertz, A., Galindo, L., Antolovich, D., et al. (2007). Role of tumor endothelium in CD4+ CD25+ regulatory T cell infiltration of human pancreatic carcinoma. Journal of the National Cancer Institute, 99, 1188–1199.PubMedCrossRef
46.
Zurück zum Zitat Wagner, P., Koch, M., Nummer, D., Palm, S., Galindo, L., Autenrieth, D., et al. (2008). Detection and functional analysis of tumor infiltrating T-lymphocytes (TIL) in liver metastases from colorectal cancer. Annals of Surgical Oncology, 15, 2310–2317.PubMedCrossRef Wagner, P., Koch, M., Nummer, D., Palm, S., Galindo, L., Autenrieth, D., et al. (2008). Detection and functional analysis of tumor infiltrating T-lymphocytes (TIL) in liver metastases from colorectal cancer. Annals of Surgical Oncology, 15, 2310–2317.PubMedCrossRef
47.
Zurück zum Zitat Bonertz, A., Weitz, J., Pietsch, D. H., Rahbari, N. N., Schlude, C., Ge, Y., et al. (2009). Antigen-specific Treg control T cell responses against a limited repertoire of tumor antigens in patients with colorectal carcinoma. Journal of Clinical Investigation, 119, 3311–3321.PubMed Bonertz, A., Weitz, J., Pietsch, D. H., Rahbari, N. N., Schlude, C., Ge, Y., et al. (2009). Antigen-specific Treg control T cell responses against a limited repertoire of tumor antigens in patients with colorectal carcinoma. Journal of Clinical Investigation, 119, 3311–3321.PubMed
48.
Zurück zum Zitat Blatner, N. R., Bonertz, A., Beckhove, P., Cheon, E. C., Krantz, S. B., Strouch, M., et al. (2010). In colorectal cancer mast cells contribute to systemic regulatory T-cell dysfunction. Proceedings of the National Academy of Sciences of the United States of America, 107, 6430–6435.PubMedCrossRef Blatner, N. R., Bonertz, A., Beckhove, P., Cheon, E. C., Krantz, S. B., Strouch, M., et al. (2010). In colorectal cancer mast cells contribute to systemic regulatory T-cell dysfunction. Proceedings of the National Academy of Sciences of the United States of America, 107, 6430–6435.PubMedCrossRef
49.
Zurück zum Zitat Ruitenberg, E. J., & Elgersma, A. (1976). Absence of intestinal mast cell response in congenitally athymic mice during Trichinella spiralis infection. Nature, 264, 258–260.PubMedCrossRef Ruitenberg, E. J., & Elgersma, A. (1976). Absence of intestinal mast cell response in congenitally athymic mice during Trichinella spiralis infection. Nature, 264, 258–260.PubMedCrossRef
50.
Zurück zum Zitat Schmitt, E., Huls, C., Nagel, B., & Rude, E. (1990). Characterization of a T-cell-derived mast cell costimulatory activity (MCA) that acts synergistically with interleukin 3 and interleukin 4 on the growth of murine mast cells. Cytokine, 2, 407–415.PubMedCrossRef Schmitt, E., Huls, C., Nagel, B., & Rude, E. (1990). Characterization of a T-cell-derived mast cell costimulatory activity (MCA) that acts synergistically with interleukin 3 and interleukin 4 on the growth of murine mast cells. Cytokine, 2, 407–415.PubMedCrossRef
51.
Zurück zum Zitat Alcaide, P., Jones, T. G., Lord, G. M., Glimcher, L. H., Hallgren, J., Arinobu, Y., et al. (2007). Dendritic cell expression of the transcription factor T-bet regulates mast cell progenitor homing to mucosal tissue. The Journal of Experimental Medicine, 204, 431–439.PubMedCrossRef Alcaide, P., Jones, T. G., Lord, G. M., Glimcher, L. H., Hallgren, J., Arinobu, Y., et al. (2007). Dendritic cell expression of the transcription factor T-bet regulates mast cell progenitor homing to mucosal tissue. The Journal of Experimental Medicine, 204, 431–439.PubMedCrossRef
52.
Zurück zum Zitat Irani, A. M., Craig, S. S., DeBlois, G., Elson, C. O., Schechter, N. M., & Schwartz, L. B. (1987). Deficiency of the tryptase-positive, chymase-negative mast cell type in gastrointestinal mucosa of patients with defective T lymphocyte function. Journal of Immunology, 138, 4381–4386. Irani, A. M., Craig, S. S., DeBlois, G., Elson, C. O., Schechter, N. M., & Schwartz, L. B. (1987). Deficiency of the tryptase-positive, chymase-negative mast cell type in gastrointestinal mucosa of patients with defective T lymphocyte function. Journal of Immunology, 138, 4381–4386.
53.
Zurück zum Zitat Jones, T. G., Finkelman, F. D., Austen, K. F., & Gurish, M. F. (2010). T regulatory cells control antigen-induced recruitment of mast cell progenitors to the lungs of C57BL/6 mice. Journal of Immunology, 185, 1804–1811.CrossRef Jones, T. G., Finkelman, F. D., Austen, K. F., & Gurish, M. F. (2010). T regulatory cells control antigen-induced recruitment of mast cell progenitors to the lungs of C57BL/6 mice. Journal of Immunology, 185, 1804–1811.CrossRef
54.
Zurück zum Zitat Shin, K., Gurish, M. F., Friend, D. S., Pemberton, A. D., Thornton, E. M., Miller, H. R., et al. (2006). Lymphocyte-independent connective tissue mast cells populate murine synovium. Arthritis and Rheumatism, 54, 2863–2871.PubMedCrossRef Shin, K., Gurish, M. F., Friend, D. S., Pemberton, A. D., Thornton, E. M., Miller, H. R., et al. (2006). Lymphocyte-independent connective tissue mast cells populate murine synovium. Arthritis and Rheumatism, 54, 2863–2871.PubMedCrossRef
55.
Zurück zum Zitat Boesiger, J., Tsai, M., Maurer, M., Yamaguchi, M., Brown, L. F., Claffey, K. P., et al. (1998). Mast cells can secrete vascular permeability factor/vascular endothelial cell growth factor and exhibit enhanced release after immunoglobulin E-dependent upregulation of fc epsilon receptor I expression. The Journal of Experimental Medicine, 188, 1135–1145.PubMedCrossRef Boesiger, J., Tsai, M., Maurer, M., Yamaguchi, M., Brown, L. F., Claffey, K. P., et al. (1998). Mast cells can secrete vascular permeability factor/vascular endothelial cell growth factor and exhibit enhanced release after immunoglobulin E-dependent upregulation of fc epsilon receptor I expression. The Journal of Experimental Medicine, 188, 1135–1145.PubMedCrossRef
56.
Zurück zum Zitat Blair, R. J., Meng, H., Marchese, M. J., Ren, S., Schwartz, L. B., Tonnesen, M. G., et al. (1997). Human mast cells stimulate vascular tube formation. Tryptase is a novel, potent angiogenic factor. Journal of Clinical Investigation, 99, 2691–2700.PubMedCrossRef Blair, R. J., Meng, H., Marchese, M. J., Ren, S., Schwartz, L. B., Tonnesen, M. G., et al. (1997). Human mast cells stimulate vascular tube formation. Tryptase is a novel, potent angiogenic factor. Journal of Clinical Investigation, 99, 2691–2700.PubMedCrossRef
57.
Zurück zum Zitat Gordon, J. R., & Galli, S. J. (1990). Mast cells as a source of both preformed and immunologically inducible TNF-alpha/cachectin. Nature, 346, 274–276.PubMedCrossRef Gordon, J. R., & Galli, S. J. (1990). Mast cells as a source of both preformed and immunologically inducible TNF-alpha/cachectin. Nature, 346, 274–276.PubMedCrossRef
58.
Zurück zum Zitat Mannel, D. N., Hultner, L., & Echtenacher, B. (1996). Critical protective role of mast cell-derived tumour necrosis factor in bacterial infection. Research in Immunology, 147, 491–493.PubMedCrossRef Mannel, D. N., Hultner, L., & Echtenacher, B. (1996). Critical protective role of mast cell-derived tumour necrosis factor in bacterial infection. Research in Immunology, 147, 491–493.PubMedCrossRef
59.
Zurück zum Zitat Echtenacher, B., Mannel, D. N., & Hultner, L. (1996). Critical protective role of mast cells in a model of acute septic peritonitis. Nature, 381, 75–77.PubMedCrossRef Echtenacher, B., Mannel, D. N., & Hultner, L. (1996). Critical protective role of mast cells in a model of acute septic peritonitis. Nature, 381, 75–77.PubMedCrossRef
60.
Zurück zum Zitat Malaviya, R., Ikeda, T., Ross, E., & Abraham, S. N. (1996). Mast cell modulation of neutrophil influx and bacterial clearance at sites of infection through TNF-alpha. Nature, 381, 77–80.PubMedCrossRef Malaviya, R., Ikeda, T., Ross, E., & Abraham, S. N. (1996). Mast cell modulation of neutrophil influx and bacterial clearance at sites of infection through TNF-alpha. Nature, 381, 77–80.PubMedCrossRef
61.
Zurück zum Zitat Maurer, M., Echtenacher, B., Hultner, L., Kollias, G., Mannel, D. N., Langley, K. E., et al. (1998). The c-kit ligand, stem cell factor, can enhance innate immunity through effects on mast cells. The Journal of Experimental Medicine, 188, 2343–2348.PubMedCrossRef Maurer, M., Echtenacher, B., Hultner, L., Kollias, G., Mannel, D. N., Langley, K. E., et al. (1998). The c-kit ligand, stem cell factor, can enhance innate immunity through effects on mast cells. The Journal of Experimental Medicine, 188, 2343–2348.PubMedCrossRef
62.
Zurück zum Zitat Feger, F., Varadaradjalou, S., Gao, Z., Abraham, S. N., & Arock, M. (2002). The role of mast cells in host defense and their subversion by bacterial pathogens. Trends in Immunology, 23, 151–158.PubMedCrossRef Feger, F., Varadaradjalou, S., Gao, Z., Abraham, S. N., & Arock, M. (2002). The role of mast cells in host defense and their subversion by bacterial pathogens. Trends in Immunology, 23, 151–158.PubMedCrossRef
63.
Zurück zum Zitat Bochner, B. S., Charlesworth, E. N., Lichtenstein, L. M., Derse, C. P., Gillis, S., Dinarello, C. A., et al. (1990). Interleukin-1 is released at sites of human cutaneous allergic reactions. The Journal of Allergy and Clinical Immunology, 86, 830–839.PubMedCrossRef Bochner, B. S., Charlesworth, E. N., Lichtenstein, L. M., Derse, C. P., Gillis, S., Dinarello, C. A., et al. (1990). Interleukin-1 is released at sites of human cutaneous allergic reactions. The Journal of Allergy and Clinical Immunology, 86, 830–839.PubMedCrossRef
64.
Zurück zum Zitat Nigrovic, P. A., Binstadt, B. A., Monach, P. A., Johnsen, A., Gurish, M., Iwakura, Y., et al. (2007). Mast cells contribute to initiation of autoantibody-mediated arthritis via IL-1. Proceedings of the National Academy of Sciences of the United States of America, 104, 2325–2330.PubMedCrossRef Nigrovic, P. A., Binstadt, B. A., Monach, P. A., Johnsen, A., Gurish, M., Iwakura, Y., et al. (2007). Mast cells contribute to initiation of autoantibody-mediated arthritis via IL-1. Proceedings of the National Academy of Sciences of the United States of America, 104, 2325–2330.PubMedCrossRef
65.
Zurück zum Zitat Mantovani, A., Allavena, P., Sica, A., & Balkwill, F. (2008). Cancer-related inflammation. Nature, 454, 436–444.PubMedCrossRef Mantovani, A., Allavena, P., Sica, A., & Balkwill, F. (2008). Cancer-related inflammation. Nature, 454, 436–444.PubMedCrossRef
66.
Zurück zum Zitat Cook, G. P., Savic, S., Wittmann, M., & McDermott, M. F. (2010). The NLRP3 inflammasome, a target for therapy in diverse disease states. European Journal of Immunology, 40, 631–634.PubMedCrossRef Cook, G. P., Savic, S., Wittmann, M., & McDermott, M. F. (2010). The NLRP3 inflammasome, a target for therapy in diverse disease states. European Journal of Immunology, 40, 631–634.PubMedCrossRef
67.
