Skip to main content
Erschienen in: Cancer and Metastasis Reviews 1-2/2012

01.06.2012 | NON-THEMATIC REVIEW

Cancer-associated-fibroblasts and tumour cells: a diabolic liaison driving cancer progression

verfasst von: Paolo Cirri, Paola Chiarugi

Erschienen in: Cancer and Metastasis Reviews | Ausgabe 1-2/2012

Einloggen, um Zugang zu erhalten

Abstract

Several recent papers have now provided compelling experimental evidence that the progression of tumours towards a malignant phenotype does not depend exclusively on the cell-autonomous properties of cancer cells themselves but is also deeply influenced by tumour stroma reactivity, thereby undergoing a strict environmental control. Tumour microenvironmental elements include structural components such as the extracellular matrix or hypoxia as well as stromal cells, either resident cells or recruited from circulating precursors, as macrophages and other inflammatory cells, endothelial cells and cancer-associated fibroblasts (CAFs). All these elements synergistically play a specific role in cancer progression. This review summarizes our current knowledge on the role of CAFs in tumour progression, with a particular focus on the biunivocal interplay between CAFs and cancer cells leading to the activation of the epithelial–mesenchymal transition programme and the achievement of stem cell traits, as well as to the metabolic reprogramming of both stromal and cancer cells. Recent advances on the role of CAFs in the preparation of metastatic niche, as well as the controversial origin of CAFs, are discussed in light of the new emerging therapeutic implications of targeting CAFs.
Literatur
1.
Zurück zum Zitat Gabbiani, G., Ryan, G. B., & Majne, G. (1971). Presence of modified fibroblasts in granulation tissue and their possible role in wound contraction. Experientia, 27(5), 549–550.PubMedCrossRef Gabbiani, G., Ryan, G. B., & Majne, G. (1971). Presence of modified fibroblasts in granulation tissue and their possible role in wound contraction. Experientia, 27(5), 549–550.PubMedCrossRef
2.
Zurück zum Zitat Tomasek, J. J., Gabbiani, G., Hinz, B., Chaponnier, C., & Brown, R. A. (2002). Myofibroblasts and mechano-regulation of connective tissue remodelling. Nature Reviews. Molecular Cell Biology, 3(5), 349–363.PubMedCrossRef Tomasek, J. J., Gabbiani, G., Hinz, B., Chaponnier, C., & Brown, R. A. (2002). Myofibroblasts and mechano-regulation of connective tissue remodelling. Nature Reviews. Molecular Cell Biology, 3(5), 349–363.PubMedCrossRef
3.
Zurück zum Zitat Desmouliere, A., Redard, M., Darby, I., & Gabbiani, G. (1995). Apoptosis mediates the decrease in cellularity during the transition between granulation tissue and scar. American Journal of Pathology, 146(1), 56–66.PubMed Desmouliere, A., Redard, M., Darby, I., & Gabbiani, G. (1995). Apoptosis mediates the decrease in cellularity during the transition between granulation tissue and scar. American Journal of Pathology, 146(1), 56–66.PubMed
4.
Zurück zum Zitat Rasanen, K., & Vaheri, A. (2010). Activation of fibroblasts in cancer stroma. Experimental Cell Research, 316(17), 2713–2722.PubMedCrossRef Rasanen, K., & Vaheri, A. (2010). Activation of fibroblasts in cancer stroma. Experimental Cell Research, 316(17), 2713–2722.PubMedCrossRef
5.
Zurück zum Zitat Dvorak, H. F. (1986). Tumors: Wounds that do not heal. Similarities between tumor stroma generation and wound healing. The New England Journal of Medicine, 315(26), 1650–1659.PubMedCrossRef Dvorak, H. F. (1986). Tumors: Wounds that do not heal. Similarities between tumor stroma generation and wound healing. The New England Journal of Medicine, 315(26), 1650–1659.PubMedCrossRef
6.
Zurück zum Zitat Kalluri, R., & Zeisberg, M. (2006). Fibroblasts in cancer. Nature Reviews. Cancer, 6(5), 392–401.PubMedCrossRef Kalluri, R., & Zeisberg, M. (2006). Fibroblasts in cancer. Nature Reviews. Cancer, 6(5), 392–401.PubMedCrossRef
7.
Zurück zum Zitat Pietras, K., & Ostman, A. (2010). Hallmarks of cancer: Interactions with the tumor stroma. Experimental Cell Research, 316(8), 1324–1331.PubMedCrossRef Pietras, K., & Ostman, A. (2010). Hallmarks of cancer: Interactions with the tumor stroma. Experimental Cell Research, 316(8), 1324–1331.PubMedCrossRef
8.
Zurück zum Zitat Micke, P., & Ostman, A. (2004). Tumour–stroma interaction: Cancer-associated fibroblasts as novel targets in anti-cancer therapy? Lung Cancer, 45(Suppl 2), S163–S175.PubMedCrossRef Micke, P., & Ostman, A. (2004). Tumour–stroma interaction: Cancer-associated fibroblasts as novel targets in anti-cancer therapy? Lung Cancer, 45(Suppl 2), S163–S175.PubMedCrossRef
9.
Zurück zum Zitat O’Brien, P., & O’Connor, B. F. (2008). Seprase: An overview of an important matrix serine protease. Biochimica et Biophysica Acta, 1784(9), 1130–1145.PubMed O’Brien, P., & O’Connor, B. F. (2008). Seprase: An overview of an important matrix serine protease. Biochimica et Biophysica Acta, 1784(9), 1130–1145.PubMed
10.
Zurück zum Zitat Hasebe, T., Tamura, N., Okada, N., Hojo, T., Akashi-Tanaka, S., Shimizu, C., et al. (2010). p53 expression in tumor-stromal fibroblasts is closely associated with the nodal metastasis and outcome of patients with invasive ductal carcinoma who received neoadjuvant therapy. Human Pathology, 41(2), 262–270.PubMedCrossRef Hasebe, T., Tamura, N., Okada, N., Hojo, T., Akashi-Tanaka, S., Shimizu, C., et al. (2010). p53 expression in tumor-stromal fibroblasts is closely associated with the nodal metastasis and outcome of patients with invasive ductal carcinoma who received neoadjuvant therapy. Human Pathology, 41(2), 262–270.PubMedCrossRef
11.
Zurück zum Zitat Nakao, M., Ishii, G., Nagai, K., Kawase, A., Kenmotsu, H., Kon-No, H., et al. (2009). Prognostic significance of carbonic anhydrase IX expression by cancer-associated fibroblasts in lung adenocarcinoma. Cancer, 115(12), 2732–2743.PubMedCrossRef Nakao, M., Ishii, G., Nagai, K., Kawase, A., Kenmotsu, H., Kon-No, H., et al. (2009). Prognostic significance of carbonic anhydrase IX expression by cancer-associated fibroblasts in lung adenocarcinoma. Cancer, 115(12), 2732–2743.PubMedCrossRef
12.
Zurück zum Zitat Utispan, K., Thuwajit, P., Abiko, Y., Charngkaew, K., Paupairoj, A., Chau-in, S., et al. (2010). Gene expression profiling of cholangiocarcinoma-derived fibroblast reveals alterations related to tumor progression and indicates periostin as a poor prognostic marker. Molecular Cancer, 9, 13.PubMedCrossRef Utispan, K., Thuwajit, P., Abiko, Y., Charngkaew, K., Paupairoj, A., Chau-in, S., et al. (2010). Gene expression profiling of cholangiocarcinoma-derived fibroblast reveals alterations related to tumor progression and indicates periostin as a poor prognostic marker. Molecular Cancer, 9, 13.PubMedCrossRef
13.
Zurück zum Zitat Witkiewicz, A. K., Dasgupta, A., Sotgia, F., Mercier, I., Pestell, R. G., Sabel, M., et al. (2009). An absence of stromal caveolin-1 expression predicts early tumor recurrence and poor clinical outcome in human breast cancers. American Journal of Pathology, 174(6), 2023–2034.PubMedCrossRef Witkiewicz, A. K., Dasgupta, A., Sotgia, F., Mercier, I., Pestell, R. G., Sabel, M., et al. (2009). An absence of stromal caveolin-1 expression predicts early tumor recurrence and poor clinical outcome in human breast cancers. American Journal of Pathology, 174(6), 2023–2034.PubMedCrossRef
14.
Zurück zum Zitat Yamanashi, T., Nakanishi, Y., Fujii, G., Akishima-Fukasawa, Y., Moriya, Y., Kanai, Y., et al. (2009). Podoplanin expression identified in stromal fibroblasts as a favorable prognostic marker in patients with colorectal carcinoma. Oncology, 77(1), 53–62.PubMedCrossRef Yamanashi, T., Nakanishi, Y., Fujii, G., Akishima-Fukasawa, Y., Moriya, Y., Kanai, Y., et al. (2009). Podoplanin expression identified in stromal fibroblasts as a favorable prognostic marker in patients with colorectal carcinoma. Oncology, 77(1), 53–62.PubMedCrossRef
15.
