Skip to main content
Erschienen in: Cancer and Metastasis Reviews 3-4/2012

01.12.2012

TGF-β signalling and its role in cancer progression and metastasis

verfasst von: Yvette Drabsch, Peter ten Dijke

Erschienen in: Cancer and Metastasis Reviews | Ausgabe 3-4/2012

Einloggen, um Zugang zu erhalten

Abstract

The transforming growth factor-β (TGF-β) system signals via protein kinase receptors and SMAD mediators to regulate a large number of biological processes. Alterations of the TGF-β signalling pathway are implicated in human cancer. Prior to tumour initiation and early during progression, TGF-β acts as a tumour suppressor; however, at later stages, it is often a tumour promoter. Knowledge about the mechanisms involved in TGF-β signal transduction has allowed a better understanding of cancer progression, invasion, metastasis and epithelial-to-mesenchymal transition. Furthermore, several molecular targets with great potential in therapeutic interventions have been identified. This review discusses the TGF-β signalling pathway, its involvement in cancer and current therapeutic approaches.
Literatur
1.
Zurück zum Zitat Frolik, C. A., Dart, L. L., Meyers, C. A., Smith, D. M., & Sporn, M. B. (1983). Purification and initial characterization of a type β transforming growth factor from human placenta. Proceedings of the National Academy of Sciences of the United States of America, 80(12), 3676–3680.PubMed Frolik, C. A., Dart, L. L., Meyers, C. A., Smith, D. M., & Sporn, M. B. (1983). Purification and initial characterization of a type β transforming growth factor from human placenta. Proceedings of the National Academy of Sciences of the United States of America, 80(12), 3676–3680.PubMed
2.
Zurück zum Zitat Galat, A. (2011). Common structural traits for cystine knot domain of the TGF-β superfamily of proteins and three-fingered ectodomain of their cellular receptors. Cellular and Molecular Life Sciences: CMLS, 68(20), 3437–3451.PubMed Galat, A. (2011). Common structural traits for cystine knot domain of the TGF-β superfamily of proteins and three-fingered ectodomain of their cellular receptors. Cellular and Molecular Life Sciences: CMLS, 68(20), 3437–3451.PubMed
3.
Zurück zum Zitat Roberts, A. B. (1998). Molecular and cell biology of TGF-β. Mineral and Electrolyte Metabolism, 24(2–3), 111–119.PubMed Roberts, A. B. (1998). Molecular and cell biology of TGF-β. Mineral and Electrolyte Metabolism, 24(2–3), 111–119.PubMed
4.
Zurück zum Zitat Govinden, R., & Bhoola, K. D. (2003). Genealogy, expression, and cellular function of transforming growth factor-β. Pharmacology & Therapeutics, 98(2), 257–265. Govinden, R., & Bhoola, K. D. (2003). Genealogy, expression, and cellular function of transforming growth factor-β. Pharmacology & Therapeutics, 98(2), 257–265.
5.
Zurück zum Zitat Funkenstein, B., Olekh, E., & Jakowlew, S. B. (2010). Identification of a novel transforming growth factor-β (TGF-β6) gene in fish: regulation in skeletal muscle by nutritional state. BMC Molecular Biology, 11, 37.PubMed Funkenstein, B., Olekh, E., & Jakowlew, S. B. (2010). Identification of a novel transforming growth factor-β (TGF-β6) gene in fish: regulation in skeletal muscle by nutritional state. BMC Molecular Biology, 11, 37.PubMed
6.
Zurück zum Zitat Rider, C. C., & Mulloy, B. (2010). Bone morphogenetic protein and growth differentiation factor cytokine families and their protein antagonists. The Biochemical Journal, 429(1), 1–12.PubMed Rider, C. C., & Mulloy, B. (2010). Bone morphogenetic protein and growth differentiation factor cytokine families and their protein antagonists. The Biochemical Journal, 429(1), 1–12.PubMed
7.
Zurück zum Zitat Miyazono, K., Kamiya, Y., & Morikawa, M. (2010). Bone morphogenetic protein receptors and signal transduction. Journal of Biochemistry, 147(1), 35–51.PubMed Miyazono, K., Kamiya, Y., & Morikawa, M. (2010). Bone morphogenetic protein receptors and signal transduction. Journal of Biochemistry, 147(1), 35–51.PubMed
8.
Zurück zum Zitat Schier, A. F. (2009). Nodal morphogens. Perspectives in Biology, 1(5), a003459.PubMed Schier, A. F. (2009). Nodal morphogens. Perspectives in Biology, 1(5), a003459.PubMed
9.