Zurück zum Zitat Kim, G. Y., Lee, J. W., Ryu, H. C., Wei, J. D., Seong, C. M., & Kim, J. H. (2010). Proinflammatory cytokine IL-1beta stimulates IL-8 synthesis in mast cells via a leukotriene B4 receptor 2-linked pathway, contributing to angiogenesis. Journal of Immunology, 184, 3946–3954.CrossRef Kim, G. Y., Lee, J. W., Ryu, H. C., Wei, J. D., Seong, C. M., & Kim, J. H. (2010). Proinflammatory cytokine IL-1beta stimulates IL-8 synthesis in mast cells via a leukotriene B4 receptor 2-linked pathway, contributing to angiogenesis. Journal of Immunology, 184, 3946–3954.CrossRef
68.
Zurück zum Zitat Dostert, C., Petrilli, V., Van Bruggen, R., Steele, C., Mossman, B. T., & Tschopp, J. (2008). Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science, 320, 674–677.PubMedCrossRef Dostert, C., Petrilli, V., Van Bruggen, R., Steele, C., Mossman, B. T., & Tschopp, J. (2008). Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science, 320, 674–677.PubMedCrossRef
69.
Zurück zum Zitat Depinay, N., Hacini, F., Beghdadi, W., Peronet, R., & Mecheri, S. (2006). Mast cell-dependent down-regulation of antigen-specific immune responses by mosquito bites. Journal of Immunology, 176, 4141–4146. Depinay, N., Hacini, F., Beghdadi, W., Peronet, R., & Mecheri, S. (2006). Mast cell-dependent down-regulation of antigen-specific immune responses by mosquito bites. Journal of Immunology, 176, 4141–4146.
70.
Zurück zum Zitat Kennedy Norton, S., Barnstein, B., Brenzovich, J., Bailey, D. P., Kashyap, M., Speiran, K., et al. (2008). IL-10 suppresses mast cell IgE receptor expression and signaling in vitro and in vivo. Journal of Immunology, 180, 2848–2854. Kennedy Norton, S., Barnstein, B., Brenzovich, J., Bailey, D. P., Kashyap, M., Speiran, K., et al. (2008). IL-10 suppresses mast cell IgE receptor expression and signaling in vitro and in vivo. Journal of Immunology, 180, 2848–2854.
71.
Zurück zum Zitat Huang, C., Sali, A., & Stevens, R. L. (1998). Regulation and function of mast cell proteases in inflammation. Journal of Clinical Immunology, 18, 169–183.PubMedCrossRef Huang, C., Sali, A., & Stevens, R. L. (1998). Regulation and function of mast cell proteases in inflammation. Journal of Clinical Immunology, 18, 169–183.PubMedCrossRef
72.
Zurück zum Zitat Ghildyal, N., Friend, D. S., Freelund, R., Austen, K. F., McNeil, H. P., Schiller, V., et al. (1994). Lack of expression of the tryptase mouse mast cell protease 7 in mast cells of the C57BL/6J mouse. Journal of Immunology, 153, 2624–2630. Ghildyal, N., Friend, D. S., Freelund, R., Austen, K. F., McNeil, H. P., Schiller, V., et al. (1994). Lack of expression of the tryptase mouse mast cell protease 7 in mast cells of the C57BL/6J mouse. Journal of Immunology, 153, 2624–2630.
73.
Zurück zum Zitat Stevens, R. L., Friend, D. S., McNeil, H. P., Schiller, V., Ghildyal, N., & Austen, K. F. (1994). Strain-specific and tissue-specific expression of mouse mast cell secretory granule proteases. Proceedings of the National Academy of Sciences of the United States of America, 91, 128–132.PubMedCrossRef Stevens, R. L., Friend, D. S., McNeil, H. P., Schiller, V., Ghildyal, N., & Austen, K. F. (1994). Strain-specific and tissue-specific expression of mouse mast cell secretory granule proteases. Proceedings of the National Academy of Sciences of the United States of America, 91, 128–132.PubMedCrossRef
74.
Zurück zum Zitat Miller, H. R., & Pemberton, A. D. (2002). Tissue-specific expression of mast cell granule serine proteinases and their role in inflammation in the lung and gut. Immunology, 105, 375–390.PubMedCrossRef Miller, H. R., & Pemberton, A. D. (2002). Tissue-specific expression of mast cell granule serine proteinases and their role in inflammation in the lung and gut. Immunology, 105, 375–390.PubMedCrossRef
75.
Zurück zum Zitat Galli, S. J., Kalesnikoff, J., Grimbaldeston, M. A., Piliponsky, A. M., Williams, C. M., & Tsai, M. (2005). Mast cells as “tunable” effector and immunoregulatory cells: Recent advances. Annual Review of Immunology, 23, 749–786.PubMedCrossRef Galli, S. J., Kalesnikoff, J., Grimbaldeston, M. A., Piliponsky, A. M., Williams, C. M., & Tsai, M. (2005). Mast cells as “tunable” effector and immunoregulatory cells: Recent advances. Annual Review of Immunology, 23, 749–786.PubMedCrossRef
76.
Zurück zum Zitat Weller, C. L., Collington, S. J., Brown, J. K., Miller, H. R., Al-Kashi, A., Clark, P., et al. (2005). Leukotriene B4, an activation product of mast cells, is a chemoattractant for their progenitors. The Journal of Experimental Medicine, 201, 1961–1971.PubMedCrossRef Weller, C. L., Collington, S. J., Brown, J. K., Miller, H. R., Al-Kashi, A., Clark, P., et al. (2005). Leukotriene B4, an activation product of mast cells, is a chemoattractant for their progenitors. The Journal of Experimental Medicine, 201, 1961–1971.PubMedCrossRef
77.
Zurück zum Zitat Cheon, E. C., Khazaie, K., Khan, M. W., Strouch, M. J., Krantz, S. B., Phillips, J., et al. (2010). Mast cell 5-Lipoxygenase activity promotes intestinal polyposis in APCΔ468 mice. Cancer Research, (in press). Cheon, E. C., Khazaie, K., Khan, M. W., Strouch, M. J., Krantz, S. B., Phillips, J., et al. (2010). Mast cell 5-Lipoxygenase activity promotes intestinal polyposis in APCΔ468 mice. Cancer Research, (in press).
78.
Zurück zum Zitat Jain, S., Harris, J., & Ware, J. (2010). Platelets: Linking hemostasis and cancer. Arteriosclerosis, Thrombosis, and Vascular Biology, 30, 2362–2367.PubMedCrossRef Jain, S., Harris, J., & Ware, J. (2010). Platelets: Linking hemostasis and cancer. Arteriosclerosis, Thrombosis, and Vascular Biology, 30, 2362–2367.PubMedCrossRef
79.
Zurück zum Zitat Blank, U., & Rivera, J. (2004). The ins and outs of IgE-dependent mast-cell exocytosis. Trends in Immunology, 25, 266–273.PubMedCrossRef Blank, U., & Rivera, J. (2004). The ins and outs of IgE-dependent mast-cell exocytosis. Trends in Immunology, 25, 266–273.PubMedCrossRef
80.
Zurück zum Zitat Kim, M. S., Radinger, M., & Gilfillan, A. M. (2008). The multiple roles of phosphoinositide 3-kinase in mast cell biology. Trends in Immunology, 29, 493–501.PubMedCrossRef Kim, M. S., Radinger, M., & Gilfillan, A. M. (2008). The multiple roles of phosphoinositide 3-kinase in mast cell biology. Trends in Immunology, 29, 493–501.PubMedCrossRef
81.
Zurück zum Zitat Ching, T. T., Hsu, A. L., Johnson, A. J., & Chen, C. S. (2001). Phosphoinositide 3-kinase facilitates antigen-stimulated Ca(2+) influx in RBL-2H3 mast cells via a phosphatidylinositol 3, 4, 5-trisphosphate-sensitive Ca(2+) entry mechanism. The Journal of Biological Chemistry, 276, 14814–14820.PubMedCrossRef Ching, T. T., Hsu, A. L., Johnson, A. J., & Chen, C. S. (2001). Phosphoinositide 3-kinase facilitates antigen-stimulated Ca(2+) influx in RBL-2H3 mast cells via a phosphatidylinositol 3, 4, 5-trisphosphate-sensitive Ca(2+) entry mechanism. The Journal of Biological Chemistry, 276, 14814–14820.PubMedCrossRef
82.
Zurück zum Zitat Nigrovic, P. A., Malbec, O., Lu, B., Markiewski, M. M., Kepley, C., Gerard, N., et al. (2010). C5a receptor enables participation of mast cells in immune complex arthritis independently of Fcgamma receptor modulation. Arthritis and Rheumatism, 62, 3322–3333.PubMedCrossRef Nigrovic, P. A., Malbec, O., Lu, B., Markiewski, M. M., Kepley, C., Gerard, N., et al. (2010). C5a receptor enables participation of mast cells in immune complex arthritis independently of Fcgamma receptor modulation. Arthritis and Rheumatism, 62, 3322–3333.PubMedCrossRef
83.
Zurück zum Zitat Gommerman, J. L., Oh, D. Y., Zhou, X., Tedder, T. F., Maurer, M., Galli, S. J., et al. (2000). A role for CD21/CD35 and CD19 in responses to acute septic peritonitis: A potential mechanism for mast cell activation. Journal of Immunology, 165, 6915–6921. Gommerman, J. L., Oh, D. Y., Zhou, X., Tedder, T. F., Maurer, M., Galli, S. J., et al. (2000). A role for CD21/CD35 and CD19 in responses to acute septic peritonitis: A potential mechanism for mast cell activation. Journal of Immunology, 165, 6915–6921.
84.
Zurück zum Zitat Johnson, A. R., Hugli, T. E., & Muller-Eberhard, H. J. (1975). Release of histamine from rat mast cells by the complement peptides C3a and C5a. Immunology, 28, 1067–1080.PubMed Johnson, A. R., Hugli, T. E., & Muller-Eberhard, H. J. (1975). Release of histamine from rat mast cells by the complement peptides C3a and C5a. Immunology, 28, 1067–1080.PubMed
85.
Zurück zum Zitat Marshall, J. S. (2004). Mast-cell responses to pathogens. Nature Reviews Immunology, 4, 787–799.PubMedCrossRef Marshall, J. S. (2004). Mast-cell responses to pathogens. Nature Reviews Immunology, 4, 787–799.PubMedCrossRef
86.
Zurück zum Zitat Prodeus, A. P., Zhou, X., Maurer, M., Galli, S. J., & Carroll, M. C. (1997). Impaired mast cell-dependent natural immunity in complement C3-deficient mice. Nature, 390, 172–175.PubMedCrossRef Prodeus, A. P., Zhou, X., Maurer, M., Galli, S. J., & Carroll, M. C. (1997). Impaired mast cell-dependent natural immunity in complement C3-deficient mice. Nature, 390, 172–175.PubMedCrossRef
87.
Zurück zum Zitat Wojtecka-Lukasik, E., & Maslinski, S. (1992). Fibronectin and fibrinogen degradation products stimulate PMN-leukocyte and mast cell degranulation. Journal of Physiology and Pharmacology, 43, 173–181.PubMed Wojtecka-Lukasik, E., & Maslinski, S. (1992). Fibronectin and fibrinogen degradation products stimulate PMN-leukocyte and mast cell degranulation. Journal of Physiology and Pharmacology, 43, 173–181.PubMed
88.
Zurück zum Zitat Shefler, I., Salamon, P., Reshef, T., Mor, A., & Mekori, Y. A. (2010). T cell-induced mast cell activation: A role for microparticles released from activated T cells. Journal of Immunology, 185, 4206–4212.CrossRef Shefler, I., Salamon, P., Reshef, T., Mor, A., & Mekori, Y. A. (2010). T cell-induced mast cell activation: A role for microparticles released from activated T cells. Journal of Immunology, 185, 4206–4212.CrossRef
89.
Zurück zum Zitat Dvorak, A. M. (2005). Ultrastructural studies of human basophils and mast cells. The Journal of Histochemistry and Cytochemistry, 53, 1043–1070.PubMedCrossRef Dvorak, A. M. (2005). Ultrastructural studies of human basophils and mast cells. The Journal of Histochemistry and Cytochemistry, 53, 1043–1070.PubMedCrossRef
90.