Zurück zum Zitat Trimboli, A. J., Cantemir-Stone, C. Z., Li, F., Wallace, J. A., Merchant, A., Creasap, N., et al. (2009). Pten in stromal fibroblasts suppresses mammary epithelial tumours. Nature, 461(7267), 1084–1091.PubMedCrossRef Trimboli, A. J., Cantemir-Stone, C. Z., Li, F., Wallace, J. A., Merchant, A., Creasap, N., et al. (2009). Pten in stromal fibroblasts suppresses mammary epithelial tumours. Nature, 461(7267), 1084–1091.PubMedCrossRef
16.
Zurück zum Zitat Hill, R., Song, Y., Cardiff, R. D., & van, D. T. (2005). Selective evolution of stromal mesenchyme with p53 loss in response to epithelial tumorigenesis. Cell, 123(6), 1001–1011.PubMedCrossRef Hill, R., Song, Y., Cardiff, R. D., & van, D. T. (2005). Selective evolution of stromal mesenchyme with p53 loss in response to epithelial tumorigenesis. Cell, 123(6), 1001–1011.PubMedCrossRef
17.
Zurück zum Zitat Kiaris, H., Chatzistamou, I., Trimis, G., Frangou-Plemmenou, M., Pafiti-Kondi, A., & Kalofoutis, A. (2005). Evidence for nonautonomous effect of p53 tumor suppressor in carcinogenesis. Cancer Research, 65(5), 1627–1630.PubMedCrossRef Kiaris, H., Chatzistamou, I., Trimis, G., Frangou-Plemmenou, M., Pafiti-Kondi, A., & Kalofoutis, A. (2005). Evidence for nonautonomous effect of p53 tumor suppressor in carcinogenesis. Cancer Research, 65(5), 1627–1630.PubMedCrossRef
18.
Zurück zum Zitat Anderberg, C., & Pietras, K. (2009). On the origin of cancer-associated fibroblasts. Cell Cycle, 8(10), 1461–1462.PubMedCrossRef Anderberg, C., & Pietras, K. (2009). On the origin of cancer-associated fibroblasts. Cell Cycle, 8(10), 1461–1462.PubMedCrossRef
19.
Zurück zum Zitat Hinz, B., Phan, S. H., Thannickal, V. J., Galli, A., Bochaton-Piallat, M. L., & Gabbiani, G. (2007). The myofibroblast: One function, multiple origins. American Journal of Pathology, 170(6), 1807–1816.PubMedCrossRef Hinz, B., Phan, S. H., Thannickal, V. J., Galli, A., Bochaton-Piallat, M. L., & Gabbiani, G. (2007). The myofibroblast: One function, multiple origins. American Journal of Pathology, 170(6), 1807–1816.PubMedCrossRef
20.
Zurück zum Zitat McAnulty, R. J. (2007). Fibroblasts and myofibroblasts: Their source, function and role in disease. The International Journal of Biochemistry & Cell Biology, 39(4), 666–671.CrossRef McAnulty, R. J. (2007). Fibroblasts and myofibroblasts: Their source, function and role in disease. The International Journal of Biochemistry & Cell Biology, 39(4), 666–671.CrossRef
21.
Zurück zum Zitat Ostman, A., & Augsten, M. (2009). Cancer-associated fibroblasts and tumor growth—Bystanders turning into key players. Current Opinion in Genetics and Development, 19(1), 67–73.PubMedCrossRef Ostman, A., & Augsten, M. (2009). Cancer-associated fibroblasts and tumor growth—Bystanders turning into key players. Current Opinion in Genetics and Development, 19(1), 67–73.PubMedCrossRef
22.
Zurück zum Zitat De, W. O., & Mareel, M. (2003). Role of tissue stroma in cancer cell invasion. The Journal of Pathology, 200(4), 429–447.CrossRef De, W. O., & Mareel, M. (2003). Role of tissue stroma in cancer cell invasion. The Journal of Pathology, 200(4), 429–447.CrossRef
23.
Zurück zum Zitat Giannoni, E., Bianchini, F., Masieri, L., Serni, S., Torre, E., Calorini, L., et al. (2010). Reciprocal activation of prostate cancer cells and cancer-associated fibroblasts stimulates epithelial–mesenchymal transition and cancer stemness. Cancer Research, 70(17), 6945–6956.PubMedCrossRef Giannoni, E., Bianchini, F., Masieri, L., Serni, S., Torre, E., Calorini, L., et al. (2010). Reciprocal activation of prostate cancer cells and cancer-associated fibroblasts stimulates epithelial–mesenchymal transition and cancer stemness. Cancer Research, 70(17), 6945–6956.PubMedCrossRef
24.
Zurück zum Zitat Lohr, M., Schmidt, C., Ringel, J., Kluth, M., Muller, P., Nizze, H., et al. (2001). Transforming growth factor-beta1 induces desmoplasia in an experimental model of human pancreatic carcinoma. Cancer Research, 61(2), 550–555.PubMed Lohr, M., Schmidt, C., Ringel, J., Kluth, M., Muller, P., Nizze, H., et al. (2001). Transforming growth factor-beta1 induces desmoplasia in an experimental model of human pancreatic carcinoma. Cancer Research, 61(2), 550–555.PubMed
25.
Zurück zum Zitat Bronzert, D. A., Pantazis, P., Antoniades, H. N., Kasid, A., Davidson, N., Dickson, R. B., et al. (1987). Synthesis and secretion of platelet-derived growth factor by human breast cancer cell lines. Proceedings of the National Academy of Sciences of the United States of America, 84(16), 5763–5767.PubMedCrossRef Bronzert, D. A., Pantazis, P., Antoniades, H. N., Kasid, A., Davidson, N., Dickson, R. B., et al. (1987). Synthesis and secretion of platelet-derived growth factor by human breast cancer cell lines. Proceedings of the National Academy of Sciences of the United States of America, 84(16), 5763–5767.PubMedCrossRef
26.
Zurück zum Zitat Shao, Z. M., Nguyen, M., & Barsky, S. H. (2000). Human breast carcinoma desmoplasia is PDGF initiated. Oncogene, 19(38), 4337–4345.PubMedCrossRef Shao, Z. M., Nguyen, M., & Barsky, S. H. (2000). Human breast carcinoma desmoplasia is PDGF initiated. Oncogene, 19(38), 4337–4345.PubMedCrossRef
27.
Zurück zum Zitat Strutz, F., Zeisberg, M., Hemmerlein, B., Sattler, B., Hummel, K., Becker, V., et al. (2000). Basic fibroblast growth factor expression is increased in human renal fibrogenesis and may mediate autocrine fibroblast proliferation. Kidney International, 57(4), 1521–1538.PubMedCrossRef Strutz, F., Zeisberg, M., Hemmerlein, B., Sattler, B., Hummel, K., Becker, V., et al. (2000). Basic fibroblast growth factor expression is increased in human renal fibrogenesis and may mediate autocrine fibroblast proliferation. Kidney International, 57(4), 1521–1538.PubMedCrossRef
28.
Zurück zum Zitat Cat, B., Stuhlmann, D., Steinbrenner, H., Alili, L., Holtkotter, O., Sies, H., et al. (2006). Enhancement of tumor invasion depends on transdifferentiation of skin fibroblasts mediated by reactive oxygen species. Journal of Cell Science, 119(Pt 13), 2727–2738.PubMedCrossRef Cat, B., Stuhlmann, D., Steinbrenner, H., Alili, L., Holtkotter, O., Sies, H., et al. (2006). Enhancement of tumor invasion depends on transdifferentiation of skin fibroblasts mediated by reactive oxygen species. Journal of Cell Science, 119(Pt 13), 2727–2738.PubMedCrossRef
29.
Zurück zum Zitat Stuhlmann, D., Steinbrenner, H., Wendlandt, B., Mitic, D., Sies, H., & Brenneisen, P. (2004). Paracrine effect of TGF-beta1 on downregulation of gap junctional intercellular communication between human dermal fibroblasts. Biochemical and Biophysical Research Communications, 319(2), 321–326.PubMedCrossRef Stuhlmann, D., Steinbrenner, H., Wendlandt, B., Mitic, D., Sies, H., & Brenneisen, P. (2004). Paracrine effect of TGF-beta1 on downregulation of gap junctional intercellular communication between human dermal fibroblasts. Biochemical and Biophysical Research Communications, 319(2), 321–326.PubMedCrossRef
30.
Zurück zum Zitat Giannoni, E., Bianchini, F., Calorini, L., & Chiarugi, P. (2011). Cancer associated fibroblasts exploit reactive oxygen species through a pro-inflammatory signature leading to epithelial mesenchymal transition and stemness. Antioxidand & Redox Signaling, 14, 2361–2371.CrossRef Giannoni, E., Bianchini, F., Calorini, L., & Chiarugi, P. (2011). Cancer associated fibroblasts exploit reactive oxygen species through a pro-inflammatory signature leading to epithelial mesenchymal transition and stemness. Antioxidand & Redox Signaling, 14, 2361–2371.CrossRef
31.