Zurück zum Zitat Kumar, A., Lualdi, M., Lewandoski, M., & Kuehn, M. R. (2008). Broad mesodermal and endodermal deletion of nodal at postgastrulation stages results solely in left/right axial defects. Developmental Dynamics, 237(12), 3591–3601.PubMed Kumar, A., Lualdi, M., Lewandoski, M., & Kuehn, M. R. (2008). Broad mesodermal and endodermal deletion of nodal at postgastrulation stages results solely in left/right axial defects. Developmental Dynamics, 237(12), 3591–3601.PubMed
10.
Zurück zum Zitat Lee, J. D., Migeotte, I., & Anderson, K. V. (2010). Left–right patterning in the mouse requires EPB4.1l5-dependent morphogenesis of the node and midline. Developmental Biology, 346(2), 237–246.PubMed Lee, J. D., Migeotte, I., & Anderson, K. V. (2010). Left–right patterning in the mouse requires EPB4.1l5-dependent morphogenesis of the node and midline. Developmental Biology, 346(2), 237–246.PubMed
11.
Zurück zum Zitat Lee, S. J. (1990). Identification of a novel member (GDF-1) of the transforming growth factor-β superfamily. Molecular Endocrinology, 4(7), 1034–1040.PubMed Lee, S. J. (1990). Identification of a novel member (GDF-1) of the transforming growth factor-β superfamily. Molecular Endocrinology, 4(7), 1034–1040.PubMed
12.
Zurück zum Zitat Moustakas, A., & Heldin, C. H. (2009). The regulation of TGF-β signal transduction. Development, 136(22), 3699–3714.PubMed Moustakas, A., & Heldin, C. H. (2009). The regulation of TGF-β signal transduction. Development, 136(22), 3699–3714.PubMed
13.
Zurück zum Zitat Josso, N., Belville, C., di Clemente, N., & Picard, J. Y. (2005). AMH and AMH receptor defects in persistent Mullerian duct syndrome. Human Reproduction Update, 11(4), 351–356.PubMed Josso, N., Belville, C., di Clemente, N., & Picard, J. Y. (2005). AMH and AMH receptor defects in persistent Mullerian duct syndrome. Human Reproduction Update, 11(4), 351–356.PubMed
14.
Zurück zum Zitat di Clemente, N., & Belville, C. (2006). Anti-Mullerian hormone receptor defect. Clinical Endocrinology & Metabolism, 20(4), 599–610. di Clemente, N., & Belville, C. (2006). Anti-Mullerian hormone receptor defect. Clinical Endocrinology & Metabolism, 20(4), 599–610.
15.
Zurück zum Zitat Rosal-Goncalves, M., Almeida, C., Barber, J., Kay, T., Limbert, C., Lopes, L., et al. (2010). Mutation of the MIF type II receptor in two brothers. Journal of Pediatric Endocrinology & Metabolism: JPEM, 23(3), 315–317. Rosal-Goncalves, M., Almeida, C., Barber, J., Kay, T., Limbert, C., Lopes, L., et al. (2010). Mutation of the MIF type II receptor in two brothers. Journal of Pediatric Endocrinology & Metabolism: JPEM, 23(3), 315–317.
16.
Zurück zum Zitat Xia, Y., & Schneyer, A. L. (2009). The biology of activin: recent advances in structure, regulation and function. The Journal of Endocrinology, 202(1), 1–12.PubMed Xia, Y., & Schneyer, A. L. (2009). The biology of activin: recent advances in structure, regulation and function. The Journal of Endocrinology, 202(1), 1–12.PubMed
17.
Zurück zum Zitat Aleman-Muench, G. R., & Soldevila, G. (2012). When versatility matters: activins/inhibins as key regulators of immunity. Immunology and Cell Biology, 90, 137–148.PubMed Aleman-Muench, G. R., & Soldevila, G. (2012). When versatility matters: activins/inhibins as key regulators of immunity. Immunology and Cell Biology, 90, 137–148.PubMed
18.
Zurück zum Zitat Stenvers, K. L., & Findlay, J. K. (2010). Inhibins: from reproductive hormones to tumor suppressors. Trends in Endocrinology and Metabolism, 21(3), 174–180.PubMed Stenvers, K. L., & Findlay, J. K. (2010). Inhibins: from reproductive hormones to tumor suppressors. Trends in Endocrinology and Metabolism, 21(3), 174–180.PubMed
19.