Zurück zum Zitat Crivellato, E., Nico, B., Gallo, V. P., & Ribatti, D. (2010). Cell secretion mediated by granule-associated vesicle transport: A glimpse at evolution. Anatomical Record (Hoboken), 293, 1115–1124.CrossRef Crivellato, E., Nico, B., Gallo, V. P., & Ribatti, D. (2010). Cell secretion mediated by granule-associated vesicle transport: A glimpse at evolution. Anatomical Record (Hoboken), 293, 1115–1124.CrossRef
91.
Zurück zum Zitat Dvorak, A. M. (1991). Basophil and mast cell degranulation and recovery. In Blood cell biochemistry. Plenum Press, vol 4. Dvorak, A. M. (1991). Basophil and mast cell degranulation and recovery. In Blood cell biochemistry. Plenum Press, vol 4.
92.
Zurück zum Zitat Toth-Jakatics, R., Jimi, S., Takebayashi, S., & Kawamoto, N. (2000). Cutaneous malignant melanoma: Correlation between neovascularization and peritumor accumulation of mast cells overexpressing vascular endothelial growth factor. Human Pathology, 31, 955–960.PubMedCrossRef Toth-Jakatics, R., Jimi, S., Takebayashi, S., & Kawamoto, N. (2000). Cutaneous malignant melanoma: Correlation between neovascularization and peritumor accumulation of mast cells overexpressing vascular endothelial growth factor. Human Pathology, 31, 955–960.PubMedCrossRef
93.
Zurück zum Zitat Ribatti, D., Vacca, A., Ria, R., Marzullo, A., Nico, B., Filotico, R., et al. (2003). Neovascularisation, expression of fibroblast growth factor-2, and mast cells with tryptase activity increase simultaneously with pathological progression in human malignant melanoma. European Journal of Cancer, 39, 666–674.PubMedCrossRef Ribatti, D., Vacca, A., Ria, R., Marzullo, A., Nico, B., Filotico, R., et al. (2003). Neovascularisation, expression of fibroblast growth factor-2, and mast cells with tryptase activity increase simultaneously with pathological progression in human malignant melanoma. European Journal of Cancer, 39, 666–674.PubMedCrossRef
94.
Zurück zum Zitat Ribatti, D., Vacca, A., Marzullo, A., Nico, B., Ria, R., Roncali, L., et al. (2000). Angiogenesis and mast cell density with tryptase activity increase simultaneously with pathological progression in B-cell non-Hodgkin’s lymphomas. International Journal of Cancer, 85, 171–175. Ribatti, D., Vacca, A., Marzullo, A., Nico, B., Ria, R., Roncali, L., et al. (2000). Angiogenesis and mast cell density with tryptase activity increase simultaneously with pathological progression in B-cell non-Hodgkin’s lymphomas. International Journal of Cancer, 85, 171–175.
95.
Zurück zum Zitat Imada, A., Shijubo, N., Kojima, H., & Abe, S. (2000). Mast cells correlate with angiogenesis and poor outcome in stage I lung adenocarcinoma. The European Respiratory Journal, 15, 1087–1093.PubMedCrossRef Imada, A., Shijubo, N., Kojima, H., & Abe, S. (2000). Mast cells correlate with angiogenesis and poor outcome in stage I lung adenocarcinoma. The European Respiratory Journal, 15, 1087–1093.PubMedCrossRef
96.
Zurück zum Zitat Terada, T., & Matsunaga, Y. (2000). Increased mast cells in hepatocellular carcinoma and intrahepatic cholangiocarcinoma. Journal of Hepatology, 33, 961–966.PubMedCrossRef Terada, T., & Matsunaga, Y. (2000). Increased mast cells in hepatocellular carcinoma and intrahepatic cholangiocarcinoma. Journal of Hepatology, 33, 961–966.PubMedCrossRef
97.
Zurück zum Zitat Coussens, L. M., Raymond, W. W., Bergers, G., Laig-Webster, M., Behrendtsen, O., Werb, Z., et al. (1999). Inflammatory mast cells up-regulate angiogenesis during squamous epithelial carcinogenesis. Genes & Development, 13, 1382–1397.CrossRef Coussens, L. M., Raymond, W. W., Bergers, G., Laig-Webster, M., Behrendtsen, O., Werb, Z., et al. (1999). Inflammatory mast cells up-regulate angiogenesis during squamous epithelial carcinogenesis. Genes & Development, 13, 1382–1397.CrossRef
98.
Zurück zum Zitat Takanami, I., Takeuchi, K., & Naruke, M. (2000). Mast cell density is associated with angiogenesis and poor prognosis in pulmonary adenocarcinoma. Cancer, 88, 2686–2692.PubMedCrossRef Takanami, I., Takeuchi, K., & Naruke, M. (2000). Mast cell density is associated with angiogenesis and poor prognosis in pulmonary adenocarcinoma. Cancer, 88, 2686–2692.PubMedCrossRef
99.
Zurück zum Zitat Nonomura, N., Takayama, H., Nishimura, K., Oka, D., Nakai, Y., Shiba, M., et al. (2007). Decreased number of mast cells infiltrating into needle biopsy specimens leads to a better prognosis of prostate cancer. British Journal of Cancer, 97, 952–956.PubMed Nonomura, N., Takayama, H., Nishimura, K., Oka, D., Nakai, Y., Shiba, M., et al. (2007). Decreased number of mast cells infiltrating into needle biopsy specimens leads to a better prognosis of prostate cancer. British Journal of Cancer, 97, 952–956.PubMed
100.
Zurück zum Zitat Johansson, A., Rudolfsson, S., Hammarsten, P., Halin, S., Pietras, K., Jones, J., et al. (2010). Mast cells are novel independent prognostic markers in prostate cancer and represent a target for therapy. The American Journal of Pathology, 177, 1031–1041.PubMedCrossRef Johansson, A., Rudolfsson, S., Hammarsten, P., Halin, S., Pietras, K., Jones, J., et al. (2010). Mast cells are novel independent prognostic markers in prostate cancer and represent a target for therapy. The American Journal of Pathology, 177, 1031–1041.PubMedCrossRef
101.
Zurück zum Zitat Tan, P. H., Jayabaskar, T., Yip, G., Tan, Y., Hilmy, M., Selvarajan, S., et al. (2005). p53 and c-kit (CD117) protein expression as prognostic indicators in breast phyllodes tumors: A tissue microarray study. Modern Pathology, 18, 1527–1534.PubMedCrossRef Tan, P. H., Jayabaskar, T., Yip, G., Tan, Y., Hilmy, M., Selvarajan, S., et al. (2005). p53 and c-kit (CD117) protein expression as prognostic indicators in breast phyllodes tumors: A tissue microarray study. Modern Pathology, 18, 1527–1534.PubMedCrossRef
102.
Zurück zum Zitat Djordjevic, B., & Hanna, W. M. (2008). Expression of c-kit in fibroepithelial lesions of the breast is a mast cell phenomenon. Modern Pathology, 21, 1238–1245.PubMedCrossRef Djordjevic, B., & Hanna, W. M. (2008). Expression of c-kit in fibroepithelial lesions of the breast is a mast cell phenomenon. Modern Pathology, 21, 1238–1245.PubMedCrossRef
103.
Zurück zum Zitat Taskinen, M., Karjalainen-Lindsberg, M. L., & Leppa, S. (2008). Prognostic influence of tumor-infiltrating mast cells in patients with follicular lymphoma treated with rituximab and CHOP. Blood, 111, 4664–4667.PubMedCrossRef Taskinen, M., Karjalainen-Lindsberg, M. L., & Leppa, S. (2008). Prognostic influence of tumor-infiltrating mast cells in patients with follicular lymphoma treated with rituximab and CHOP. Blood, 111, 4664–4667.PubMedCrossRef
104.
Zurück zum Zitat Beer, T. W., Ng, L. B., & Murray, K. (2008). Mast cells have prognostic value in Merkel cell carcinoma. The American Journal of Dermatopathology, 30, 27–30.PubMedCrossRef Beer, T. W., Ng, L. B., & Murray, K. (2008). Mast cells have prognostic value in Merkel cell carcinoma. The American Journal of Dermatopathology, 30, 27–30.PubMedCrossRef
105.
Zurück zum Zitat Molin, D., Edstrom, A., Glimelius, I., Glimelius, B., Nilsson, G., Sundstrom, C., et al. (2002). Mast cell infiltration correlates with poor prognosis in Hodgkin’s lymphoma. British Journal Haematology, 119, 122–124.CrossRef Molin, D., Edstrom, A., Glimelius, I., Glimelius, B., Nilsson, G., Sundstrom, C., et al. (2002). Mast cell infiltration correlates with poor prognosis in Hodgkin’s lymphoma. British Journal Haematology, 119, 122–124.CrossRef
106.
Zurück zum Zitat Glimelius, I., Edstrom, A., Fischer, M., Nilsson, G., Sundstrom, C., Molin, D., et al. (2005). Angiogenesis and mast cells in Hodgkin lymphoma. Leukemia, 19, 2360–2362.PubMedCrossRef Glimelius, I., Edstrom, A., Fischer, M., Nilsson, G., Sundstrom, C., Molin, D., et al. (2005). Angiogenesis and mast cells in Hodgkin lymphoma. Leukemia, 19, 2360–2362.PubMedCrossRef
107.
Zurück zum Zitat Yang, F. C., Chen, S., Clegg, T., Li, X., Morgan, T., Estwick, S. A., et al. (2006). Nf1+/- mast cells induce neurofibroma like phenotypes through secreted TGF-beta signaling. Human Molecular Genetics, 15, 2421–2437.PubMedCrossRef Yang, F. C., Chen, S., Clegg, T., Li, X., Morgan, T., Estwick, S. A., et al. (2006). Nf1+/- mast cells induce neurofibroma like phenotypes through secreted TGF-beta signaling. Human Molecular Genetics, 15, 2421–2437.PubMedCrossRef
108.
Zurück zum Zitat Crivellato, E., Nico, B., & Ribatti, D. (2008). Mast cells and tumour angiogenesis: New insight from experimental carcinogenesis. Cancer Letters, 269, 1–6.PubMedCrossRef Crivellato, E., Nico, B., & Ribatti, D. (2008). Mast cells and tumour angiogenesis: New insight from experimental carcinogenesis. Cancer Letters, 269, 1–6.PubMedCrossRef
109.
Zurück zum Zitat Gulubova, M., & Vlaykova, T. (2009). Prognostic significance of mast cell number and microvascular density for the survival of patients with primary colorectal cancer. Journal of Gastroenterology and Hepatology, 24, 1265–1275.PubMedCrossRef Gulubova, M., & Vlaykova, T. (2009). Prognostic significance of mast cell number and microvascular density for the survival of patients with primary colorectal cancer. Journal of Gastroenterology and Hepatology, 24, 1265–1275.PubMedCrossRef
110.
Zurück zum Zitat Yodavudh, S., Tangjitgamol, S., & Puangsa-art, S. (2008). Prognostic significance of microvessel density and mast cell density for the survival of Thai patients with primary colorectal cancer. Journal of the Medical Association of Thailand, 91, 723–732.PubMed Yodavudh, S., Tangjitgamol, S., & Puangsa-art, S. (2008). Prognostic significance of microvessel density and mast cell density for the survival of Thai patients with primary colorectal cancer. Journal of the Medical Association of Thailand, 91, 723–732.PubMed
111.
Zurück zum Zitat Acikalin, M. F., Oner, U., Topcu, I., Yasar, B., Kiper, H., & Colak, E. (2005). Tumour angiogenesis and mast cell density in the prognostic assessment of colorectal carcinomas. Digestive and Liver Disease, 37, 162–169.PubMedCrossRef Acikalin, M. F., Oner, U., Topcu, I., Yasar, B., Kiper, H., & Colak, E. (2005). Tumour angiogenesis and mast cell density in the prognostic assessment of colorectal carcinomas. Digestive and Liver Disease, 37, 162–169.PubMedCrossRef
112.