Zurück zum Zitat Toullec, A., Gerald, D., Despouy, G., Bourachot, B., Cardon, M., Lefort, S., et al. (2010). Oxidative stress promotes myofibroblast differentiation and tumour spreading. EMBO Molecular Medicine, 2(6), 211–230.PubMedCrossRef Toullec, A., Gerald, D., Despouy, G., Bourachot, B., Cardon, M., Lefort, S., et al. (2010). Oxidative stress promotes myofibroblast differentiation and tumour spreading. EMBO Molecular Medicine, 2(6), 211–230.PubMedCrossRef
32.
Zurück zum Zitat Georges, P. C., & Janmey, P. A. (2005). Cell type-specific response to growth on soft materials. Journal of Applied Physiology, 98(4), 1547–1553.PubMedCrossRef Georges, P. C., & Janmey, P. A. (2005). Cell type-specific response to growth on soft materials. Journal of Applied Physiology, 98(4), 1547–1553.PubMedCrossRef
33.
Zurück zum Zitat Discher, D. E., Janmey, P., & Wang, Y. L. (2005). Tissue cells feel and respond to the stiffness of their substrate. Science, 310(5751), 1139–1143.PubMedCrossRef Discher, D. E., Janmey, P., & Wang, Y. L. (2005). Tissue cells feel and respond to the stiffness of their substrate. Science, 310(5751), 1139–1143.PubMedCrossRef
34.
Zurück zum Zitat Assoian, R. K., & Klein, E. A. (2008). Growth control by intracellular tension and extracellular stiffness. Trends in Cell Biology, 18(7), 347–352.PubMedCrossRef Assoian, R. K., & Klein, E. A. (2008). Growth control by intracellular tension and extracellular stiffness. Trends in Cell Biology, 18(7), 347–352.PubMedCrossRef
35.
Zurück zum Zitat Paszek, M. J., Zahir, N., Johnson, K. R., Lakins, J. N., Rozenberg, G. I., Gefen, A., et al. (2005). Tensional homeostasis and the malignant phenotype. Cancer Cell, 8(3), 241–254.PubMedCrossRef Paszek, M. J., Zahir, N., Johnson, K. R., Lakins, J. N., Rozenberg, G. I., Gefen, A., et al. (2005). Tensional homeostasis and the malignant phenotype. Cancer Cell, 8(3), 241–254.PubMedCrossRef
36.
Zurück zum Zitat Chun, T. H., Hotary, K. B., Sabeh, F., Saltiel, A. R., Allen, E. D., & Weiss, S. J. (2006). A pericellular collagenase directs the 3-dimensional development of white adipose tissue. Cell, 125(3), 577–591.PubMedCrossRef Chun, T. H., Hotary, K. B., Sabeh, F., Saltiel, A. R., Allen, E. D., & Weiss, S. J. (2006). A pericellular collagenase directs the 3-dimensional development of white adipose tissue. Cell, 125(3), 577–591.PubMedCrossRef
37.
Zurück zum Zitat Huijbers, I. J., Iravani, M., Popov, S., Robertson, D., Al-Sarraj, S., Jones, C., et al. (2010). A role for fibrillar collagen deposition and the collagen internalization receptor endo180 in glioma invasion. PLoS One, 5(3), e9808.PubMedCrossRef Huijbers, I. J., Iravani, M., Popov, S., Robertson, D., Al-Sarraj, S., Jones, C., et al. (2010). A role for fibrillar collagen deposition and the collagen internalization receptor endo180 in glioma invasion. PLoS One, 5(3), e9808.PubMedCrossRef
38.
Zurück zum Zitat Kauppila, S., Stenback, F., Risteli, J., Jukkola, A., & Risteli, L. (1998). Aberrant type I and type III collagen gene expression in human breast cancer in vivo. The Journal of Pathology, 186(3), 262–268.PubMedCrossRef Kauppila, S., Stenback, F., Risteli, J., Jukkola, A., & Risteli, L. (1998). Aberrant type I and type III collagen gene expression in human breast cancer in vivo. The Journal of Pathology, 186(3), 262–268.PubMedCrossRef
39.
Zurück zum Zitat Hasebe, T., Sasaki, S., Imoto, S., Mukai, K., Yokose, T., & Ochiai, A. (2002). Prognostic significance of fibrotic focus in invasive ductal carcinoma of the breast: A prospective observational study. Modern Pathology, 15(5), 502–516.PubMedCrossRef Hasebe, T., Sasaki, S., Imoto, S., Mukai, K., Yokose, T., & Ochiai, A. (2002). Prognostic significance of fibrotic focus in invasive ductal carcinoma of the breast: A prospective observational study. Modern Pathology, 15(5), 502–516.PubMedCrossRef
40.
Zurück zum Zitat Kaplan, R. N., Riba, R. D., Zacharoulis, S., Bramley, A. H., Vincent, L., Costa, C., et al. (2005). VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature, 438(7069), 820–827.PubMedCrossRef Kaplan, R. N., Riba, R. D., Zacharoulis, S., Bramley, A. H., Vincent, L., Costa, C., et al. (2005). VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature, 438(7069), 820–827.PubMedCrossRef
41.
Zurück zum Zitat Levental, K. R., Yu, H., Kass, L., Lakins, J. N., Egeblad, M., Erler, J. T., et al. (2009). Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell, 139(5), 891–906.PubMedCrossRef Levental, K. R., Yu, H., Kass, L., Lakins, J. N., Egeblad, M., Erler, J. T., et al. (2009). Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell, 139(5), 891–906.PubMedCrossRef
42.
Zurück zum Zitat Santhanam, A. N., Baker, A. R., Hegamyer, G., Kirschmann, D. A., & Colburn, N. H. (2010). Pdcd4 repression of lysyl oxidase inhibits hypoxia-induced breast cancer cell invasion. Oncogene, 29(27), 3921–3932.PubMedCrossRef Santhanam, A. N., Baker, A. R., Hegamyer, G., Kirschmann, D. A., & Colburn, N. H. (2010). Pdcd4 repression of lysyl oxidase inhibits hypoxia-induced breast cancer cell invasion. Oncogene, 29(27), 3921–3932.PubMedCrossRef
43.
Zurück zum Zitat Olive, K. P., Jacobetz, M. A., Davidson, C. J., Gopinathan, A., McIntyre, D., Honess, D., et al. (2009). Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science, 324(5933), 1457–1461.PubMedCrossRef Olive, K. P., Jacobetz, M. A., Davidson, C. J., Gopinathan, A., McIntyre, D., Honess, D., et al. (2009). Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science, 324(5933), 1457–1461.PubMedCrossRef
44.
Zurück zum Zitat Shieh, A. C., Rozansky, H. A., Hinz, B., & Swartz, M. A. (2011). Tumor cell invasion is promoted by interstitial flow-induced matrix priming by stromal fibroblasts. Cancer Research, 71(3), 790–800.PubMedCrossRef Shieh, A. C., Rozansky, H. A., Hinz, B., & Swartz, M. A. (2011). Tumor cell invasion is promoted by interstitial flow-induced matrix priming by stromal fibroblasts. Cancer Research, 71(3), 790–800.PubMedCrossRef
45.
Zurück zum Zitat Gaggioli, C., Hooper, S., Hidalgo-Carcedo, C., Grosse, R., Marshall, J. F., Harrington, K., et al. (2007). Fibroblast-led collective invasion of carcinoma cells with differing roles for RhoGTPases in leading and following cells. Nature Cell Biology, 9(12), 1392–1400.PubMedCrossRef Gaggioli, C., Hooper, S., Hidalgo-Carcedo, C., Grosse, R., Marshall, J. F., Harrington, K., et al. (2007). Fibroblast-led collective invasion of carcinoma cells with differing roles for RhoGTPases in leading and following cells. Nature Cell Biology, 9(12), 1392–1400.PubMedCrossRef
46.
Zurück zum Zitat Plow, E. F., Haas, T. A., Zhang, L., Loftus, J., & Smith, J. W. (2000). Ligand binding to integrins. Journal of Biological Chemistry, 275(29), 21785–21788.PubMedCrossRef Plow, E. F., Haas, T. A., Zhang, L., Loftus, J., & Smith, J. W. (2000). Ligand binding to integrins. Journal of Biological Chemistry, 275(29), 21785–21788.PubMedCrossRef
47.
Zurück zum Zitat Velling, T., Risteli, J., Wennerberg, K., Mosher, D. F., & Johansson, S. (2002). Polymerization of type I and III collagens is dependent on fibronectin and enhanced by integrins alpha 11beta 1 and alpha 2beta 1. Journal of Biological Chemistry, 277(40), 37377–37381.PubMedCrossRef Velling, T., Risteli, J., Wennerberg, K., Mosher, D. F., & Johansson, S. (2002). Polymerization of type I and III collagens is dependent on fibronectin and enhanced by integrins alpha 11beta 1 and alpha 2beta 1. Journal of Biological Chemistry, 277(40), 37377–37381.PubMedCrossRef
48.