Zurück zum Zitat Tasaka, K., Kasahara, K., Masumoto, N., Mizuki, J., Fukami, K., Miyake, A., et al. (1994). Characterization of activin A-, activin AB- and activin B-responding cells by their responses to hypothalamic releasing hormones. Biochemical and Biophysical Research Communications, 203(3), 1739–1744.PubMed Tasaka, K., Kasahara, K., Masumoto, N., Mizuki, J., Fukami, K., Miyake, A., et al. (1994). Characterization of activin A-, activin AB- and activin B-responding cells by their responses to hypothalamic releasing hormones. Biochemical and Biophysical Research Communications, 203(3), 1739–1744.PubMed
20.
Zurück zum Zitat Shi, Y., & Massagué, J. (2003). Mechanisms of TGF-β signaling from cell membrane to the nucleus. Cell, 113(6), 685–700.PubMed Shi, Y., & Massagué, J. (2003). Mechanisms of TGF-β signaling from cell membrane to the nucleus. Cell, 113(6), 685–700.PubMed
21.
Zurück zum Zitat Gatza, C. E., Oh, S. Y., & Blobe, G. C. (2010). Roles for the type III TGF-β receptor in human cancer. Cellular Signalling, 22(8), 1163–1174.PubMed Gatza, C. E., Oh, S. Y., & Blobe, G. C. (2010). Roles for the type III TGF-β receptor in human cancer. Cellular Signalling, 22(8), 1163–1174.PubMed
22.
Zurück zum Zitat Bernabeu, C., Lopez-Novoa, J. M., & Quintanilla, M. (2009). The emerging role of TGF-β superfamily coreceptors in cancer. Biochimica et Biophysica Acta, 1792(10), 954–973.PubMed Bernabeu, C., Lopez-Novoa, J. M., & Quintanilla, M. (2009). The emerging role of TGF-β superfamily coreceptors in cancer. Biochimica et Biophysica Acta, 1792(10), 954–973.PubMed
23.
Zurück zum Zitat Kang, J. S., Liu, C., & Derynck, R. (2009). New regulatory mechanisms of TGF-β receptor function. Trends in Cell Biology, 19(8), 385–394.PubMed Kang, J. S., Liu, C., & Derynck, R. (2009). New regulatory mechanisms of TGF-β receptor function. Trends in Cell Biology, 19(8), 385–394.PubMed
24.
Zurück zum Zitat Huminiecki, L., Goldovsky, L., Freilich, S., Moustakas, A., Ouzounis, C., & Heldin, C. H. (2009). Emergence, development and diversification of the TGF-β signalling pathway within the animal kingdom. BMC Evol Biol, 9, 28.PubMed Huminiecki, L., Goldovsky, L., Freilich, S., Moustakas, A., Ouzounis, C., & Heldin, C. H. (2009). Emergence, development and diversification of the TGF-β signalling pathway within the animal kingdom. BMC Evol Biol, 9, 28.PubMed
25.
Zurück zum Zitat Ross, S., & Hill, C. S. (2008). How the SMADs regulate transcription. The International Journal of Biochemistry & Cell Biology, 40(3), 383–408. Ross, S., & Hill, C. S. (2008). How the SMADs regulate transcription. The International Journal of Biochemistry & Cell Biology, 40(3), 383–408.
26.
Zurück zum Zitat Tsukazaki, T., Chiang, T. A., Davison, A. F., Attisano, L., & Wrana, J. L. (1998). SARA, a Fyve domain protein that recruits SMAD2 to the TGF-β receptor. Cell, 95(6), 779–791.PubMed Tsukazaki, T., Chiang, T. A., Davison, A. F., Attisano, L., & Wrana, J. L. (1998). SARA, a Fyve domain protein that recruits SMAD2 to the TGF-β receptor. Cell, 95(6), 779–791.PubMed
27.
Zurück zum Zitat Sflomos, G., Kostaras, E., Panopoulou, E., Pappas, N., Kyrkou, A., Politou, A. S., et al. (2011). ERBIN is a new SARA-interacting protein: competition between SARA and SMAD2 and SMAD3 for binding to ERBIN. Journal of Cell Science, 124(Pt 19), 3209–3222.PubMed Sflomos, G., Kostaras, E., Panopoulou, E., Pappas, N., Kyrkou, A., Politou, A. S., et al. (2011). ERBIN is a new SARA-interacting protein: competition between SARA and SMAD2 and SMAD3 for binding to ERBIN. Journal of Cell Science, 124(Pt 19), 3209–3222.PubMed
28.