Zurück zum Zitat Strouch, M. J., Cheon, E. C., Salabat, M. R., Krantz, S. B., Gounaris, E., Melstrom, L. G., et al. (2010). Crosstalk between mast cells and pancreatic cancer cells contributes to pancreatic tumor progression. Clinical Cancer Research, 16, 2257–2265.PubMedCrossRef Strouch, M. J., Cheon, E. C., Salabat, M. R., Krantz, S. B., Gounaris, E., Melstrom, L. G., et al. (2010). Crosstalk between mast cells and pancreatic cancer cells contributes to pancreatic tumor progression. Clinical Cancer Research, 16, 2257–2265.PubMedCrossRef
113.
Zurück zum Zitat Carlini, M. J., Dalurzo, M. C., Lastiri, J. M., Smith, D. E., Vasallo, B. C., Puricelli, L. I., et al. (2010). Mast cell phenotypes and microvessels in non-small cell lung cancer and its prognostic significance. Human Pathology, 41, 697–705.PubMedCrossRef Carlini, M. J., Dalurzo, M. C., Lastiri, J. M., Smith, D. E., Vasallo, B. C., Puricelli, L. I., et al. (2010). Mast cell phenotypes and microvessels in non-small cell lung cancer and its prognostic significance. Human Pathology, 41, 697–705.PubMedCrossRef
114.
Zurück zum Zitat Ibaraki, T., Muramatsu, M., Takai, S., Jin, D., Maruyama, H., Orino, T., et al. (2005). The relationship of tryptase- and chymase-positive mast cells to angiogenesis in stage I non-small cell lung cancer. European Journal of Cardiothoracic Surgery, 28, 617–621.PubMedCrossRef Ibaraki, T., Muramatsu, M., Takai, S., Jin, D., Maruyama, H., Orino, T., et al. (2005). The relationship of tryptase- and chymase-positive mast cells to angiogenesis in stage I non-small cell lung cancer. European Journal of Cardiothoracic Surgery, 28, 617–621.PubMedCrossRef
115.
Zurück zum Zitat Ju, M. J., Qiu, S. J., Gao, Q., Fan, J., Cai, M. Y., Li, Y. W., et al. (2009). Combination of peritumoral mast cells and T-regulatory cells predicts prognosis of hepatocellular carcinoma. Cancer Science, 100, 1267–1274.PubMedCrossRef Ju, M. J., Qiu, S. J., Gao, Q., Fan, J., Cai, M. Y., Li, Y. W., et al. (2009). Combination of peritumoral mast cells and T-regulatory cells predicts prognosis of hepatocellular carcinoma. Cancer Science, 100, 1267–1274.PubMedCrossRef
116.
Zurück zum Zitat Ju, M. J., Qiu, S. J., Fan, J., Xiao, Y. S., Gao, Q., Zhou, J., et al. (2009). Peritumoral activated hepatic stellate cells predict poor clinical outcome in hepatocellular carcinoma after curative resection. American Journal of Clinical Pathology, 131, 498–510.PubMedCrossRef Ju, M. J., Qiu, S. J., Fan, J., Xiao, Y. S., Gao, Q., Zhou, J., et al. (2009). Peritumoral activated hepatic stellate cells predict poor clinical outcome in hepatocellular carcinoma after curative resection. American Journal of Clinical Pathology, 131, 498–510.PubMedCrossRef
117.
Zurück zum Zitat Daniel, D., Meyer-Morse, N., Bergsland, E. K., Dehne, K., Coussens, L. M., & Hanahan, D. (2003). Immune enhancement of skin carcinogenesis by CD4+ T cells. The Journal of Experimental Medicine, 197, 1017–1028.PubMedCrossRef Daniel, D., Meyer-Morse, N., Bergsland, E. K., Dehne, K., Coussens, L. M., & Hanahan, D. (2003). Immune enhancement of skin carcinogenesis by CD4+ T cells. The Journal of Experimental Medicine, 197, 1017–1028.PubMedCrossRef
118.
Zurück zum Zitat de Visser, K. E., Korets, L. V., & Coussens, L. M. (2005). De novo carcinogenesis promoted by chronic inflammation is B lymphocyte dependent. Cancer Cell, 7, 411–423.PubMedCrossRef de Visser, K. E., Korets, L. V., & Coussens, L. M. (2005). De novo carcinogenesis promoted by chronic inflammation is B lymphocyte dependent. Cancer Cell, 7, 411–423.PubMedCrossRef
119.
Zurück zum Zitat Andreu, P., Johansson, M., Affara, N. I., Pucci, F., Tan, T., Junankar, S., et al. (2010). FcRgamma activation regulates inflammation-associated squamous carcinogenesis. Cancer Cell, 17, 121–134.PubMedCrossRef Andreu, P., Johansson, M., Affara, N. I., Pucci, F., Tan, T., Junankar, S., et al. (2010). FcRgamma activation regulates inflammation-associated squamous carcinogenesis. Cancer Cell, 17, 121–134.PubMedCrossRef
120.
Zurück zum Zitat DeNardo, D. G., Barreto, J. B., Andreu, P., Vasquez, L., Tawfik, D., Kolhatkar, N., et al. (2009). CD4(+) T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages. Cancer Cell, 16, 91–102.PubMedCrossRef DeNardo, D. G., Barreto, J. B., Andreu, P., Vasquez, L., Tawfik, D., Kolhatkar, N., et al. (2009). CD4(+) T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages. Cancer Cell, 16, 91–102.PubMedCrossRef
121.
Zurück zum Zitat Samoszuk, M., & Corwin, M. A. (2003). Mast cell inhibitor cromolyn increases blood clotting and hypoxia in murine breast cancer. International Journal of Cancer, 107, 159–163.CrossRef Samoszuk, M., & Corwin, M. A. (2003). Mast cell inhibitor cromolyn increases blood clotting and hypoxia in murine breast cancer. International Journal of Cancer, 107, 159–163.CrossRef
122.
Zurück zum Zitat Soucek, L., Lawlor, E. R., Soto, D., Shchors, K., Swigart, L. B., & Evan, G. I. (2007). Mast cells are required for angiogenesis and macroscopic expansion of Myc-induced pancreatic islet tumors. Natural Medicines, 13, 1211–1218.CrossRef Soucek, L., Lawlor, E. R., Soto, D., Shchors, K., Swigart, L. B., & Evan, G. I. (2007). Mast cells are required for angiogenesis and macroscopic expansion of Myc-induced pancreatic islet tumors. Natural Medicines, 13, 1211–1218.CrossRef
123.
Zurück zum Zitat Samoszuk, M. K., Su, M. Y., Najafi, A., & Nalcioglu, O. (2001). Selective thrombosis of tumor blood vessels in mammary adenocarcinoma implants in rats. The American Journal of Pathology, 159, 245–251.PubMedCrossRef Samoszuk, M. K., Su, M. Y., Najafi, A., & Nalcioglu, O. (2001). Selective thrombosis of tumor blood vessels in mammary adenocarcinoma implants in rats. The American Journal of Pathology, 159, 245–251.PubMedCrossRef
124.
Zurück zum Zitat Melillo, R. M., Guarino, V., Avilla, E., Galdiero, M. R., Liotti, F., Prevete, N., et al. (2010). Mast cells have a protumorigenic role in human thyroid cancer. Oncogene, 29, 6203–6215.PubMedCrossRef Melillo, R. M., Guarino, V., Avilla, E., Galdiero, M. R., Liotti, F., Prevete, N., et al. (2010). Mast cells have a protumorigenic role in human thyroid cancer. Oncogene, 29, 6203–6215.PubMedCrossRef
125.
Zurück zum Zitat Sinnamon, M. J., Carter, K. J., Sims, L. P., Lafleur, B., Fingleton, B., & Matrisian, L. M. (2008). A protective role of mast cells in intestinal tumorigenesis. Carcinogenesis, 29, 880–886.PubMedCrossRef Sinnamon, M. J., Carter, K. J., Sims, L. P., Lafleur, B., Fingleton, B., & Matrisian, L. M. (2008). A protective role of mast cells in intestinal tumorigenesis. Carcinogenesis, 29, 880–886.PubMedCrossRef
126.
Zurück zum Zitat Ribatti, D., & Crivellato, E. (2009). The controversial role of mast cells in tumor growth. International Review of Cell and Molecular Biology, 275, 89–131.PubMedCrossRef Ribatti, D., & Crivellato, E. (2009). The controversial role of mast cells in tumor growth. International Review of Cell and Molecular Biology, 275, 89–131.PubMedCrossRef
127.
Zurück zum Zitat Nigrovic, P. A., Gray, D. H., Jones, T., Hallgren, J., Kuo, F. C., Chaletzky, B., et al. (2008). Genetic inversion in mast cell-deficient (W(sh)) mice interrupts corin and manifests as hematopoietic and cardiac aberrancy. The American Journal of Pathology, 173, 1693–1701.PubMedCrossRef Nigrovic, P. A., Gray, D. H., Jones, T., Hallgren, J., Kuo, F. C., Chaletzky, B., et al. (2008). Genetic inversion in mast cell-deficient (W(sh)) mice interrupts corin and manifests as hematopoietic and cardiac aberrancy. The American Journal of Pathology, 173, 1693–1701.PubMedCrossRef
128.
Zurück zum Zitat Pulimood, A. B., Mathan, M. M., & Mathan, V. I. (1998). Quantitative and ultrastructural analysis of rectal mucosal mast cells in acute infectious diarrhea. Digestive Diseases and Sciences, 43, 2111–2116.PubMedCrossRef Pulimood, A. B., Mathan, M. M., & Mathan, V. I. (1998). Quantitative and ultrastructural analysis of rectal mucosal mast cells in acute infectious diarrhea. Digestive Diseases and Sciences, 43, 2111–2116.PubMedCrossRef
129.
Zurück zum Zitat Carothers, A. M., Moran, A. E., Cho, N. L., Redston, M., & Bertagnolli, M. M. (2006). Changes in antitumor response in C57BL/6J-Min/+ mice during long-term administration of a selective cyclooxygenase-2 inhibitor. Cancer Research, 66, 6432–6438.PubMedCrossRef Carothers, A. M., Moran, A. E., Cho, N. L., Redston, M., & Bertagnolli, M. M. (2006). Changes in antitumor response in C57BL/6J-Min/+ mice during long-term administration of a selective cyclooxygenase-2 inhibitor. Cancer Research, 66, 6432–6438.PubMedCrossRef
130.
Zurück zum Zitat Bertagnolli, M. M., Eagle, C. J., Zauber, A. G., Redston, M., Solomon, S. D., Kim, K., et al. (2006). Celecoxib for the prevention of sporadic colorectal adenomas. The New England Journal of Medicine, 355, 873–884.PubMedCrossRef Bertagnolli, M. M., Eagle, C. J., Zauber, A. G., Redston, M., Solomon, S. D., Kim, K., et al. (2006). Celecoxib for the prevention of sporadic colorectal adenomas. The New England Journal of Medicine, 355, 873–884.PubMedCrossRef
131.
Zurück zum Zitat Masini, E., Bechi, P., Dei, R., Di Bello, M. G., & Sacchi, T. B. (1994). Helicobacter pylori potentiates histamine release from rat serosal mast cells induced by bile acids. Digestive Diseases and Sciences, 39, 1493–1500.PubMedCrossRef Masini, E., Bechi, P., Dei, R., Di Bello, M. G., & Sacchi, T. B. (1994). Helicobacter pylori potentiates histamine release from rat serosal mast cells induced by bile acids. Digestive Diseases and Sciences, 39, 1493–1500.PubMedCrossRef
132.
Zurück zum Zitat Nakajima, S., Krishnan, B., Ota, H., Segura, A. M., Hattori, T., Graham, D. Y., et al. (1997). Mast cell involvement in gastritis with or without Helicobacter pylori infection. Gastroenterology, 113, 746–754.PubMedCrossRef Nakajima, S., Krishnan, B., Ota, H., Segura, A. M., Hattori, T., Graham, D. Y., et al. (1997). Mast cell involvement in gastritis with or without Helicobacter pylori infection. Gastroenterology, 113, 746–754.PubMedCrossRef
133.
Zurück zum Zitat Plebani, M., Basso, D., Vianello, F., & Di Mario, F. (1994). Helicobacter pylori activates gastric mucosal mast cells. Digestive Diseases and Sciences, 39, 1592–1593.PubMedCrossRef Plebani, M., Basso, D., Vianello, F., & Di Mario, F. (1994). Helicobacter pylori activates gastric mucosal mast cells. Digestive Diseases and Sciences, 39, 1592–1593.PubMedCrossRef
134.