Zurück zum Zitat Pankov, R., & Yamada, K. M. (2002). Fibronectin at a glance. Journal of Cell Science, 115(Pt 20), 3861–3863.PubMedCrossRef Pankov, R., & Yamada, K. M. (2002). Fibronectin at a glance. Journal of Cell Science, 115(Pt 20), 3861–3863.PubMedCrossRef
49.
Zurück zum Zitat Chen, S. H., Lin, C. Y., Lee, L. T., Chang, G. D., Lee, P. P., Hung, C. C., et al. (2010). Up-regulation of fibronectin and tissue transglutaminase promotes cell invasion involving increased association with integrin and MMP expression in A431 cells. Anticancer Research, 30(10), 4177–4186.PubMed Chen, S. H., Lin, C. Y., Lee, L. T., Chang, G. D., Lee, P. P., Hung, C. C., et al. (2010). Up-regulation of fibronectin and tissue transglutaminase promotes cell invasion involving increased association with integrin and MMP expression in A431 cells. Anticancer Research, 30(10), 4177–4186.PubMed
50.
Zurück zum Zitat Mitra, A. K., Sawada, K., Tiwari, P., Mui, K., Gwin, K., & Lengyel, E. (2011). Ligand-independent activation of c-Met by fibronectin and alpha(5)beta(1)-integrin regulates ovarian cancer invasion and metastasis. Oncogene, 30(13), 1566–1576.PubMedCrossRef Mitra, A. K., Sawada, K., Tiwari, P., Mui, K., Gwin, K., & Lengyel, E. (2011). Ligand-independent activation of c-Met by fibronectin and alpha(5)beta(1)-integrin regulates ovarian cancer invasion and metastasis. Oncogene, 30(13), 1566–1576.PubMedCrossRef
51.
Zurück zum Zitat Kobayashi, N., Miyoshi, S., Mikami, T., Koyama, H., Kitazawa, M., Takeoka, M., et al. (2010). Hyaluronan deficiency in tumor stroma impairs macrophage trafficking and tumor neovascularization. Cancer Research, 70(18), 7073–7083.PubMedCrossRef Kobayashi, N., Miyoshi, S., Mikami, T., Koyama, H., Kitazawa, M., Takeoka, M., et al. (2010). Hyaluronan deficiency in tumor stroma impairs macrophage trafficking and tumor neovascularization. Cancer Research, 70(18), 7073–7083.PubMedCrossRef
52.
Zurück zum Zitat Wang, W., Li, Q., Yamada, T., Matsumoto, K., Matsumoto, I., Oda, M., et al. (2009). Crosstalk to stromal fibroblasts induces resistance of lung cancer to epidermal growth factor receptor tyrosine kinase inhibitors. Clinical Cancer Research, 15(21), 6630–6638.PubMedCrossRef Wang, W., Li, Q., Yamada, T., Matsumoto, K., Matsumoto, I., Oda, M., et al. (2009). Crosstalk to stromal fibroblasts induces resistance of lung cancer to epidermal growth factor receptor tyrosine kinase inhibitors. Clinical Cancer Research, 15(21), 6630–6638.PubMedCrossRef
53.
Zurück zum Zitat Jedeszko, C., Victor, B. C., Podgorski, I., & Sloane, B. F. (2009). Fibroblast hepatocyte growth factor promotes invasion of human mammary ductal carcinoma in situ. Cancer Research, 69(23), 9148–9155.PubMedCrossRef Jedeszko, C., Victor, B. C., Podgorski, I., & Sloane, B. F. (2009). Fibroblast hepatocyte growth factor promotes invasion of human mammary ductal carcinoma in situ. Cancer Research, 69(23), 9148–9155.PubMedCrossRef
54.
Zurück zum Zitat Matsumoto, K., & Nakamura, T. (2006). Hepatocyte growth factor and the Met system as a mediator of tumor–stromal interactions. International Journal of Cancer, 119(3), 477–483.CrossRef Matsumoto, K., & Nakamura, T. (2006). Hepatocyte growth factor and the Met system as a mediator of tumor–stromal interactions. International Journal of Cancer, 119(3), 477–483.CrossRef
55.
Zurück zum Zitat Matsumoto, K., Okazaki, H., & Nakamura, T. (1995). Novel function of prostaglandins as inducers of gene expression of HGF and putative mediators of tissue regeneration. Journal of Biochemistry, 117(2), 458–464.PubMedCrossRef Matsumoto, K., Okazaki, H., & Nakamura, T. (1995). Novel function of prostaglandins as inducers of gene expression of HGF and putative mediators of tissue regeneration. Journal of Biochemistry, 117(2), 458–464.PubMedCrossRef
56.
Zurück zum Zitat Bhowmick, N. A., Chytil, A., Plieth, D., Gorska, A. E., Dumont, N., Shappell, S., et al. (2004). TGF-beta signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science, 303(5659), 848–851.PubMedCrossRef Bhowmick, N. A., Chytil, A., Plieth, D., Gorska, A. E., Dumont, N., Shappell, S., et al. (2004). TGF-beta signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science, 303(5659), 848–851.PubMedCrossRef
57.
Zurück zum Zitat Gerber, P. A., Hippe, A., Buhren, B. A., Muller, A., & Homey, B. (2009). Chemokines in tumor-associated angiogenesis. Biological Chemistry, 390(12), 1213–1223.PubMedCrossRef Gerber, P. A., Hippe, A., Buhren, B. A., Muller, A., & Homey, B. (2009). Chemokines in tumor-associated angiogenesis. Biological Chemistry, 390(12), 1213–1223.PubMedCrossRef
58.
Zurück zum Zitat Matsuo, Y., Ochi, N., Sawai, H., Yasuda, A., Takahashi, H., Funahashi, H., et al. (2009). CXCL8/IL-8 and CXCL12/SDF-1alpha co-operatively promote invasiveness and angiogenesis in pancreatic cancer. International Journal of Cancer, 124(4), 853–861.CrossRef Matsuo, Y., Ochi, N., Sawai, H., Yasuda, A., Takahashi, H., Funahashi, H., et al. (2009). CXCL8/IL-8 and CXCL12/SDF-1alpha co-operatively promote invasiveness and angiogenesis in pancreatic cancer. International Journal of Cancer, 124(4), 853–861.CrossRef
59.
Zurück zum Zitat Orimo, A., Gupta, P. B., Sgroi, D. C., Arenzana-Seisdedos, F., Delaunay, T., Naeem, R., et al. (2005). Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell, 121(3), 335–348.PubMedCrossRef Orimo, A., Gupta, P. B., Sgroi, D. C., Arenzana-Seisdedos, F., Delaunay, T., Naeem, R., et al. (2005). Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell, 121(3), 335–348.PubMedCrossRef
60.
Zurück zum Zitat Augsten, M., Hagglof, C., Olsson, E., Stolz, C., Tsagozis, P., Levchenko, T., et al. (2009). CXCL14 is an autocrine growth factor for fibroblasts and acts as a multi-modal stimulator of prostate tumor growth. Proceedings of the National Academy of Sciences of the United States of America, 106(9), 3414–3419.PubMedCrossRef Augsten, M., Hagglof, C., Olsson, E., Stolz, C., Tsagozis, P., Levchenko, T., et al. (2009). CXCL14 is an autocrine growth factor for fibroblasts and acts as a multi-modal stimulator of prostate tumor growth. Proceedings of the National Academy of Sciences of the United States of America, 106(9), 3414–3419.PubMedCrossRef
61.
Zurück zum Zitat Erez, N., Truitt, M., Olson, P., Arron, S. T., & Hanahan, D. (2010). Cancer-associated fibroblasts are activated in incipient neoplasia to orchestrate tumor-promoting inflammation in an NF-kappaB-dependent manner. Cancer Cell, 17(2), 135–147.PubMedCrossRef Erez, N., Truitt, M., Olson, P., Arron, S. T., & Hanahan, D. (2010). Cancer-associated fibroblasts are activated in incipient neoplasia to orchestrate tumor-promoting inflammation in an NF-kappaB-dependent manner. Cancer Cell, 17(2), 135–147.PubMedCrossRef
62.
Zurück zum Zitat Hynes, R. O. (2009). The extracellular matrix: Not just pretty fibrils. Science, 326(5957), 1216–1219.PubMedCrossRef Hynes, R. O. (2009). The extracellular matrix: Not just pretty fibrils. Science, 326(5957), 1216–1219.PubMedCrossRef
63.
Zurück zum Zitat Roy, R., Yang, J., & Moses, M. A. (2009). Matrix metalloproteinases as novel biomarkers and potential therapeutic targets in human cancer. Journal of Clinical Oncology, 27(31), 5287–5297.PubMedCrossRef Roy, R., Yang, J., & Moses, M. A. (2009). Matrix metalloproteinases as novel biomarkers and potential therapeutic targets in human cancer. Journal of Clinical Oncology, 27(31), 5287–5297.PubMedCrossRef
64.