Zurück zum Zitat Makkar, P., Metpally, R. P., Sangadala, S., & Reddy, B. V. (2009). Modeling and analysis of MH1 domain of SMADs and their interaction with promoter DNA sequence motif. Journal of Molecular Graphics & Modelling, 27(7), 803–812. Makkar, P., Metpally, R. P., Sangadala, S., & Reddy, B. V. (2009). Modeling and analysis of MH1 domain of SMADs and their interaction with promoter DNA sequence motif. Journal of Molecular Graphics & Modelling, 27(7), 803–812.
29.
Zurück zum Zitat Itoh, S., & ten Dijke, P. (2007). Negative regulation of TGF-β receptor/SMAD signal transduction. Current Opinion in Cell Biology, 19(2), 176–184.PubMed Itoh, S., & ten Dijke, P. (2007). Negative regulation of TGF-β receptor/SMAD signal transduction. Current Opinion in Cell Biology, 19(2), 176–184.PubMed
30.
Zurück zum Zitat Hata, A., Lagna, G., Massagué, J., & Hemmati-Brivanlou, A. (1998). SMAD6 inhibits Bmp/SMAD1 signaling by specifically competing with the SMAD4 tumor suppressor. Genes & Development, 12(2), 186–197. Hata, A., Lagna, G., Massagué, J., & Hemmati-Brivanlou, A. (1998). SMAD6 inhibits Bmp/SMAD1 signaling by specifically competing with the SMAD4 tumor suppressor. Genes & Development, 12(2), 186–197.
31.
Zurück zum Zitat Dennler, S., Huet, S., & Gauthier, J. M. (1999). A short amino-acid sequence in Mh1 domain is responsible for functional differences between SMAD2 and SMAD3. Oncogene, 18(8), 1643–1648.PubMed Dennler, S., Huet, S., & Gauthier, J. M. (1999). A short amino-acid sequence in Mh1 domain is responsible for functional differences between SMAD2 and SMAD3. Oncogene, 18(8), 1643–1648.PubMed
32.
Zurück zum Zitat Derynck, R., & Akhurst, R. J. (2007). Differentiation plasticity regulated by TGF-β family proteins in development and disease. Nature Cell Biology, 9(9), 1000–1004.PubMed Derynck, R., & Akhurst, R. J. (2007). Differentiation plasticity regulated by TGF-β family proteins in development and disease. Nature Cell Biology, 9(9), 1000–1004.PubMed
33.
Zurück zum Zitat Rifkin, D. B. (2005). Latent transforming growth factor-β (TGF-β) binding proteins: orchestrators of TGF-β availability. The Journal of Biological Chemistry, 280(9), 7409–7412.PubMed Rifkin, D. B. (2005). Latent transforming growth factor-β (TGF-β) binding proteins: orchestrators of TGF-β availability. The Journal of Biological Chemistry, 280(9), 7409–7412.PubMed
34.
Zurück zum Zitat Kusakabe, M., Cheong, P. L., Nikfar, R., McLennan, I. S., & Koishi, K. (2008). The structure of the TGF-β latency associated peptide region determines the ability of the proprotein convertase furin to cleave TGF-β s. Journal of Cellular Biochemistry, 103(1), 311–320.PubMed Kusakabe, M., Cheong, P. L., Nikfar, R., McLennan, I. S., & Koishi, K. (2008). The structure of the TGF-β latency associated peptide region determines the ability of the proprotein convertase furin to cleave TGF-β s. Journal of Cellular Biochemistry, 103(1), 311–320.PubMed
35.
Zurück zum Zitat Di Guglielmo, G. M., Le Roy, C., Goodfellow, A. F., & Wrana, J. L. (2003). Distinct endocytic pathways regulate TGF-β receptor signalling and turnover. Nature Cell Biology, 5(5), 410–421.PubMed Di Guglielmo, G. M., Le Roy, C., Goodfellow, A. F., & Wrana, J. L. (2003). Distinct endocytic pathways regulate TGF-β receptor signalling and turnover. Nature Cell Biology, 5(5), 410–421.PubMed
36.
Zurück zum Zitat Santibanez, J. F., Blanco, F. J., Garrido-Martin, E. M., Sanz-Rodriguez, F., del Pozo, M. A., & Bernabeu, C. (2008). Caveolin-1 interacts and cooperates with the transforming growth factor-β type I receptor Alk1 in endothelial caveolae. Cardiovascular Research, 77(4), 791–799.PubMed Santibanez, J. F., Blanco, F. J., Garrido-Martin, E. M., Sanz-Rodriguez, F., del Pozo, M. A., & Bernabeu, C. (2008). Caveolin-1 interacts and cooperates with the transforming growth factor-β type I receptor Alk1 in endothelial caveolae. Cardiovascular Research, 77(4), 791–799.PubMed
37.