Zurück zum Zitat Rogers, A. B., & Fox, J. G. (2004). Inflammation and cancer: I. Rodent models of infectious gastrointestinal liver cancer. American Journal of Physiology. Gastrointestinal and Liver Physiology, 286, G361–G366.PubMedCrossRef Rogers, A. B., & Fox, J. G. (2004). Inflammation and cancer: I. Rodent models of infectious gastrointestinal liver cancer. American Journal of Physiology. Gastrointestinal and Liver Physiology, 286, G361–G366.PubMedCrossRef
135.
Zurück zum Zitat Rao, V. P., Poutahidis, T., Ge, Z., Nambiar, P. R., Boussahmain, C., Wang, Y. Y., et al. (2006). Innate immune inflammatory response against enteric bacteria Helicobacter hepaticus induces mammary adenocarcinoma in mice. Cancer Research, 66, 7395–7400.PubMedCrossRef Rao, V. P., Poutahidis, T., Ge, Z., Nambiar, P. R., Boussahmain, C., Wang, Y. Y., et al. (2006). Innate immune inflammatory response against enteric bacteria Helicobacter hepaticus induces mammary adenocarcinoma in mice. Cancer Research, 66, 7395–7400.PubMedCrossRef
136.
Zurück zum Zitat Nielsen, H. J., Hansen, U., Christensen, I. J., Reimert, C. M., Brunner, N., & Moesgaard, F. (1999). Independent prognostic value of eosinophil and mast cell infiltration in colorectal cancer tissue. The Journal of Pathology, 189, 487–495.PubMedCrossRef Nielsen, H. J., Hansen, U., Christensen, I. J., Reimert, C. M., Brunner, N., & Moesgaard, F. (1999). Independent prognostic value of eosinophil and mast cell infiltration in colorectal cancer tissue. The Journal of Pathology, 189, 487–495.PubMedCrossRef
137.
Zurück zum Zitat Ogino, S., Shima, K., Baba, Y., Nosho, K., Irahara, N., Kure, S., et al. (2009). Colorectal cancer expression of peroxisome proliferator-activated receptor gamma (PPARG, PPARgamma) is associated with good prognosis. Gastroenterology, 136, 1242–1250.PubMedCrossRef Ogino, S., Shima, K., Baba, Y., Nosho, K., Irahara, N., Kure, S., et al. (2009). Colorectal cancer expression of peroxisome proliferator-activated receptor gamma (PPARG, PPARgamma) is associated with good prognosis. Gastroenterology, 136, 1242–1250.PubMedCrossRef
138.
Zurück zum Zitat Welsh, T. J., Green, R. H., Richardson, D., Waller, D. A., O’Byrne, K. J., & Bradding, P. (2005). Macrophage and mast-cell invasion of tumor cell islets confers a marked survival advantage in non-small-cell lung cancer. Journal of Clinical Oncology, 23, 8959–8967.PubMedCrossRef Welsh, T. J., Green, R. H., Richardson, D., Waller, D. A., O’Byrne, K. J., & Bradding, P. (2005). Macrophage and mast-cell invasion of tumor cell islets confers a marked survival advantage in non-small-cell lung cancer. Journal of Clinical Oncology, 23, 8959–8967.PubMedCrossRef
139.
Zurück zum Zitat Ali, G., Boldrini, L., Lucchi, M., Picchi, A., Dell’Omodarme, M., Prati, M. C., et al. (2009). Treatment with interleukin-2 in malignant pleural mesothelioma: Immunological and angiogenetic assessment and prognostic impact. British Journal of Cancer, 101, 1869–1875.PubMedCrossRef Ali, G., Boldrini, L., Lucchi, M., Picchi, A., Dell’Omodarme, M., Prati, M. C., et al. (2009). Treatment with interleukin-2 in malignant pleural mesothelioma: Immunological and angiogenetic assessment and prognostic impact. British Journal of Cancer, 101, 1869–1875.PubMedCrossRef
140.
Zurück zum Zitat Ali, G., Boldrini, L., Lucchi, M., Mussi, A., Corsi, V., & Fontanini, G. (2009). Tryptase mast cells in malignant pleural mesothelioma as an independent favorable prognostic factor. Journal of Thoracic Oncology, 4, 348–354.PubMedCrossRef Ali, G., Boldrini, L., Lucchi, M., Mussi, A., Corsi, V., & Fontanini, G. (2009). Tryptase mast cells in malignant pleural mesothelioma as an independent favorable prognostic factor. Journal of Thoracic Oncology, 4, 348–354.PubMedCrossRef
141.
Zurück zum Zitat Hedstrom, G., Berglund, M., Molin, D., Fischer, M., Nilsson, G., Thunberg, U., et al. (2007). Mast cell infiltration is a favourable prognostic factor in diffuse large B-cell lymphoma. British Journal Haematology, 138, 68–71.CrossRef Hedstrom, G., Berglund, M., Molin, D., Fischer, M., Nilsson, G., Thunberg, U., et al. (2007). Mast cell infiltration is a favourable prognostic factor in diffuse large B-cell lymphoma. British Journal Haematology, 138, 68–71.CrossRef
142.
Zurück zum Zitat Fleischmann, A., Schlomm, T., Kollermann, J., Sekulic, N., Huland, H., Mirlacher, M., et al. (2009). Immunological microenvironment in prostate cancer: High mast cell densities are associated with favorable tumor characteristics and good prognosis. The Prostate, 69, 976–981.PubMedCrossRef Fleischmann, A., Schlomm, T., Kollermann, J., Sekulic, N., Huland, H., Mirlacher, M., et al. (2009). Immunological microenvironment in prostate cancer: High mast cell densities are associated with favorable tumor characteristics and good prognosis. The Prostate, 69, 976–981.PubMedCrossRef
143.
Zurück zum Zitat Kankkunen, J. P., Harvima, I. T., & Naukkarinen, A. (1997). Quantitative analysis of tryptase and chymase containing mast cells in benign and malignant breast lesions. International Journal of Cancer, 72, 385–388.CrossRef Kankkunen, J. P., Harvima, I. T., & Naukkarinen, A. (1997). Quantitative analysis of tryptase and chymase containing mast cells in benign and malignant breast lesions. International Journal of Cancer, 72, 385–388.CrossRef
144.
Zurück zum Zitat Dabiri, S., Huntsman, D., Makretsov, N., Cheang, M., Gilks, B., Bajdik, C., et al. (2004). The presence of stromal mast cells identifies a subset of invasive breast cancers with a favorable prognosis. Modern Pathology, 17, 690–695.PubMedCrossRef Dabiri, S., Huntsman, D., Makretsov, N., Cheang, M., Gilks, B., Bajdik, C., et al. (2004). The presence of stromal mast cells identifies a subset of invasive breast cancers with a favorable prognosis. Modern Pathology, 17, 690–695.PubMedCrossRef
145.
Zurück zum Zitat Rajput, A. B., Turbin, D. A., Cheang, M. C., Voduc, D. K., Leung, S., Gelmon, K. A., et al. (2008). Stromal mast cells in invasive breast cancer are a marker of favourable prognosis: A study of 4, 444 cases. Breast Cancer Research and Treatment, 107, 249–257.PubMedCrossRef Rajput, A. B., Turbin, D. A., Cheang, M. C., Voduc, D. K., Leung, S., Gelmon, K. A., et al. (2008). Stromal mast cells in invasive breast cancer are a marker of favourable prognosis: A study of 4, 444 cases. Breast Cancer Research and Treatment, 107, 249–257.PubMedCrossRef
146.
Zurück zum Zitat Schechter, N. M., Brass, L. F., Lavker, R. M., & Jensen, P. J. (1998). Reaction of mast cell proteases tryptase and chymase with protease activated receptors (PARs) on keratinocytes and fibroblasts. Journal of Cellular Physiology, 176, 365–373.PubMedCrossRef Schechter, N. M., Brass, L. F., Lavker, R. M., & Jensen, P. J. (1998). Reaction of mast cell proteases tryptase and chymase with protease activated receptors (PARs) on keratinocytes and fibroblasts. Journal of Cellular Physiology, 176, 365–373.PubMedCrossRef
147.
Zurück zum Zitat Corvera, C. U., Dery, O., McConalogue, K., Bohm, S. K., Khitin, L. M., Caughey, G. H., et al. (1997). Mast cell tryptase regulates rat colonic myocytes through proteinase-activated receptor 2. Journal of Clinical Investigation, 100, 1383–1393.PubMedCrossRef Corvera, C. U., Dery, O., McConalogue, K., Bohm, S. K., Khitin, L. M., Caughey, G. H., et al. (1997). Mast cell tryptase regulates rat colonic myocytes through proteinase-activated receptor 2. Journal of Clinical Investigation, 100, 1383–1393.PubMedCrossRef
148.
Zurück zum Zitat Kawabata, A. (2003). Gastrointestinal functions of proteinase-activated receptors. Life Sciences, 74, 247–254.PubMedCrossRef Kawabata, A. (2003). Gastrointestinal functions of proteinase-activated receptors. Life Sciences, 74, 247–254.PubMedCrossRef
149.
Zurück zum Zitat Winter, M. C., Shasby, S. S., Ries, D. R., & Shasby, D. M. (2006). PAR2 activation interrupts E-cadherin adhesion and compromises the airway epithelial barrier: Protective effect of beta-agonists. American Journal of Physiology. Lung Cellular and Molecular Physiology, 291, L628–L635.PubMedCrossRef Winter, M. C., Shasby, S. S., Ries, D. R., & Shasby, D. M. (2006). PAR2 activation interrupts E-cadherin adhesion and compromises the airway epithelial barrier: Protective effect of beta-agonists. American Journal of Physiology. Lung Cellular and Molecular Physiology, 291, L628–L635.PubMedCrossRef
150.
Zurück zum Zitat Yoshii, M., Jikuhara, A., Mori, S., Iwagaki, H., Takahashi, H. K., Nishibori, M., et al. (2005). Mast cell tryptase stimulates DLD-1 carcinoma through prostaglandin- and MAP kinase-dependent manners. Journal of Pharmacological Sciences, 98, 450–458.PubMedCrossRef Yoshii, M., Jikuhara, A., Mori, S., Iwagaki, H., Takahashi, H. K., Nishibori, M., et al. (2005). Mast cell tryptase stimulates DLD-1 carcinoma through prostaglandin- and MAP kinase-dependent manners. Journal of Pharmacological Sciences, 98, 450–458.PubMedCrossRef
151.
Zurück zum Zitat MacNaughton, W. K. (2005). Epithelial effects of proteinase-activated receptors in the gastrointestinal tract. Memórias do Instituto Oswaldo Cruz, 100(Suppl 1), 211–215.PubMed MacNaughton, W. K. (2005). Epithelial effects of proteinase-activated receptors in the gastrointestinal tract. Memórias do Instituto Oswaldo Cruz, 100(Suppl 1), 211–215.PubMed
152.
Zurück zum Zitat Morris, D. R., Ding, Y., Ricks, T. K., Gullapalli, A., Wolfe, B. L., & Trejo, J. (2006). Protease-activated receptor-2 is essential for factor VIIa and Xa-induced signaling, migration, and invasion of breast cancer cells. Cancer Research, 66, 307–314.PubMedCrossRef Morris, D. R., Ding, Y., Ricks, T. K., Gullapalli, A., Wolfe, B. L., & Trejo, J. (2006). Protease-activated receptor-2 is essential for factor VIIa and Xa-induced signaling, migration, and invasion of breast cancer cells. Cancer Research, 66, 307–314.PubMedCrossRef
153.
Zurück zum Zitat Cairns, J. A., & Walls, A. F. (1996). Mast cell tryptase is a mitogen for epithelial cells. Stimulation of IL-8 production and intercellular adhesion molecule-1 expression. Journal of Immunology, 156, 275–283. Cairns, J. A., & Walls, A. F. (1996). Mast cell tryptase is a mitogen for epithelial cells. Stimulation of IL-8 production and intercellular adhesion molecule-1 expression. Journal of Immunology, 156, 275–283.
154.
Zurück zum Zitat Berger, P., Perng, D. W., Thabrew, H., Compton, S. J., Cairns, J. A., McEuen, A. R., et al. (2001). Tryptase and agonists of PAR-2 induce the proliferation of human airway smooth muscle cells. Journal of Applied Physiology, 91, 1372–1379.PubMed Berger, P., Perng, D. W., Thabrew, H., Compton, S. J., Cairns, J. A., McEuen, A. R., et al. (2001). Tryptase and agonists of PAR-2 induce the proliferation of human airway smooth muscle cells. Journal of Applied Physiology, 91, 1372–1379.PubMed
155.