Zurück zum Zitat Vosseler, S., Lederle, W., Airola, K., Obermueller, E., Fusenig, N. E., & Mueller, M. M. (2009). Distinct progression-associated expression of tumor and stromal MMPs in HaCaT skin SCCs correlates with onset of invasion. International Journal of Cancer, 125(10), 2296–2306.CrossRef Vosseler, S., Lederle, W., Airola, K., Obermueller, E., Fusenig, N. E., & Mueller, M. M. (2009). Distinct progression-associated expression of tumor and stromal MMPs in HaCaT skin SCCs correlates with onset of invasion. International Journal of Cancer, 125(10), 2296–2306.CrossRef
65.
Zurück zum Zitat Lederle, W., Hartenstein, B., Meides, A., Kunzelmann, H., Werb, Z., Angel, P., et al. (2010). MMP13 as a stromal mediator in controlling persistent angiogenesis in skin carcinoma. Carcinogenesis, 31(7), 1175–1184.PubMedCrossRef Lederle, W., Hartenstein, B., Meides, A., Kunzelmann, H., Werb, Z., Angel, P., et al. (2010). MMP13 as a stromal mediator in controlling persistent angiogenesis in skin carcinoma. Carcinogenesis, 31(7), 1175–1184.PubMedCrossRef
66.
Zurück zum Zitat Dean, J. P., & Nelson, P. S. (2008). Profiling influences of senescent and aged fibroblasts on prostate carcinogenesis. British Journal of Cancer, 98(2), 245–249.PubMedCrossRef Dean, J. P., & Nelson, P. S. (2008). Profiling influences of senescent and aged fibroblasts on prostate carcinogenesis. British Journal of Cancer, 98(2), 245–249.PubMedCrossRef
67.
Zurück zum Zitat Blasi, F., & Sidenius, N. (2010). The urokinase receptor: Focused cell surface proteolysis, cell adhesion and signaling. FEBS Letters, 584(9), 1923–1930.PubMedCrossRef Blasi, F., & Sidenius, N. (2010). The urokinase receptor: Focused cell surface proteolysis, cell adhesion and signaling. FEBS Letters, 584(9), 1923–1930.PubMedCrossRef
68.
Zurück zum Zitat Noskova, V., Ahmadi, S., Asander, E., & Casslen, B. (2009). Ovarian cancer cells stimulate uPA gene expression in fibroblastic stromal cells via multiple paracrine and autocrine mechanisms. Gynecologic Oncology, 115(1), 121–126.PubMedCrossRef Noskova, V., Ahmadi, S., Asander, E., & Casslen, B. (2009). Ovarian cancer cells stimulate uPA gene expression in fibroblastic stromal cells via multiple paracrine and autocrine mechanisms. Gynecologic Oncology, 115(1), 121–126.PubMedCrossRef
69.
Zurück zum Zitat Coppe, J. P., Desprez, P. Y., Krtolica, A., & Campisi, J. (2010). The senescence-associated secretory phenotype: The dark side of tumor suppression. Annual Review of Pathology, 5, 99–118.PubMedCrossRef Coppe, J. P., Desprez, P. Y., Krtolica, A., & Campisi, J. (2010). The senescence-associated secretory phenotype: The dark side of tumor suppression. Annual Review of Pathology, 5, 99–118.PubMedCrossRef
70.
Zurück zum Zitat Davalos, A. R., Coppe, J. P., Campisi, J., & Desprez, P. Y. (2010). Senescent cells as a source of inflammatory factors for tumor progression. Cancer Metastasis Reviews, 29(2), 273–283.PubMedCrossRef Davalos, A. R., Coppe, J. P., Campisi, J., & Desprez, P. Y. (2010). Senescent cells as a source of inflammatory factors for tumor progression. Cancer Metastasis Reviews, 29(2), 273–283.PubMedCrossRef
71.
Zurück zum Zitat Laberge, R. M., Awad, P., Campisi, J., & Desprez, P. Y. (2011). Epithelial–mesenchymal transition induced by senescent fibroblasts. Cancer Microenviron. doi:10.1007/s12307-011-0069-4. Laberge, R. M., Awad, P., Campisi, J., & Desprez, P. Y. (2011). Epithelial–mesenchymal transition induced by senescent fibroblasts. Cancer Microenviron. doi:10.​1007/​s12307-011-0069-4.
72.
Zurück zum Zitat Lee, C. (1996). Role of androgen in prostate growth and regression: Stromal–epithelial interaction. The Prostate. Supplement, 6, 52–56.PubMedCrossRef Lee, C. (1996). Role of androgen in prostate growth and regression: Stromal–epithelial interaction. The Prostate. Supplement, 6, 52–56.PubMedCrossRef
73.
Zurück zum Zitat Chang, S. M., & Chung, L. W. (1989). Interaction between prostatic fibroblast and epithelial cells in culture: Role of androgen. Endocrinology, 125(5), 2719–2727.PubMedCrossRef Chang, S. M., & Chung, L. W. (1989). Interaction between prostatic fibroblast and epithelial cells in culture: Role of androgen. Endocrinology, 125(5), 2719–2727.PubMedCrossRef
74.
Zurück zum Zitat Cano, P., Godoy, A., Escamilla, R., Dhir, R., & Onate, S. A. (2007). Stromal–epithelial cell interactions and androgen receptor–coregulator recruitment is altered in the tissue microenvironment of prostate cancer. Cancer Research, 67(2), 511–519.PubMedCrossRef Cano, P., Godoy, A., Escamilla, R., Dhir, R., & Onate, S. A. (2007). Stromal–epithelial cell interactions and androgen receptor–coregulator recruitment is altered in the tissue microenvironment of prostate cancer. Cancer Research, 67(2), 511–519.PubMedCrossRef
75.
Zurück zum Zitat Ricciardelli, C., Choong, C. S., Buchanan, G., Vivekanandan, S., Neufing, P., Stahl, J., et al. (2005). Androgen receptor levels in prostate cancer epithelial and peritumoral stromal cells identify non-organ confined disease. Prostate, 63(1), 19–28.PubMedCrossRef Ricciardelli, C., Choong, C. S., Buchanan, G., Vivekanandan, S., Neufing, P., Stahl, J., et al. (2005). Androgen receptor levels in prostate cancer epithelial and peritumoral stromal cells identify non-organ confined disease. Prostate, 63(1), 19–28.PubMedCrossRef
76.
Zurück zum Zitat Henshall, S. M., Quinn, D. I., Lee, C. S., Head, D. R., Golovsky, D., Brenner, P. C., et al. (2001). Altered expression of androgen receptor in the malignant epithelium and adjacent stroma is associated with early relapse in prostate cancer. Cancer Research, 61(2), 423–427.PubMed Henshall, S. M., Quinn, D. I., Lee, C. S., Head, D. R., Golovsky, D., Brenner, P. C., et al. (2001). Altered expression of androgen receptor in the malignant epithelium and adjacent stroma is associated with early relapse in prostate cancer. Cancer Research, 61(2), 423–427.PubMed
77.
Zurück zum Zitat Zhao, Y., Nichols, J. E., Valdez, R., Mendelson, C. R., & Simpson, E. R. (1996). Tumor necrosis factor-alpha stimulates aromatase gene expression in human adipose stromal cells through use of an activating protein-1 binding site upstream of promoter 1.4. Molecular Endocrinology, 10(11), 1350–1357.PubMedCrossRef Zhao, Y., Nichols, J. E., Valdez, R., Mendelson, C. R., & Simpson, E. R. (1996). Tumor necrosis factor-alpha stimulates aromatase gene expression in human adipose stromal cells through use of an activating protein-1 binding site upstream of promoter 1.4. Molecular Endocrinology, 10(11), 1350–1357.PubMedCrossRef
78.
Zurück zum Zitat Simpson, E. R., & Davis, S. R. (2001). Minireview: Aromatase and the regulation of estrogen biosynthesis—Some new perspectives. Endocrinology, 142(11), 4589–4594.PubMedCrossRef Simpson, E. R., & Davis, S. R. (2001). Minireview: Aromatase and the regulation of estrogen biosynthesis—Some new perspectives. Endocrinology, 142(11), 4589–4594.PubMedCrossRef
79.
Zurück zum Zitat Santen, R. J., Santner, S. J., Pauley, R. J., Tait, L., Kaseta, J., Demers, L. M., et al. (1997). Estrogen production via the aromatase enzyme in breast carcinoma: Which cell type is responsible? The Journal of Steroid Biochemistry and Molecular Biology, 61(3–6), 267–271.PubMedCrossRef Santen, R. J., Santner, S. J., Pauley, R. J., Tait, L., Kaseta, J., Demers, L. M., et al. (1997). Estrogen production via the aromatase enzyme in breast carcinoma: Which cell type is responsible? The Journal of Steroid Biochemistry and Molecular Biology, 61(3–6), 267–271.PubMedCrossRef
80.