Zurück zum Zitat Zhang, Y. E. (2009). Non-SMAD pathways in TGF-β signaling. Cell Research, 19(1), 128–139.PubMed Zhang, Y. E. (2009). Non-SMAD pathways in TGF-β signaling. Cell Research, 19(1), 128–139.PubMed
38.
Zurück zum Zitat Sanchez-Elsner, T., Botella, L. M., Velasco, B., Corbi, A., Attisano, L., & Bernabeu, C. (2001). Synergistic cooperation between hypoxia and transforming growth factor-β pathways on human vascular endothelial growth factor gene expression. The Journal of Biological Chemistry, 276(42), 38527–38535.PubMed Sanchez-Elsner, T., Botella, L. M., Velasco, B., Corbi, A., Attisano, L., & Bernabeu, C. (2001). Synergistic cooperation between hypoxia and transforming growth factor-β pathways on human vascular endothelial growth factor gene expression. The Journal of Biological Chemistry, 276(42), 38527–38535.PubMed
39.
Zurück zum Zitat Liu, F., & Matsuura, I. (2005). Inhibition of SMAD antiproliferative function by Cdk phosphorylation. Cell Cycle, 4(1), 63–66.PubMed Liu, F., & Matsuura, I. (2005). Inhibition of SMAD antiproliferative function by Cdk phosphorylation. Cell Cycle, 4(1), 63–66.PubMed
40.
Zurück zum Zitat Sherr, C. J., & Roberts, J. M. (1999). Cdk inhibitors: positive and negative regulators of G1-phase progression. Genes & Development, 13(12), 1501–1512. Sherr, C. J., & Roberts, J. M. (1999). Cdk inhibitors: positive and negative regulators of G1-phase progression. Genes & Development, 13(12), 1501–1512.
41.
Zurück zum Zitat Donovan, J., & Slingerland, J. (2000). Transforming growth factor-β and breast cancer: cell cycle arrest by transforming growth factor-β and its disruption in cancer. Breast Cancer Research, 2(2), 116–124.PubMed Donovan, J., & Slingerland, J. (2000). Transforming growth factor-β and breast cancer: cell cycle arrest by transforming growth factor-β and its disruption in cancer. Breast Cancer Research, 2(2), 116–124.PubMed
42.
Zurück zum Zitat Laiho, M., DeCaprio, J. A., Ludlow, J. W., Livingston, D. M., & Massagué, J. (1990). Growth inhibition by TGF-β linked to suppression of retinoblastoma protein phosphorylation. Cell, 62(1), 175–185.PubMed Laiho, M., DeCaprio, J. A., Ludlow, J. W., Livingston, D. M., & Massagué, J. (1990). Growth inhibition by TGF-β linked to suppression of retinoblastoma protein phosphorylation. Cell, 62(1), 175–185.PubMed
43.
Zurück zum Zitat Slingerland, J. M., Hengst, L., Pan, C. H., Alexander, D., Stampfer, M. R., & Reed, S. I. (1994). A novel inhibitor of cyclin-Cdk activity detected in transforming growth factor β-arrested epithelial cells. Molecular and Cellular Biology, 14(6), 3683–3694.PubMed Slingerland, J. M., Hengst, L., Pan, C. H., Alexander, D., Stampfer, M. R., & Reed, S. I. (1994). A novel inhibitor of cyclin-Cdk activity detected in transforming growth factor β-arrested epithelial cells. Molecular and Cellular Biology, 14(6), 3683–3694.PubMed
44.
Zurück zum Zitat Geng, Y., & Weinberg, R. A. (1993). Transforming growth factor β effects on expression of G1 cyclins and cyclin-dependent protein kinases. Proceedings of the National Academy of Sciences of the United States of America, 90(21), 10315–10319.PubMed Geng, Y., & Weinberg, R. A. (1993). Transforming growth factor β effects on expression of G1 cyclins and cyclin-dependent protein kinases. Proceedings of the National Academy of Sciences of the United States of America, 90(21), 10315–10319.PubMed
45.
Zurück zum Zitat Massagué, J., Blain, S. W., & Lo, R. S. (2000). TGF-β signaling in growth control, cancer, and heritable disorders. Cell, 103(2), 295–309.PubMed Massagué, J., Blain, S. W., & Lo, R. S. (2000). TGF-β signaling in growth control, cancer, and heritable disorders. Cell, 103(2), 295–309.PubMed
46.