Zurück zum Zitat Gruber, B. L., Kew, R. R., Jelaska, A., Marchese, M. J., Garlick, J., Ren, S., et al. (1997). Human mast cells activate fibroblasts: Tryptase is a fibrogenic factor stimulating collagen messenger ribonucleic acid synthesis and fibroblast chemotaxis. Journal of Immunology, 158, 2310–2317. Gruber, B. L., Kew, R. R., Jelaska, A., Marchese, M. J., Garlick, J., Ren, S., et al. (1997). Human mast cells activate fibroblasts: Tryptase is a fibrogenic factor stimulating collagen messenger ribonucleic acid synthesis and fibroblast chemotaxis. Journal of Immunology, 158, 2310–2317.
156.
Zurück zum Zitat Levi-Schaffer, F., & Piliponsky, A. M. (2003). Tryptase, a novel link between allergic inflammation and fibrosis. Trends in Immunology, 24, 158–161.PubMedCrossRef Levi-Schaffer, F., & Piliponsky, A. M. (2003). Tryptase, a novel link between allergic inflammation and fibrosis. Trends in Immunology, 24, 158–161.PubMedCrossRef
157.
Zurück zum Zitat Frungieri, M. B., Weidinger, S., Meineke, V., Kohn, F. M., & Mayerhofer, A. (2002). Proliferative action of mast-cell tryptase is mediated by PAR2, COX2, prostaglandins, and PPARgamma: Possible relevance to human fibrotic disorders. Proceedings of the National Academy of Sciences of the United States of America, 99, 15072–15077.PubMedCrossRef Frungieri, M. B., Weidinger, S., Meineke, V., Kohn, F. M., & Mayerhofer, A. (2002). Proliferative action of mast-cell tryptase is mediated by PAR2, COX2, prostaglandins, and PPARgamma: Possible relevance to human fibrotic disorders. Proceedings of the National Academy of Sciences of the United States of America, 99, 15072–15077.PubMedCrossRef
158.
Zurück zum Zitat Mizutani, H., Schechter, N., Lazarus, G., Black, R. A., & Kupper, T. S. (1991). Rapid and specific conversion of precursor interleukin 1 beta (IL-1 beta) to an active IL-1 species by human mast cell chymase. The Journal of Experimental Medicine, 174, 821–825.PubMedCrossRef Mizutani, H., Schechter, N., Lazarus, G., Black, R. A., & Kupper, T. S. (1991). Rapid and specific conversion of precursor interleukin 1 beta (IL-1 beta) to an active IL-1 species by human mast cell chymase. The Journal of Experimental Medicine, 174, 821–825.PubMedCrossRef
159.
Zurück zum Zitat Groschwitz, K. R., Ahrens, R., Osterfeld, H., Gurish, M. F., Han, X., Abrink, M., et al. (2009). Mast cells regulate homeostatic intestinal epithelial migration and barrier function by a chymase/Mcpt4-dependent mechanism. Proceedings of the National Academy of Sciences of the United States of America, 106, 22381–22386.PubMedCrossRef Groschwitz, K. R., Ahrens, R., Osterfeld, H., Gurish, M. F., Han, X., Abrink, M., et al. (2009). Mast cells regulate homeostatic intestinal epithelial migration and barrier function by a chymase/Mcpt4-dependent mechanism. Proceedings of the National Academy of Sciences of the United States of America, 106, 22381–22386.PubMedCrossRef
160.
Zurück zum Zitat Forbes, E. E., Groschwitz, K., Abonia, J. P., Brandt, E. B., Cohen, E., Blanchard, C., et al. (2008). IL-9- and mast cell-mediated intestinal permeability predisposes to oral antigen hypersensitivity. The Journal of Experimental Medicine, 205, 897–913.PubMedCrossRef Forbes, E. E., Groschwitz, K., Abonia, J. P., Brandt, E. B., Cohen, E., Blanchard, C., et al. (2008). IL-9- and mast cell-mediated intestinal permeability predisposes to oral antigen hypersensitivity. The Journal of Experimental Medicine, 205, 897–913.PubMedCrossRef
161.
Zurück zum Zitat Flint, N., Cove, F. L., & Evans, G. S. (1994). Heparin stimulates the proliferation of intestinal epithelial cells in primary culture. Journal of Cell Science, 107(Pt 2), 401–411.PubMed Flint, N., Cove, F. L., & Evans, G. S. (1994). Heparin stimulates the proliferation of intestinal epithelial cells in primary culture. Journal of Cell Science, 107(Pt 2), 401–411.PubMed
162.
Zurück zum Zitat Szlosarek, P., Charles, K. A., & Balkwill, F. R. (2006). Tumour necrosis factor-alpha as a tumour promoter. European Journal of Cancer, 42, 745–750.PubMedCrossRef Szlosarek, P., Charles, K. A., & Balkwill, F. R. (2006). Tumour necrosis factor-alpha as a tumour promoter. European Journal of Cancer, 42, 745–750.PubMedCrossRef
163.
Zurück zum Zitat Stevens, R. L., & Adachi, R. (2007). Protease-proteoglycan complexes of mouse and human mast cells and importance of their beta-tryptase-heparin complexes in inflammation and innate immunity. Immunological Reviews, 217, 155–167.PubMedCrossRef Stevens, R. L., & Adachi, R. (2007). Protease-proteoglycan complexes of mouse and human mast cells and importance of their beta-tryptase-heparin complexes in inflammation and innate immunity. Immunological Reviews, 217, 155–167.PubMedCrossRef
164.
Zurück zum Zitat McNeil, H. P., Adachi, R., & Stevens, R. L. (2007). Mast cell-restricted tryptases: Structure and function in inflammation and pathogen defense. The Journal of Biological Chemistry, 282, 20785–20789.PubMedCrossRef McNeil, H. P., Adachi, R., & Stevens, R. L. (2007). Mast cell-restricted tryptases: Structure and function in inflammation and pathogen defense. The Journal of Biological Chemistry, 282, 20785–20789.PubMedCrossRef
165.
Zurück zum Zitat Trivedi, N. N., & Caughey, G. H. (2010). Mast cell peptidases: Chameleons of innate immunity and host defense. American Journal of Respiratory Cell and Molecular Biology, 42, 257–267.PubMedCrossRef Trivedi, N. N., & Caughey, G. H. (2010). Mast cell peptidases: Chameleons of innate immunity and host defense. American Journal of Respiratory Cell and Molecular Biology, 42, 257–267.PubMedCrossRef
166.
Zurück zum Zitat Dabbous, M. K., Walker, R., Haney, L., Carter, L. M., Nicolson, G. L., & Woolley, D. E. (1986). Mast cells and matrix degradation at sites of tumour invasion in rat mammary adenocarcinoma. British Journal of Cancer, 54, 459–465.PubMedCrossRef Dabbous, M. K., Walker, R., Haney, L., Carter, L. M., Nicolson, G. L., & Woolley, D. E. (1986). Mast cells and matrix degradation at sites of tumour invasion in rat mammary adenocarcinoma. British Journal of Cancer, 54, 459–465.PubMedCrossRef
167.
Zurück zum Zitat Vu, T. H., Shipley, J. M., Bergers, G., Berger, J. E., Helms, J. A., Hanahan, D., et al. (1998). MMP-9/gelatinase B is a key regulator of growth plate angiogenesis and apoptosis of hypertrophic chondrocytes. Cell, 93, 411–422.PubMedCrossRef Vu, T. H., Shipley, J. M., Bergers, G., Berger, J. E., Helms, J. A., Hanahan, D., et al. (1998). MMP-9/gelatinase B is a key regulator of growth plate angiogenesis and apoptosis of hypertrophic chondrocytes. Cell, 93, 411–422.PubMedCrossRef
168.
Zurück zum Zitat Fang, K. C., Wolters, P. J., Steinhoff, M., Bidgol, A., Blount, J. L., & Caughey, G. H. (1999). Mast cell expression of gelatinases A and B is regulated by kit ligand and TGF-beta. Journal of Immunology, 162, 5528–5535. Fang, K. C., Wolters, P. J., Steinhoff, M., Bidgol, A., Blount, J. L., & Caughey, G. H. (1999). Mast cell expression of gelatinases A and B is regulated by kit ligand and TGF-beta. Journal of Immunology, 162, 5528–5535.
169.
Zurück zum Zitat Tanaka, A., Arai, K., Kitamura, Y., & Matsuda, H. (1999). Matrix metalloproteinase-9 production, a newly identified function of mast cell progenitors, is downregulated by c-kit receptor activation. Blood, 94, 2390–2395.PubMed Tanaka, A., Arai, K., Kitamura, Y., & Matsuda, H. (1999). Matrix metalloproteinase-9 production, a newly identified function of mast cell progenitors, is downregulated by c-kit receptor activation. Blood, 94, 2390–2395.PubMed
170.
Zurück zum Zitat Coussens, L. M., Tinkle, C. L., Hanahan, D., & Werb, Z. (2000). MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell, 103, 481–490.PubMedCrossRef Coussens, L. M., Tinkle, C. L., Hanahan, D., & Werb, Z. (2000). MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell, 103, 481–490.PubMedCrossRef
171.
Zurück zum Zitat McKerrow, J. H., Bhargava, V., Hansell, E., Huling, S., Kuwahara, T., Matley, M., et al. (2000). A functional proteomics screen of proteases in colorectal carcinoma. Molecular Medicine, 6, 450–460.PubMed McKerrow, J. H., Bhargava, V., Hansell, E., Huling, S., Kuwahara, T., Matley, M., et al. (2000). A functional proteomics screen of proteases in colorectal carcinoma. Molecular Medicine, 6, 450–460.PubMed
172.
Zurück zum Zitat Palermo, C., & Joyce, J. A. (2008). Cysteine cathepsin proteases as pharmacological targets in cancer. Trends in Pharmacological Sciences, 29, 22–28.PubMedCrossRef Palermo, C., & Joyce, J. A. (2008). Cysteine cathepsin proteases as pharmacological targets in cancer. Trends in Pharmacological Sciences, 29, 22–28.PubMedCrossRef
173.
Zurück zum Zitat Xiang, M., Gu, Y., Zhao, F., Lu, H., Chen, S., & Yin, L. (2010). Mast cell tryptase promotes breast cancer migration and invasion. Oncology Reports, 23, 615–619.PubMed Xiang, M., Gu, Y., Zhao, F., Lu, H., Chen, S., & Yin, L. (2010). Mast cell tryptase promotes breast cancer migration and invasion. Oncology Reports, 23, 615–619.PubMed
174.
Zurück zum Zitat Cairns, J. A., & Walls, A. F. (1997). Mast cell tryptase stimulates the synthesis of type I collagen in human lung fibroblasts. Journal of Clinical Investigation, 99, 1313–1321.PubMedCrossRef Cairns, J. A., & Walls, A. F. (1997). Mast cell tryptase stimulates the synthesis of type I collagen in human lung fibroblasts. Journal of Clinical Investigation, 99, 1313–1321.PubMedCrossRef
175.
Zurück zum Zitat Hebda, P. A., Collins, M. A., & Tharp, M. D. (1993). Mast cell and myofibroblast in wound healing. Dermatologic Clinics, 11, 685–696.PubMed Hebda, P. A., Collins, M. A., & Tharp, M. D. (1993). Mast cell and myofibroblast in wound healing. Dermatologic Clinics, 11, 685–696.PubMed
176.
Zurück zum Zitat Gailit, J., Marchese, M. J., Kew, R. R., & Gruber, B. L. (2001). The differentiation and function of myofibroblasts is regulated by mast cell mediators. Journal of Investigative Dermatology, 117, 1113–1119.PubMedCrossRef Gailit, J., Marchese, M. J., Kew, R. R., & Gruber, B. L. (2001). The differentiation and function of myofibroblasts is regulated by mast cell mediators. Journal of Investigative Dermatology, 117, 1113–1119.PubMedCrossRef
177.