Zurück zum Zitat Howell, A., Cuzick, J., Baum, M., Buzdar, A., Dowsett, M., Forbes, J. F., et al. (2005). Results of the ATAC (arimidex, tamoxifen, alone or in combination) trial after completion of 5 years’ adjuvant treatment for breast cancer. Lancet, 365(9453), 60–62.PubMedCrossRef Howell, A., Cuzick, J., Baum, M., Buzdar, A., Dowsett, M., Forbes, J. F., et al. (2005). Results of the ATAC (arimidex, tamoxifen, alone or in combination) trial after completion of 5 years’ adjuvant treatment for breast cancer. Lancet, 365(9453), 60–62.PubMedCrossRef
81.
Zurück zum Zitat Joyce, J. A., & Pollard, J. W. (2009). Microenvironmental regulation of metastasis. Nature Reviews. Cancer, 9(4), 239–252.PubMedCrossRef Joyce, J. A., & Pollard, J. W. (2009). Microenvironmental regulation of metastasis. Nature Reviews. Cancer, 9(4), 239–252.PubMedCrossRef
82.
Zurück zum Zitat De, W. O., Demetter, P., Mareel, M., & Bracke, M. (2008). Stromal myofibroblasts are drivers of invasive cancer growth. International Journal of Cancer, 123(10), 2229–2238.CrossRef De, W. O., Demetter, P., Mareel, M., & Bracke, M. (2008). Stromal myofibroblasts are drivers of invasive cancer growth. International Journal of Cancer, 123(10), 2229–2238.CrossRef
83.
Zurück zum Zitat De Wever, O., Nguyen, Q. D., Van, H. L., Bracke, M., Bruyneel, E., Gespach, C., et al. (2004). Tenascin-C and SF/HGF produced by myofibroblasts in vitro provide convergent pro-invasive signals to human colon cancer cells through RhoA and Rac. The FASEB Journal, 18(9), 1016–1018. De Wever, O., Nguyen, Q. D., Van, H. L., Bracke, M., Bruyneel, E., Gespach, C., et al. (2004). Tenascin-C and SF/HGF produced by myofibroblasts in vitro provide convergent pro-invasive signals to human colon cancer cells through RhoA and Rac. The FASEB Journal, 18(9), 1016–1018.
84.
Zurück zum Zitat Kalluri, R. (2009). EMT: When epithelial cells decide to become mesenchymal-like cells. The Journal of Clinical Investigation, 119(6), 1417–1419.PubMedCrossRef Kalluri, R. (2009). EMT: When epithelial cells decide to become mesenchymal-like cells. The Journal of Clinical Investigation, 119(6), 1417–1419.PubMedCrossRef
85.
Zurück zum Zitat Thiery, J. P., Acloque, H., Huang, R. Y., & Nieto, M. A. (2009). Epithelial–mesenchymal transitions in development and disease. Cell, 139(5), 871–890.PubMedCrossRef Thiery, J. P., Acloque, H., Huang, R. Y., & Nieto, M. A. (2009). Epithelial–mesenchymal transitions in development and disease. Cell, 139(5), 871–890.PubMedCrossRef
86.
Zurück zum Zitat Blick, T., Hugo, H., Widodo, E., Waltham, M., Pinto, C., Mani, S. A., et al. (2010). Epithelial mesenchymal transition traits in human breast cancer cell lines parallel the CD44(hi/)CD24 (lo/-) stem cell phenotype in human breast cancer. Journal of Mammary Gland Biology and Neoplasia, 15(2), 235–252.PubMedCrossRef Blick, T., Hugo, H., Widodo, E., Waltham, M., Pinto, C., Mani, S. A., et al. (2010). Epithelial mesenchymal transition traits in human breast cancer cell lines parallel the CD44(hi/)CD24 (lo/-) stem cell phenotype in human breast cancer. Journal of Mammary Gland Biology and Neoplasia, 15(2), 235–252.PubMedCrossRef
87.
Zurück zum Zitat Mani, S. A., Guo, W., Liao, M. J., Eaton, E. N., Ayyanan, A., Zhou, A. Y., et al. (2008). The epithelial–mesenchymal transition generates cells with properties of stem cells. Cell, 133(4), 704–715.PubMedCrossRef Mani, S. A., Guo, W., Liao, M. J., Eaton, E. N., Ayyanan, A., Zhou, A. Y., et al. (2008). The epithelial–mesenchymal transition generates cells with properties of stem cells. Cell, 133(4), 704–715.PubMedCrossRef
88.
Zurück zum Zitat Klarmann, G. J., Hurt, E. M., Mathews, L. A., Zhang, X., Duhagon, M. A., Mistree, T., et al. (2009). Invasive prostate cancer cells are tumor initiating cells that have a stem cell-like genomic signature. Clinical & Experimental Metastasis, 26(5), 433–446.CrossRef Klarmann, G. J., Hurt, E. M., Mathews, L. A., Zhang, X., Duhagon, M. A., Mistree, T., et al. (2009). Invasive prostate cancer cells are tumor initiating cells that have a stem cell-like genomic signature. Clinical & Experimental Metastasis, 26(5), 433–446.CrossRef
89.
Zurück zum Zitat Visvader, J. E., & Lindeman, G. J. (2008). Cancer stem cells in solid tumours: Accumulating evidence and unresolved questions. Nature Reviews. Cancer, 8(10), 755–768.PubMedCrossRef Visvader, J. E., & Lindeman, G. J. (2008). Cancer stem cells in solid tumours: Accumulating evidence and unresolved questions. Nature Reviews. Cancer, 8(10), 755–768.PubMedCrossRef
90.
Zurück zum Zitat Liao, C. P., Adisetiyo, H., Liang, M., & Roy-Burman, P. (2010). Cancer-associated fibroblasts enhance the gland-forming capability of prostate cancer stem cells. Cancer Research, 70(18), 7294–7303.PubMedCrossRef Liao, C. P., Adisetiyo, H., Liang, M., & Roy-Burman, P. (2010). Cancer-associated fibroblasts enhance the gland-forming capability of prostate cancer stem cells. Cancer Research, 70(18), 7294–7303.PubMedCrossRef
91.
Zurück zum Zitat Wu, Y., Deng, J., Rychahou, P. G., Qiu, S., Evers, B. M., & Zhou, B. P. (2009). Stabilization of snail by NF-kappaB is required for inflammation-induced cell migration and invasion. Cancer Cell, 15(5), 416–428.PubMedCrossRef Wu, Y., Deng, J., Rychahou, P. G., Qiu, S., Evers, B. M., & Zhou, B. P. (2009). Stabilization of snail by NF-kappaB is required for inflammation-induced cell migration and invasion. Cancer Cell, 15(5), 416–428.PubMedCrossRef
92.
Zurück zum Zitat Radisky, D. C., Levy, D. D., Littlepage, L. E., Liu, H., Nelson, C. M., Fata, J. E., et al. (2005). Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability. Nature, 436(7047), 123–127.PubMedCrossRef Radisky, D. C., Levy, D. D., Littlepage, L. E., Liu, H., Nelson, C. M., Fata, J. E., et al. (2005). Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability. Nature, 436(7047), 123–127.PubMedCrossRef
93.
Zurück zum Zitat De, W. O., Pauwels, P., De, C. B., Sabbah, M., Emami, S., Redeuilh, G., et al. (2008). Molecular and pathological signatures of epithelial–mesenchymal transitions at the cancer invasion front. Histochemistry and Cell Biology, 130(3), 481–494.CrossRef De, W. O., Pauwels, P., De, C. B., Sabbah, M., Emami, S., Redeuilh, G., et al. (2008). Molecular and pathological signatures of epithelial–mesenchymal transitions at the cancer invasion front. Histochemistry and Cell Biology, 130(3), 481–494.CrossRef
94.
Zurück zum Zitat Patocs, A., Zhang, L., Xu, Y., Weber, F., Caldes, T., Mutter, G. L., et al. (2007). Breast-cancer stromal cells with TP53 mutations and nodal metastases. The New England Journal of Medicine, 357(25), 2543–2551.PubMedCrossRef Patocs, A., Zhang, L., Xu, Y., Weber, F., Caldes, T., Mutter, G. L., et al. (2007). Breast-cancer stromal cells with TP53 mutations and nodal metastases. The New England Journal of Medicine, 357(25), 2543–2551.PubMedCrossRef
95.
Zurück zum Zitat Jones, R. G., & Thompson, C. B. (2009). Tumor suppressors and cell metabolism: A recipe for cancer growth. Genes & Development, 23(5), 537–548.CrossRef Jones, R. G., & Thompson, C. B. (2009). Tumor suppressors and cell metabolism: A recipe for cancer growth. Genes & Development, 23(5), 537–548.CrossRef
96.
Zurück zum Zitat Vander Heiden, M. G., Cantley, L. C., & Thompson, C. B. (2009). Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science, 324(5930), 1029–1033.PubMedCrossRef Vander Heiden, M. G., Cantley, L. C., & Thompson, C. B. (2009). Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science, 324(5930), 1029–1033.PubMedCrossRef
97.