Zurück zum Zitat Pardali, K., & Moustakas, A. (2007). Actions of TGF-β as tumor suppressor and pro-metastatic factor in human cancer. Biochimica et Biophysica Acta, 1775(1), 21–62.PubMed Pardali, K., & Moustakas, A. (2007). Actions of TGF-β as tumor suppressor and pro-metastatic factor in human cancer. Biochimica et Biophysica Acta, 1775(1), 21–62.PubMed
47.
Zurück zum Zitat Chen, C. R., Kang, Y., & Massagué, J. (2001). Defective repression of c-myc in breast cancer cells: a loss at the core of the transforming growth factor β growth arrest program. Proceedings of the National Academy of Sciences of the United States of America, 98(3), 992–999.PubMed Chen, C. R., Kang, Y., & Massagué, J. (2001). Defective repression of c-myc in breast cancer cells: a loss at the core of the transforming growth factor β growth arrest program. Proceedings of the National Academy of Sciences of the United States of America, 98(3), 992–999.PubMed
48.
Zurück zum Zitat Chen, C. R., Kang, Y., Siegel, P. M., & Massagué, J. (2002). E2f4/5 and P107 as SMAD cofactors linking the TGF-β receptor to c-Myc repression. Cell, 110(1), 19–32.PubMed Chen, C. R., Kang, Y., Siegel, P. M., & Massagué, J. (2002). E2f4/5 and P107 as SMAD cofactors linking the TGF-β receptor to c-Myc repression. Cell, 110(1), 19–32.PubMed
49.
Zurück zum Zitat Frederick, J. P., Liberati, N. T., Waddell, D. S., Shi, Y., & Wang, X. F. (2004). Transforming growth factor β-mediated transcriptional repression of c-Myc is dependent on direct binding of SMAD3 to a novel repressive SMAD binding element. Molecular and Cellular Biology, 24(6), 2546–2559.PubMed Frederick, J. P., Liberati, N. T., Waddell, D. S., Shi, Y., & Wang, X. F. (2004). Transforming growth factor β-mediated transcriptional repression of c-Myc is dependent on direct binding of SMAD3 to a novel repressive SMAD binding element. Molecular and Cellular Biology, 24(6), 2546–2559.PubMed
50.
Zurück zum Zitat Yagi, K., Furuhashi, M., Aoki, H., Goto, D., Kuwano, H., Sugamura, K., et al. (2002). c-myc is a downstream target of the SMAD pathway. The Journal of Biological Chemistry, 277(1), 854–861.PubMed Yagi, K., Furuhashi, M., Aoki, H., Goto, D., Kuwano, H., Sugamura, K., et al. (2002). c-myc is a downstream target of the SMAD pathway. The Journal of Biological Chemistry, 277(1), 854–861.PubMed
51.
Zurück zum Zitat Tachibana, I., Imoto, M., Adjei, P. N., Gores, G. J., Subramaniam, M., Spelsberg, T. C., et al. (1997). Overexpression of the TGF-β -regulated zinc finger encoding gene, TIEG, induces apoptosis in pancreatic epithelial cells. The Journal of Clinical Investigation, 99(10), 2365–2374.PubMed Tachibana, I., Imoto, M., Adjei, P. N., Gores, G. J., Subramaniam, M., Spelsberg, T. C., et al. (1997). Overexpression of the TGF-β -regulated zinc finger encoding gene, TIEG, induces apoptosis in pancreatic epithelial cells. The Journal of Clinical Investigation, 99(10), 2365–2374.PubMed
52.
Zurück zum Zitat Jang, C. W., Chen, C. H., Chen, C. C., Chen, J. Y., Su, Y. H., & Chen, R. H. (2002). TGF-β induces apoptosis through SMAD-mediated expression of DAP-kinase. Nature Cell Biology, 4(1), 51–58.PubMed Jang, C. W., Chen, C. H., Chen, C. C., Chen, J. Y., Su, Y. H., & Chen, R. H. (2002). TGF-β induces apoptosis through SMAD-mediated expression of DAP-kinase. Nature Cell Biology, 4(1), 51–58.PubMed
53.
Zurück zum Zitat Valderrama-Carvajal, H., Cocolakis, E., Lacerte, A., Lee, E. H., Krystal, G., Ali, S., et al. (2002). Activin/TGF-β induce apoptosis through SMAD-dependent expression of the lipid phosphatase ship. Nature Cell Biology, 4(12), 963–969.PubMed Valderrama-Carvajal, H., Cocolakis, E., Lacerte, A., Lee, E. H., Krystal, G., Ali, S., et al. (2002). Activin/TGF-β induce apoptosis through SMAD-dependent expression of the lipid phosphatase ship. Nature Cell Biology, 4(12), 963–969.PubMed
54.