Zurück zum Zitat Mekori, Y. A., & Metcalfe, D. D. (1999). Mast cell-T cell interactions. The Journal of Allergy and Clinical Immunology, 104, 517–523.PubMedCrossRef Mekori, Y. A., & Metcalfe, D. D. (1999). Mast cell-T cell interactions. The Journal of Allergy and Clinical Immunology, 104, 517–523.PubMedCrossRef
178.
Zurück zum Zitat Baram, D., Vaday, G. G., Salamon, P., Drucker, I., Hershkoviz, R., & Mekori, Y. A. (2001). Human mast cells release metalloproteinase-9 on contact with activated T cells: Juxtacrine regulation by TNF-alpha. Journal of Immunology, 167, 4008–4016. Baram, D., Vaday, G. G., Salamon, P., Drucker, I., Hershkoviz, R., & Mekori, Y. A. (2001). Human mast cells release metalloproteinase-9 on contact with activated T cells: Juxtacrine regulation by TNF-alpha. Journal of Immunology, 167, 4008–4016.
179.
Zurück zum Zitat Brill, A., Baram, D., Sela, U., Salamon, P., Mekori, Y. A., & Hershkoviz, R. (2004). Induction of mast cell interactions with blood vessel wall components by direct contact with intact T cells or T cell membranes in vitro. Clinical and Experimental Allergy, 34, 1725–1731.PubMedCrossRef Brill, A., Baram, D., Sela, U., Salamon, P., Mekori, Y. A., & Hershkoviz, R. (2004). Induction of mast cell interactions with blood vessel wall components by direct contact with intact T cells or T cell membranes in vitro. Clinical and Experimental Allergy, 34, 1725–1731.PubMedCrossRef
180.
Zurück zum Zitat Theoharides, T. C., Kempuraj, D., Kourelis, T., & Manola, A. (2008). Human mast cells stimulate activated T cells: Implications for multiple sclerosis. Annals of the New York Academy of Sciences, 1144, 74–82.PubMedCrossRef Theoharides, T. C., Kempuraj, D., Kourelis, T., & Manola, A. (2008). Human mast cells stimulate activated T cells: Implications for multiple sclerosis. Annals of the New York Academy of Sciences, 1144, 74–82.PubMedCrossRef
181.
Zurück zum Zitat Nakae, S., Ho, L. H., Yu, M., Monteforte, R., Iikura, M., Suto, H., et al. (2007). Mast cell-derived TNF contributes to airway hyperreactivity, inflammation, and TH2 cytokine production in an asthma model in mice. The Journal of Allergy and Clinical Immunology, 120, 48–55.PubMedCrossRef Nakae, S., Ho, L. H., Yu, M., Monteforte, R., Iikura, M., Suto, H., et al. (2007). Mast cell-derived TNF contributes to airway hyperreactivity, inflammation, and TH2 cytokine production in an asthma model in mice. The Journal of Allergy and Clinical Immunology, 120, 48–55.PubMedCrossRef
182.
Zurück zum Zitat Suto, H., Nakae, S., Kakurai, M., Sedgwick, J. D., Tsai, M., & Galli, S. J. (2006). Mast cell-associated TNF promotes dendritic cell migration. Journal of Immunology, 176, 4102–4112. Suto, H., Nakae, S., Kakurai, M., Sedgwick, J. D., Tsai, M., & Galli, S. J. (2006). Mast cell-associated TNF promotes dendritic cell migration. Journal of Immunology, 176, 4102–4112.
183.
Zurück zum Zitat Ren, S. R., Xu, L. B., Wu, Z. Y., Du, J., Gao, M. H., & Qu, C. F. (2010). Exogenous dendritic cell homing to draining lymph nodes can be boosted by mast cell degranulation. Cellular Immunology, 263, 204–211.PubMedCrossRef Ren, S. R., Xu, L. B., Wu, Z. Y., Du, J., Gao, M. H., & Qu, C. F. (2010). Exogenous dendritic cell homing to draining lymph nodes can be boosted by mast cell degranulation. Cellular Immunology, 263, 204–211.PubMedCrossRef
184.
Zurück zum Zitat Demeure, C. E., Brahimi, K., Hacini, F., Marchand, F., Peronet, R., Huerre, M., et al. (2005). Anopheles mosquito bites activate cutaneous mast cells leading to a local inflammatory response and lymph node hyperplasia. Journal of Immunology, 174, 3932–3940. Demeure, C. E., Brahimi, K., Hacini, F., Marchand, F., Peronet, R., Huerre, M., et al. (2005). Anopheles mosquito bites activate cutaneous mast cells leading to a local inflammatory response and lymph node hyperplasia. Journal of Immunology, 174, 3932–3940.
185.
Zurück zum Zitat Jawdat, D. M., Rowden, G., & Marshall, J. S. (2006). Mast cells have a pivotal role in TNF-independent lymph node hypertrophy and the mobilization of Langerhans cells in response to bacterial peptidoglycan. Journal of Immunology, 177, 1755–1762. Jawdat, D. M., Rowden, G., & Marshall, J. S. (2006). Mast cells have a pivotal role in TNF-independent lymph node hypertrophy and the mobilization of Langerhans cells in response to bacterial peptidoglycan. Journal of Immunology, 177, 1755–1762.
186.
Zurück zum Zitat Maurer, M., Lopez Kostka, S., Siebenhaar, F., Moelle, K., Metz, M., Knop, J., et al. (2006). Skin mast cells control T cell-dependent host defense in Leishmania major infections. The FASEB Journal, 20, 2460–2467.PubMedCrossRef Maurer, M., Lopez Kostka, S., Siebenhaar, F., Moelle, K., Metz, M., Knop, J., et al. (2006). Skin mast cells control T cell-dependent host defense in Leishmania major infections. The FASEB Journal, 20, 2460–2467.PubMedCrossRef
187.
Zurück zum Zitat McLachlan, J. B., Hart, J. P., Pizzo, S. V., Shelburne, C. P., Staats, H. F., Gunn, M. D., et al. (2003). Mast cell-derived tumor necrosis factor induces hypertrophy of draining lymph nodes during infection. Nature Immunology, 4, 1199–1205.PubMedCrossRef McLachlan, J. B., Hart, J. P., Pizzo, S. V., Shelburne, C. P., Staats, H. F., Gunn, M. D., et al. (2003). Mast cell-derived tumor necrosis factor induces hypertrophy of draining lymph nodes during infection. Nature Immunology, 4, 1199–1205.PubMedCrossRef
188.
Zurück zum Zitat Kashyap, M., Thornton, A. M., Norton, S. K., Barnstein, B., Macey, M., Brenzovich, J., et al. (2008). Cutting edge: CD4 T cell-mast cell interactions alter IgE receptor expression and signaling. Journal of Immunology, 180, 2039–2043. Kashyap, M., Thornton, A. M., Norton, S. K., Barnstein, B., Macey, M., Brenzovich, J., et al. (2008). Cutting edge: CD4 T cell-mast cell interactions alter IgE receptor expression and signaling. Journal of Immunology, 180, 2039–2043.
189.
Zurück zum Zitat Shelburne, C. P., Nakano, H., St John, A. L., Chan, C., McLachlan, J. B., Gunn, M. D., et al. (2009). Mast cells augment adaptive immunity by orchestrating dendritic cell trafficking through infected tissues. Cell Host & Microbe, 6, 331–342.CrossRef Shelburne, C. P., Nakano, H., St John, A. L., Chan, C., McLachlan, J. B., Gunn, M. D., et al. (2009). Mast cells augment adaptive immunity by orchestrating dendritic cell trafficking through infected tissues. Cell Host & Microbe, 6, 331–342.CrossRef
190.
Zurück zum Zitat Kambayashi, T., Baranski, J. D., Baker, R. G., Zou, T., Allenspach, E. J., Shoag, J. E., et al. (2008). Indirect involvement of allergen-captured mast cells in antigen presentation. Blood, 111, 1489–1496.PubMedCrossRef Kambayashi, T., Baranski, J. D., Baker, R. G., Zou, T., Allenspach, E. J., Shoag, J. E., et al. (2008). Indirect involvement of allergen-captured mast cells in antigen presentation. Blood, 111, 1489–1496.PubMedCrossRef
191.
Zurück zum Zitat Nakae, S., Suto, H., Iikura, M., Kakurai, M., Sedgwick, J. D., Tsai, M., et al. (2006). Mast cells enhance T cell activation: Importance of mast cell costimulatory molecules and secreted TNF. Journal of Immunology, 176, 2238–2248. Nakae, S., Suto, H., Iikura, M., Kakurai, M., Sedgwick, J. D., Tsai, M., et al. (2006). Mast cells enhance T cell activation: Importance of mast cell costimulatory molecules and secreted TNF. Journal of Immunology, 176, 2238–2248.
192.
Zurück zum Zitat Christy, A. L., & Brown, M. A. (2007). The multitasking mast cell: Positive and negative roles in the progression of autoimmunity. Journal of Immunology, 179, 2673–2679. Christy, A. L., & Brown, M. A. (2007). The multitasking mast cell: Positive and negative roles in the progression of autoimmunity. Journal of Immunology, 179, 2673–2679.
193.
Zurück zum Zitat Gregory, G. D., Raju, S. S., Winandy, S., & Brown, M. A. (2006). Mast cell IL-4 expression is regulated by Ikaros and influences encephalitogenic Th1 responses in EAE. Journal of Clinical Investigation, 116, 1327–1336.PubMedCrossRef Gregory, G. D., Raju, S. S., Winandy, S., & Brown, M. A. (2006). Mast cell IL-4 expression is regulated by Ikaros and influences encephalitogenic Th1 responses in EAE. Journal of Clinical Investigation, 116, 1327–1336.PubMedCrossRef
194.
Zurück zum Zitat Kambayashi, T., Allenspach, E. J., Chang, J. T., Zou, T., Shoag, J. E., Reiner, S. L., et al. (2009). Inducible MHC class II expression by mast cells supports effector and regulatory T cell activation. Journal of Immunology, 182, 4686–4695.CrossRef Kambayashi, T., Allenspach, E. J., Chang, J. T., Zou, T., Shoag, J. E., Reiner, S. L., et al. (2009). Inducible MHC class II expression by mast cells supports effector and regulatory T cell activation. Journal of Immunology, 182, 4686–4695.CrossRef
195.
Zurück zum Zitat Gri, G., Piconese, S., Frossi, B., Manfroi, V., Merluzzi, S., Tripodo, C., et al. (2008). CD4(+)CD25(+) regulatory T cells suppress mast cell degranulation and allergic responses through OX40-OX40L interaction. Immunity, 29, 771–781.PubMedCrossRef Gri, G., Piconese, S., Frossi, B., Manfroi, V., Merluzzi, S., Tripodo, C., et al. (2008). CD4(+)CD25(+) regulatory T cells suppress mast cell degranulation and allergic responses through OX40-OX40L interaction. Immunity, 29, 771–781.PubMedCrossRef
196.
Zurück zum Zitat Yan, J., Wang, C., Du, R., Liu, P., & Chen, G. (2009). OX40-OX40 ligand interaction may activate phospholipase C signal transduction pathway in human umbilical vein endothelial cells. Chemistry & Biology Interact. Yan, J., Wang, C., Du, R., Liu, P., & Chen, G. (2009). OX40-OX40 ligand interaction may activate phospholipase C signal transduction pathway in human umbilical vein endothelial cells. Chemistry & Biology Interact.
197.
Zurück zum Zitat Liopeta, K., Boubali, S., Virgilio, L., Thyphronitis, G., Mavrothalassitis, G., Dimitracopoulos, G., et al. (2009). cAMP regulates IL-10 production by normal human T lymphocytes at multiple levels: A potential role for MEF2. Molecular Immunology, 46, 345–354.PubMedCrossRef Liopeta, K., Boubali, S., Virgilio, L., Thyphronitis, G., Mavrothalassitis, G., Dimitracopoulos, G., et al. (2009). cAMP regulates IL-10 production by normal human T lymphocytes at multiple levels: A potential role for MEF2. Molecular Immunology, 46, 345–354.PubMedCrossRef
198.
Zurück zum Zitat Forward, N. A., Furlong, S. J., Yang, Y., Lin, T. J., & Hoskin, D. W. (2009). Mast cells down-regulate CD4+CD25+ T regulatory cell suppressor function via histamine H1 receptor interaction. Journal of Immunology, 183, 3014–3022.CrossRef Forward, N. A., Furlong, S. J., Yang, Y., Lin, T. J., & Hoskin, D. W. (2009). Mast cells down-regulate CD4+CD25+ T regulatory cell suppressor function via histamine H1 receptor interaction. Journal of Immunology, 183, 3014–3022.CrossRef
199.