Zurück zum Zitat Christofk, H. R., Vander Heiden, M. G., Harris, M. H., Ramanathan, A., Gerszten, R. E., Wei, R., et al. (2008). The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature, 452(7184), 230–233.PubMedCrossRef Christofk, H. R., Vander Heiden, M. G., Harris, M. H., Ramanathan, A., Gerszten, R. E., Wei, R., et al. (2008). The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature, 452(7184), 230–233.PubMedCrossRef
98.
Zurück zum Zitat Vander Heiden, M. G., Locasale, J. W., Swanson, K. D., Sharfi, H., Heffron, G. J., Amador-Noguez, D., et al. (2010). Evidence for an alternative glycolytic pathway in rapidly proliferating cells. Science, 329(5998), 1492–1499.PubMedCrossRef Vander Heiden, M. G., Locasale, J. W., Swanson, K. D., Sharfi, H., Heffron, G. J., Amador-Noguez, D., et al. (2010). Evidence for an alternative glycolytic pathway in rapidly proliferating cells. Science, 329(5998), 1492–1499.PubMedCrossRef
99.
Zurück zum Zitat Luo, W., Hu, H., Chang, R., Zhong, J., Knabel, M., O’Meally, R., et al. (2011). Pyruvate kinase M2 Is a PHD3-stimulated coactivator for hypoxia-inducible factor 1. Cell, 145(5), 732–744.PubMedCrossRef Luo, W., Hu, H., Chang, R., Zhong, J., Knabel, M., O’Meally, R., et al. (2011). Pyruvate kinase M2 Is a PHD3-stimulated coactivator for hypoxia-inducible factor 1. Cell, 145(5), 732–744.PubMedCrossRef
100.
Zurück zum Zitat Pavlides, S., Whitaker-Menezes, D., Castello-Cros, R., Flomenberg, N., Witkiewicz, A. K., Frank, P. G., et al. (2009). The reverse Warburg effect: Aerobic glycolysis in cancer associated fibroblasts and the tumor stroma. Cell Cycle, 8(23), 3984–4001.PubMedCrossRef Pavlides, S., Whitaker-Menezes, D., Castello-Cros, R., Flomenberg, N., Witkiewicz, A. K., Frank, P. G., et al. (2009). The reverse Warburg effect: Aerobic glycolysis in cancer associated fibroblasts and the tumor stroma. Cell Cycle, 8(23), 3984–4001.PubMedCrossRef
101.
Zurück zum Zitat Martinez-Outschoorn, U. E., Trimmer, C., Lin, Z., Whitaker-Menezes, D., Chiavarina, B., Zhou, J., et al. (2010). Autophagy in cancer associated fibroblasts promotes tumor cell survival: Role of hypoxia, HIF1 induction and NFkappaB activation in the tumor stromal microenvironment. Cell Cycle, 9(17), 3515–3533.PubMedCrossRef Martinez-Outschoorn, U. E., Trimmer, C., Lin, Z., Whitaker-Menezes, D., Chiavarina, B., Zhou, J., et al. (2010). Autophagy in cancer associated fibroblasts promotes tumor cell survival: Role of hypoxia, HIF1 induction and NFkappaB activation in the tumor stromal microenvironment. Cell Cycle, 9(17), 3515–3533.PubMedCrossRef
102.
Zurück zum Zitat Koukourakis, M. I., Giatromanolaki, A., Harris, A. L., & Sivridis, E. (2006). Comparison of metabolic pathways between cancer cells and stromal cells in colorectal carcinomas: A metabolic survival role for tumor-associated stroma. Cancer Research, 66(2), 632–637.PubMedCrossRef Koukourakis, M. I., Giatromanolaki, A., Harris, A. L., & Sivridis, E. (2006). Comparison of metabolic pathways between cancer cells and stromal cells in colorectal carcinomas: A metabolic survival role for tumor-associated stroma. Cancer Research, 66(2), 632–637.PubMedCrossRef
103.
Zurück zum Zitat Garzon, R., Marcucci, G., & Croce, C. M. (2010). Targeting microRNAs in cancer: Rationale, strategies and challenges. Nature Reviews. Drug Discovery, 9(10), 775–789.PubMedCrossRef Garzon, R., Marcucci, G., & Croce, C. M. (2010). Targeting microRNAs in cancer: Rationale, strategies and challenges. Nature Reviews. Drug Discovery, 9(10), 775–789.PubMedCrossRef
104.
Zurück zum Zitat Tazawa, H., Kagawa, S., & Fujiwara, T. (2011). MicroRNAs as potential target gene in cancer gene therapy of gastrointestinal tumors. Expert Opinion on Biological Therapy, 11(2), 145–155.PubMedCrossRef Tazawa, H., Kagawa, S., & Fujiwara, T. (2011). MicroRNAs as potential target gene in cancer gene therapy of gastrointestinal tumors. Expert Opinion on Biological Therapy, 11(2), 145–155.PubMedCrossRef
105.
Zurück zum Zitat Musumeci, M., Coppola, V., Addario, A., Patrizii, M., Maugeri-Sacca, M., Memeo, L., et al. (2011). Control of tumor and microenvironment cross-talk by miR-15a and miR-16 in prostate cancer. Oncogene, 30, 4231–4242.PubMedCrossRef Musumeci, M., Coppola, V., Addario, A., Patrizii, M., Maugeri-Sacca, M., Memeo, L., et al. (2011). Control of tumor and microenvironment cross-talk by miR-15a and miR-16 in prostate cancer. Oncogene, 30, 4231–4242.PubMedCrossRef
106.
Zurück zum Zitat Nielsen, B. S., Jorgensen, S., Fog, J. U., Sokilde, R., Christensen, I. J., Hansen, U., et al. (2011). High levels of microRNA-21 in the stroma of colorectal cancers predict short disease-free survival in stage II colon cancer patients. Clinical & Experimental Metastasis, 28(1), 27–38.CrossRef Nielsen, B. S., Jorgensen, S., Fog, J. U., Sokilde, R., Christensen, I. J., Hansen, U., et al. (2011). High levels of microRNA-21 in the stroma of colorectal cancers predict short disease-free survival in stage II colon cancer patients. Clinical & Experimental Metastasis, 28(1), 27–38.CrossRef
107.
Zurück zum Zitat Yao, Q., Cao, S., Li, C., Mengesha, A., Kong, B., & Wei, M. (2011). Micro-RNA-21 regulates TGF-beta-induced myofibroblast differentiation by targeting PDCD4 in tumor–stroma interaction. International Journal of Cancer, 128(8), 1783–1792.CrossRef Yao, Q., Cao, S., Li, C., Mengesha, A., Kong, B., & Wei, M. (2011). Micro-RNA-21 regulates TGF-beta-induced myofibroblast differentiation by targeting PDCD4 in tumor–stroma interaction. International Journal of Cancer, 128(8), 1783–1792.CrossRef
108.
Zurück zum Zitat Aprelikova, O., Yu, X., Palla, J., Wei, B. R., John, S., Yi, M., et al. (2010). The role of miR-31 and its target gene SATB2 in cancer-associated fibroblasts. Cell Cycle, 9(21), 4387–4398.PubMedCrossRef Aprelikova, O., Yu, X., Palla, J., Wei, B. R., John, S., Yi, M., et al. (2010). The role of miR-31 and its target gene SATB2 in cancer-associated fibroblasts. Cell Cycle, 9(21), 4387–4398.PubMedCrossRef
109.
Zurück zum Zitat Lim, P. K., Bliss, S. A., Patel, S. A., Taborga, M., Dave, M. A., Gregory, L. A., et al. (2011). Gap junction-mediated import of microRNA from bone marrow stromal cells can elicit cell cycle quiescence in breast cancer cells. Cancer Research, 71(5), 1550–1560.PubMedCrossRef Lim, P. K., Bliss, S. A., Patel, S. A., Taborga, M., Dave, M. A., Gregory, L. A., et al. (2011). Gap junction-mediated import of microRNA from bone marrow stromal cells can elicit cell cycle quiescence in breast cancer cells. Cancer Research, 71(5), 1550–1560.PubMedCrossRef
110.
Zurück zum Zitat Grange, C., Tapparo, M., Collino, F., Vitillo, L., Damasco, C., Deregibus, M. C., et al. (2011). Microvesicles released from human renal cancer stem cells stimulate angiogenesis and formation of lung pre-metastatic niche. Cancer Research, 71, 5346–5356.PubMedCrossRef Grange, C., Tapparo, M., Collino, F., Vitillo, L., Damasco, C., Deregibus, M. C., et al. (2011). Microvesicles released from human renal cancer stem cells stimulate angiogenesis and formation of lung pre-metastatic niche. Cancer Research, 71, 5346–5356.PubMedCrossRef
111.