Zurück zum Zitat Latres, E., Malumbres, M., Sotillo, R., Martin, J., Ortega, S., Martin-Caballero, J., et al. (2000). Limited overlapping roles of P15(Ink4b) and P18(Ink4c) cell cycle inhibitors in proliferation and tumorigenesis. The EMBO Journal, 19(13), 3496–3506.PubMed Latres, E., Malumbres, M., Sotillo, R., Martin, J., Ortega, S., Martin-Caballero, J., et al. (2000). Limited overlapping roles of P15(Ink4b) and P18(Ink4c) cell cycle inhibitors in proliferation and tumorigenesis. The EMBO Journal, 19(13), 3496–3506.PubMed
55.
Zurück zum Zitat Gomis, R. R., Alarcon, C., Nadal, C., Van Poznak, C., & Massagué, J. (2006). C/EBPβ at the core of the TGF-β cytostatic response and its evasion in metastatic breast cancer cells. Cancer Cell, 10(3), 203–214.PubMed Gomis, R. R., Alarcon, C., Nadal, C., Van Poznak, C., & Massagué, J. (2006). C/EBPβ at the core of the TGF-β cytostatic response and its evasion in metastatic breast cancer cells. Cancer Cell, 10(3), 203–214.PubMed
56.
Zurück zum Zitat Fong, S., Itahana, Y., Sumida, T., Singh, J., Coppe, J. P., Liu, Y., et al. (2003). Id-1 as a molecular target in therapy for breast cancer cell invasion and metastasis. Proceedings of the National Academy of Sciences of the United States of America, 100(23), 13543–13548.PubMed Fong, S., Itahana, Y., Sumida, T., Singh, J., Coppe, J. P., Liu, Y., et al. (2003). Id-1 as a molecular target in therapy for breast cancer cell invasion and metastasis. Proceedings of the National Academy of Sciences of the United States of America, 100(23), 13543–13548.PubMed
57.
Zurück zum Zitat Adorno, M., Cordenonsi, M., Montagner, M., Dupont, S., Wong, C., Hann, B., et al. (2009). A mutant-P53/SMAD complex opposes P63 to empower TGF-β -induced metastasis. Cell, 137(1), 87–98.PubMed Adorno, M., Cordenonsi, M., Montagner, M., Dupont, S., Wong, C., Hann, B., et al. (2009). A mutant-P53/SMAD complex opposes P63 to empower TGF-β -induced metastasis. Cell, 137(1), 87–98.PubMed
58.
Zurück zum Zitat Grainger, D. J., Heathcote, K., Chiano, M., Snieder, H., Kemp, P. R., Metcalfe, J. C., et al. (1999). Genetic control of the circulating concentration of transforming growth factor type β1. Human Molecular Genetics, 8(1), 93–97.PubMed Grainger, D. J., Heathcote, K., Chiano, M., Snieder, H., Kemp, P. R., Metcalfe, J. C., et al. (1999). Genetic control of the circulating concentration of transforming growth factor type β1. Human Molecular Genetics, 8(1), 93–97.PubMed
59.
Zurück zum Zitat Yokota, M., Ichihara, S., Lin, T. L., Nakashima, N., & Yamada, Y. (2000). Association of a T29→C polymorphism of the transforming growth factor-β1 gene with genetic susceptibility to myocardial infarction in Japanese. Circulation, 101(24), 2783–2787.PubMed Yokota, M., Ichihara, S., Lin, T. L., Nakashima, N., & Yamada, Y. (2000). Association of a T29→C polymorphism of the transforming growth factor-β1 gene with genetic susceptibility to myocardial infarction in Japanese. Circulation, 101(24), 2783–2787.PubMed
60.
Zurück zum Zitat Ziv, E., Cauley, J., Morin, P. A., Saiz, R., & Browner, W. S. (2001). Association between the T29→C polymorphism in the transforming growth factor β1 gene and breast cancer among elderly white women: the study of osteoporotic fractures. Journal of the American Medical Association, 285(22), 2859–2863.PubMed Ziv, E., Cauley, J., Morin, P. A., Saiz, R., & Browner, W. S. (2001). Association between the T29→C polymorphism in the transforming growth factor β1 gene and breast cancer among elderly white women: the study of osteoporotic fractures. Journal of the American Medical Association, 285(22), 2859–2863.PubMed
61.