Zurück zum Zitat Wang, H. C., & Klein, J. R. (2001). Multiple levels of activation of murine CD8(+) intraepithelial lymphocytes defined by OX40 (CD134) expression: Effects on cell-mediated cytotoxicity, IFN-gamma, and IL-10 regulation. Journal of Immunology, 167, 6717–6723. Wang, H. C., & Klein, J. R. (2001). Multiple levels of activation of murine CD8(+) intraepithelial lymphocytes defined by OX40 (CD134) expression: Effects on cell-mediated cytotoxicity, IFN-gamma, and IL-10 regulation. Journal of Immunology, 167, 6717–6723.
200.
Zurück zum Zitat Wang, H. C., Montufar-Solis, D., Teng, B. B., & Klein, J. R. (2004). Maximum immunobioactivity of murine small intestinal intraepithelial lymphocytes resides in a subpopulation of CD43+ T cells. Journal of Immunology, 173, 6294–6302. Wang, H. C., Montufar-Solis, D., Teng, B. B., & Klein, J. R. (2004). Maximum immunobioactivity of murine small intestinal intraepithelial lymphocytes resides in a subpopulation of CD43+ T cells. Journal of Immunology, 173, 6294–6302.
201.
Zurück zum Zitat Vu, M. D., Xiao, X., Gao, W., Degauque, N., Chen, M., Kroemer, A., et al. (2007). OX40 costimulation turns off Foxp3+ Treg. Blood, 110, 2501–2510.PubMedCrossRef Vu, M. D., Xiao, X., Gao, W., Degauque, N., Chen, M., Kroemer, A., et al. (2007). OX40 costimulation turns off Foxp3+ Treg. Blood, 110, 2501–2510.PubMedCrossRef
202.
Zurück zum Zitat Colombo, M. P., & Piconese, S. (2009). Polyps wrap mast cells and Treg within tumorigenic tentacles. Cancer Research. Colombo, M. P., & Piconese, S. (2009). Polyps wrap mast cells and Treg within tumorigenic tentacles. Cancer Research.
203.
Zurück zum Zitat de Vries, V. C., Wasiuk, A., Bennett, K. A., Benson, M. J., Elgueta, R., Waldschmidt, T. J., et al. (2009). Mast cell degranulation breaks peripheral tolerance. American Journal of Transplantation, 9, 2270–2280.PubMedCrossRef de Vries, V. C., Wasiuk, A., Bennett, K. A., Benson, M. J., Elgueta, R., Waldschmidt, T. J., et al. (2009). Mast cell degranulation breaks peripheral tolerance. American Journal of Transplantation, 9, 2270–2280.PubMedCrossRef
204.
Zurück zum Zitat Piconese, S., Gri, G., Tripodo, C., Musio, S., Gorzanelli, A., Frossi, B., et al. (2009). Mast cells counteract regulatory T-cell suppression through interleukin-6 and OX40/OX40L axis toward Th17-cell differentiation. Blood, 114, 2639–2648.PubMed Piconese, S., Gri, G., Tripodo, C., Musio, S., Gorzanelli, A., Frossi, B., et al. (2009). Mast cells counteract regulatory T-cell suppression through interleukin-6 and OX40/OX40L axis toward Th17-cell differentiation. Blood, 114, 2639–2648.PubMed
205.
Zurück zum Zitat Laurence, A., Tato, C. M., Davidson, T. S., Kanno, Y., Chen, Z., Yao, Z., et al. (2007). Interleukin-2 signaling via STAT5 constrains T helper 17 cell generation. Immunity, 26, 371–381.PubMedCrossRef Laurence, A., Tato, C. M., Davidson, T. S., Kanno, Y., Chen, Z., Yao, Z., et al. (2007). Interleukin-2 signaling via STAT5 constrains T helper 17 cell generation. Immunity, 26, 371–381.PubMedCrossRef
206.
Zurück zum Zitat Korn, T., Bettelli, E., Oukka, M., & Kuchroo, V. K. (2009). IL-17 and Th17 Cells. Annual Review of Immunology, 27, 485–517.PubMedCrossRef Korn, T., Bettelli, E., Oukka, M., & Kuchroo, V. K. (2009). IL-17 and Th17 Cells. Annual Review of Immunology, 27, 485–517.PubMedCrossRef
207.
Zurück zum Zitat Asseman, C., Mauze, S., Leach, M. W., Coffman, R. L., & Powrie, F. (1999). An essential role for interleukin 10 in the function of regulatory T cells that inhibit intestinal inflammation. The Journal of Experimental Medicine, 190, 995–1004.PubMedCrossRef Asseman, C., Mauze, S., Leach, M. W., Coffman, R. L., & Powrie, F. (1999). An essential role for interleukin 10 in the function of regulatory T cells that inhibit intestinal inflammation. The Journal of Experimental Medicine, 190, 995–1004.PubMedCrossRef
208.
Zurück zum Zitat Maloy, K. J., Salaun, L., Cahill, R., Dougan, G., Saunders, N. J., & Powrie, F. (2003). CD4+CD25+ T(R) cells suppress innate immune pathology through cytokine-dependent mechanisms. The Journal of Experimental Medicine, 197, 111–119.PubMedCrossRef Maloy, K. J., Salaun, L., Cahill, R., Dougan, G., Saunders, N. J., & Powrie, F. (2003). CD4+CD25+ T(R) cells suppress innate immune pathology through cytokine-dependent mechanisms. The Journal of Experimental Medicine, 197, 111–119.PubMedCrossRef
209.
Zurück zum Zitat Erdman, S. E., Rao, V. P., Poutahidis, T., Ihrig, M. M., Ge, Z., Feng, Y., et al. (2003). CD4(+)CD25(+) regulatory lymphocytes require interleukin 10 to interrupt colon carcinogenesis in mice. Cancer Research, 63, 6042–6050.PubMed Erdman, S. E., Rao, V. P., Poutahidis, T., Ihrig, M. M., Ge, Z., Feng, Y., et al. (2003). CD4(+)CD25(+) regulatory lymphocytes require interleukin 10 to interrupt colon carcinogenesis in mice. Cancer Research, 63, 6042–6050.PubMed
210.
Zurück zum Zitat Berg, D. J., Zhang, J., Weinstock, J. V., Ismail, H. F., Earle, K. A., Alila, H., et al. (2002). Rapid development of colitis in NSAID-treated IL-10-deficient mice. Gastroenterology, 123, 1527–1542.PubMedCrossRef Berg, D. J., Zhang, J., Weinstock, J. V., Ismail, H. F., Earle, K. A., Alila, H., et al. (2002). Rapid development of colitis in NSAID-treated IL-10-deficient mice. Gastroenterology, 123, 1527–1542.PubMedCrossRef
211.
Zurück zum Zitat Brown, J. B., Lee, G., Managlia, E., Grimm, G. R., Dirisina, R., Goretsky, T., et al. (2010). Mesalamine inhibits epithelial beta-catenin activation in chronic ulcerative colitis. Gastroenterology, 138, 595–605, 605 e591–593. Brown, J. B., Lee, G., Managlia, E., Grimm, G. R., Dirisina, R., Goretsky, T., et al. (2010). Mesalamine inhibits epithelial beta-catenin activation in chronic ulcerative colitis. Gastroenterology, 138, 595–605, 605 e591–593.
212.
Zurück zum Zitat Schaefer, J. S., Montufar-Solis, D., Vigneswaran, N., & Klein, J. R. (2010). ICOS promotes IL-17 synthesis in colonic intraepithelial lymphocytes in IL-10-/- mice. Journal of Leukocyte Biology, 87, 301–308.PubMedCrossRef Schaefer, J. S., Montufar-Solis, D., Vigneswaran, N., & Klein, J. R. (2010). ICOS promotes IL-17 synthesis in colonic intraepithelial lymphocytes in IL-10-/- mice. Journal of Leukocyte Biology, 87, 301–308.PubMedCrossRef
213.
Zurück zum Zitat Lochner, M., Peduto, L., Cherrier, M., Sawa, S., Langa, F., Varona, R., et al. (2008). In vivo equilibrium of proinflammatory IL-17+ and regulatory IL-10+ Foxp3+ RORgamma t+T cells. The Journal of Experimental Medicine, 205, 1381–1393.PubMedCrossRef Lochner, M., Peduto, L., Cherrier, M., Sawa, S., Langa, F., Varona, R., et al. (2008). In vivo equilibrium of proinflammatory IL-17+ and regulatory IL-10+ Foxp3+ RORgamma t+T cells. The Journal of Experimental Medicine, 205, 1381–1393.PubMedCrossRef
214.
Zurück zum Zitat Beriou, G., Costantino, C. M., Ashley, C. W., Yang, L., Kuchroo, V. K., Baecher-Allan, C., et al. (2009). IL-17-producing human peripheral regulatory T cells retain suppressive function. Blood, 113, 4240–4249.PubMedCrossRef Beriou, G., Costantino, C. M., Ashley, C. W., Yang, L., Kuchroo, V. K., Baecher-Allan, C., et al. (2009). IL-17-producing human peripheral regulatory T cells retain suppressive function. Blood, 113, 4240–4249.PubMedCrossRef
215.
Zurück zum Zitat Miyara, M., Yoshioka, Y., Kitoh, A., Shima, T., Wing, K., Niwa, A., et al. (2009). Functional delineation and differentiation dynamics of human CD4+ T cells expressing the FoxP3 transcription factor. Immunity, 30, 899–911.PubMedCrossRef Miyara, M., Yoshioka, Y., Kitoh, A., Shima, T., Wing, K., Niwa, A., et al. (2009). Functional delineation and differentiation dynamics of human CD4+ T cells expressing the FoxP3 transcription factor. Immunity, 30, 899–911.PubMedCrossRef
216.
Zurück zum Zitat Zhou, X., Bailey-Bucktrout, S., Jeker, L. T., & Bluestone, J. A. (2009). Plasticity of CD4(+) FoxP3(+) T cells. Current Opinion in Immunology, 21, 281–285.PubMedCrossRef Zhou, X., Bailey-Bucktrout, S., Jeker, L. T., & Bluestone, J. A. (2009). Plasticity of CD4(+) FoxP3(+) T cells. Current Opinion in Immunology, 21, 281–285.PubMedCrossRef
217.
Zurück zum Zitat Yang, X. O., Nurieva, R., Martinez, G. J., Kang, H. S., Chung, Y., Pappu, B. P., et al. (2008). Molecular antagonism and plasticity of regulatory and inflammatory T cell programs. Immunity, 29, 44–56.PubMedCrossRef Yang, X. O., Nurieva, R., Martinez, G. J., Kang, H. S., Chung, Y., Pappu, B. P., et al. (2008). Molecular antagonism and plasticity of regulatory and inflammatory T cell programs. Immunity, 29, 44–56.PubMedCrossRef
218.
Zurück zum Zitat Weaver, C. T., Harrington, L. E., Mangan, P. R., Gavrieli, M., & Murphy, K. M. (2006). Th17: An effector CD4 T cell lineage with regulatory T cell ties. Immunity, 24, 677–688.PubMedCrossRef Weaver, C. T., Harrington, L. E., Mangan, P. R., Gavrieli, M., & Murphy, K. M. (2006). Th17: An effector CD4 T cell lineage with regulatory T cell ties. Immunity, 24, 677–688.PubMedCrossRef
Metadaten
Titel
The significant role of mast cells in cancer
verfasst von
Khashayarsha Khazaie
Nichole R. Blatner
Mohammad Wasim Khan
Fotini Gounari
Elias Gounaris
Kristen Dennis
Andreas Bonertz
Fu-Nien Tsai
Matthew J. Strouch
Eric Cheon
Joseph D. Phillips
Philipp Beckhove
David J. Bentrem
Publikationsdatum
01.03.2011
Verlag
Springer US
Erschienen in
Cancer and Metastasis Reviews / Ausgabe 1/2011
Print ISSN: 0167-7659
Elektronische ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-011-9286-z

Weitere Artikel der Ausgabe 1/2011

Cancer and Metastasis Reviews 1/2011 Zur Ausgabe

EditorialNotes

Preface

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.