Zurück zum Zitat Nguyen, D. X., Bos, P. D., & Massague, J. (2009). Metastasis: From dissemination to organ-specific colonization. Nature Reviews. Cancer, 9(4), 274–284.PubMedCrossRef Nguyen, D. X., Bos, P. D., & Massague, J. (2009). Metastasis: From dissemination to organ-specific colonization. Nature Reviews. Cancer, 9(4), 274–284.PubMedCrossRef
112.
Zurück zum Zitat Tu, S. M., Lin, S. H., & Logothetis, C. J. (2002). Stem-cell origin of metastasis and heterogeneity in solid tumours. The Lancet Oncology, 3(8), 508–513.PubMedCrossRef Tu, S. M., Lin, S. H., & Logothetis, C. J. (2002). Stem-cell origin of metastasis and heterogeneity in solid tumours. The Lancet Oncology, 3(8), 508–513.PubMedCrossRef
113.
Zurück zum Zitat Psaila, B., & Lyden, D. (2009). The metastatic niche: Adapting the foreign soil. Nature Reviews. Cancer, 9(4), 285–293.PubMedCrossRef Psaila, B., & Lyden, D. (2009). The metastatic niche: Adapting the foreign soil. Nature Reviews. Cancer, 9(4), 285–293.PubMedCrossRef
114.
Zurück zum Zitat Duda, D. G., Duyverman, A. M., Kohno, M., Snuderl, M., Steller, E. J., Fukumura, D., et al. (2010). Malignant cells facilitate lung metastasis by bringing their own soil. Proceedings of the National Academy of Sciences of the United States of America, 107, 21677–21682.PubMedCrossRef Duda, D. G., Duyverman, A. M., Kohno, M., Snuderl, M., Steller, E. J., Fukumura, D., et al. (2010). Malignant cells facilitate lung metastasis by bringing their own soil. Proceedings of the National Academy of Sciences of the United States of America, 107, 21677–21682.PubMedCrossRef
115.
Zurück zum Zitat Sung, S. Y., Hsieh, C. L., Law, A., Zhau, H. E., Pathak, S., Multani, A. S., et al. (2008). Coevolution of prostate cancer and bone stroma in three-dimensional coculture: Implications for cancer growth and metastasis. Cancer Research, 68(23), 9996–10003.PubMedCrossRef Sung, S. Y., Hsieh, C. L., Law, A., Zhau, H. E., Pathak, S., Multani, A. S., et al. (2008). Coevolution of prostate cancer and bone stroma in three-dimensional coculture: Implications for cancer growth and metastasis. Cancer Research, 68(23), 9996–10003.PubMedCrossRef
116.
Zurück zum Zitat Pietras, K., Pahler, J., Bergers, G., & Hanahan, D. (2008). Functions of paracrine PDGF signaling in the proangiogenic tumor stroma revealed by pharmacological targeting. PLoS Medicine, 5(1), e19.PubMedCrossRef Pietras, K., Pahler, J., Bergers, G., & Hanahan, D. (2008). Functions of paracrine PDGF signaling in the proangiogenic tumor stroma revealed by pharmacological targeting. PLoS Medicine, 5(1), e19.PubMedCrossRef
117.
Zurück zum Zitat Wu, M. P., Young, M. J., Tzeng, C. C., Tzeng, C. R., Huang, K. F., Wu, L. W., et al. (2008). A novel role of thrombospondin-1 in cervical carcinogenesis: Inhibit stroma reaction by inhibiting activated fibroblasts from invading cancer. Carcinogenesis, 29(6), 1115–1123.PubMedCrossRef Wu, M. P., Young, M. J., Tzeng, C. C., Tzeng, C. R., Huang, K. F., Wu, L. W., et al. (2008). A novel role of thrombospondin-1 in cervical carcinogenesis: Inhibit stroma reaction by inhibiting activated fibroblasts from invading cancer. Carcinogenesis, 29(6), 1115–1123.PubMedCrossRef
118.
Zurück zum Zitat Wen, J., Matsumoto, K., Taniura, N., Tomioka, D., & Nakamura, T. (2004). Hepatic gene expression of NK4, an HGF-antagonist/angiogenesis inhibitor, suppresses liver metastasis and invasive growth of colon cancer in mice. Cancer Gene Therapy, 11(6), 419–430.PubMedCrossRef Wen, J., Matsumoto, K., Taniura, N., Tomioka, D., & Nakamura, T. (2004). Hepatic gene expression of NK4, an HGF-antagonist/angiogenesis inhibitor, suppresses liver metastasis and invasive growth of colon cancer in mice. Cancer Gene Therapy, 11(6), 419–430.PubMedCrossRef
119.
Zurück zum Zitat Kim, K. J., Wang, L., Su, Y. C., Gillespie, G. Y., Salhotra, A., Lal, B., et al. (2006). Systemic anti-hepatocyte growth factor monoclonal antibody therapy induces the regression of intracranial glioma xenografts. Clinical Cancer Research, 12(4), 1292–1298.PubMedCrossRef Kim, K. J., Wang, L., Su, Y. C., Gillespie, G. Y., Salhotra, A., Lal, B., et al. (2006). Systemic anti-hepatocyte growth factor monoclonal antibody therapy induces the regression of intracranial glioma xenografts. Clinical Cancer Research, 12(4), 1292–1298.PubMedCrossRef
120.
Zurück zum Zitat Crawford, Y., Kasman, I., Yu, L., Zhong, C., Wu, X., Modrusan, Z., et al. (2009). PDGF-C mediates the angiogenic and tumorigenic properties of fibroblasts associated with tumors refractory to anti-VEGF treatment. Cancer Cell, 15(1), 21–34.PubMedCrossRef Crawford, Y., Kasman, I., Yu, L., Zhong, C., Wu, X., Modrusan, Z., et al. (2009). PDGF-C mediates the angiogenic and tumorigenic properties of fibroblasts associated with tumors refractory to anti-VEGF treatment. Cancer Cell, 15(1), 21–34.PubMedCrossRef
121.
Zurück zum Zitat Sato, N., Maehara, N., & Goggins, M. (2004). Gene expression profiling of tumor–stromal interactions between pancreatic cancer cells and stromal fibroblasts. Cancer Research, 64(19), 6950–6956.PubMedCrossRef Sato, N., Maehara, N., & Goggins, M. (2004). Gene expression profiling of tumor–stromal interactions between pancreatic cancer cells and stromal fibroblasts. Cancer Research, 64(19), 6950–6956.PubMedCrossRef
122.
Zurück zum Zitat Hu, M., Peluffo, G., Chen, H., Gelman, R., Schnitt, S., & Polyak, K. (2009). Role of COX-2 in epithelial-stromal cell interactions and progression of ductal carcinoma in situ of the breast. Proceedings of the National Academy of Sciences of the United States of America, 106(9), 3372–3377.PubMedCrossRef Hu, M., Peluffo, G., Chen, H., Gelman, R., Schnitt, S., & Polyak, K. (2009). Role of COX-2 in epithelial-stromal cell interactions and progression of ductal carcinoma in situ of the breast. Proceedings of the National Academy of Sciences of the United States of America, 106(9), 3372–3377.PubMedCrossRef
123.
Zurück zum Zitat Mann, J., Oakley, F., Akiboye, F., Elsharkawy, A., Thorne, A. W., & Mann, D. A. (2007). Regulation of myofibroblast transdifferentiation by DNA methylation and MeCP2: Implications for wound healing and fibrogenesis. Cell Death and Differentiation, 14(2), 275–285.PubMedCrossRef Mann, J., Oakley, F., Akiboye, F., Elsharkawy, A., Thorne, A. W., & Mann, D. A. (2007). Regulation of myofibroblast transdifferentiation by DNA methylation and MeCP2: Implications for wound healing and fibrogenesis. Cell Death and Differentiation, 14(2), 275–285.PubMedCrossRef
124.
Zurück zum Zitat Scott, A. M., Wiseman, G., Welt, S., Adjei, A., Lee, F. T., Hopkins, W., et al. (2003). A phase I dose-escalation study of sibrotuzumab in patients with advanced or metastatic fibroblast activation protein-positive cancer. Clinical Cancer Research, 9(5), 1639–1647.PubMed Scott, A. M., Wiseman, G., Welt, S., Adjei, A., Lee, F. T., Hopkins, W., et al. (2003). A phase I dose-escalation study of sibrotuzumab in patients with advanced or metastatic fibroblast activation protein-positive cancer. Clinical Cancer Research, 9(5), 1639–1647.PubMed
Metadaten
Titel
Cancer-associated-fibroblasts and tumour cells: a diabolic liaison driving cancer progression
verfasst von
Paolo Cirri
Paola Chiarugi
Publikationsdatum
01.06.2012
Verlag
Springer US
Erschienen in
Cancer and Metastasis Reviews / Ausgabe 1-2/2012
Print ISSN: 0167-7659
Elektronische ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-011-9340-x

Weitere Artikel der Ausgabe 1-2/2012

Cancer and Metastasis Reviews 1-2/2012 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.