Zurück zum Zitat Dunning, A. M., Ellis, P. D., McBride, S., Kirschenlohr, H. L., Healey, C. S., Kemp, P. R., et al. (2003). A transforming growth factor β1 signal peptide variant increases secretion in vitro and is associated with increased incidence of invasive breast cancer. Cancer Research, 63(10), 2610–2615.PubMed Dunning, A. M., Ellis, P. D., McBride, S., Kirschenlohr, H. L., Healey, C. S., Kemp, P. R., et al. (2003). A transforming growth factor β1 signal peptide variant increases secretion in vitro and is associated with increased incidence of invasive breast cancer. Cancer Research, 63(10), 2610–2615.PubMed
62.
Zurück zum Zitat Hishida, A., Iwata, H., Hamajima, N., Matsuo, K., Mizutani, M., Iwase, T., et al. (2003). Transforming growth factor B1 T29c polymorphism and breast cancer risk in Japanese women. Breast Cancer, 10(1), 63–69.PubMed Hishida, A., Iwata, H., Hamajima, N., Matsuo, K., Mizutani, M., Iwase, T., et al. (2003). Transforming growth factor B1 T29c polymorphism and breast cancer risk in Japanese women. Breast Cancer, 10(1), 63–69.PubMed
63.
Zurück zum Zitat Gobbi, H., Dupont, W. D., Simpson, J. F., Plummer, W. D., Jr., Schuyler, P. A., Olson, S. J., et al. (1999). Transforming growth factor-β and breast cancer risk in women with mammary epithelial hyperplasia. Journal of the National Cancer Institute, 91(24), 2096–2101.PubMed Gobbi, H., Dupont, W. D., Simpson, J. F., Plummer, W. D., Jr., Schuyler, P. A., Olson, S. J., et al. (1999). Transforming growth factor-β and breast cancer risk in women with mammary epithelial hyperplasia. Journal of the National Cancer Institute, 91(24), 2096–2101.PubMed
64.
Zurück zum Zitat de Jong, J. S., van Diest, P. J., van der Valk, P., & Baak, J. P. (1998). Expression of growth factors, growth inhibiting factors, and their receptors in invasive breast cancer. I: An inventory in search of autocrine and paracrine loops. The Journal of Pathology, 184(1), 44–52.PubMed de Jong, J. S., van Diest, P. J., van der Valk, P., & Baak, J. P. (1998). Expression of growth factors, growth inhibiting factors, and their receptors in invasive breast cancer. I: An inventory in search of autocrine and paracrine loops. The Journal of Pathology, 184(1), 44–52.PubMed
65.
Zurück zum Zitat de Jong, J. S., van Diest, P. J., van der Valk, P., & Baak, J. P. (1998). Expression of growth factors, growth-inhibiting factors, and their receptors in invasive breast cancer. II: Correlations with proliferation and angiogenesis. The Journal of pathology, 184(1), 53–57.PubMed de Jong, J. S., van Diest, P. J., van der Valk, P., & Baak, J. P. (1998). Expression of growth factors, growth-inhibiting factors, and their receptors in invasive breast cancer. II: Correlations with proliferation and angiogenesis. The Journal of pathology, 184(1), 53–57.PubMed
66.
Zurück zum Zitat Barlow, J., Yandell, D., Weaver, D., Casey, T., & Plaut, K. (2003). Higher stromal expression of transforming growth factor-β type II receptors is associated with poorer prognosis breast tumors. Breast Cancer Research and Treatment, 79(2), 149–159.PubMed Barlow, J., Yandell, D., Weaver, D., Casey, T., & Plaut, K. (2003). Higher stromal expression of transforming growth factor-β type II receptors is associated with poorer prognosis breast tumors. Breast Cancer Research and Treatment, 79(2), 149–159.PubMed
67.
Zurück zum Zitat Bacman, D., Merkel, S., Croner, R., Papadopoulos, T., Brueckl, W., & Dimmler, A. (2007). TGF-β receptor 2 downregulation in tumour-associated stroma worsens prognosis and high-grade tumours show more tumour-associated macrophages and lower TGF-β1 expression in colon carcinoma: a retrospective study. BMC Cancer, 7, 156.PubMed Bacman, D., Merkel, S., Croner, R., Papadopoulos, T., Brueckl, W., & Dimmler, A. (2007). TGF-β receptor 2 downregulation in tumour-associated stroma worsens prognosis and high-grade tumours show more tumour-associated macrophages and lower TGF-β1 expression in colon carcinoma: a retrospective study. BMC Cancer, 7, 156.PubMed
68.
Zurück zum Zitat Tsushima, H., Kawata, S., Tamura, S., Ito, N., Shirai, Y., Kiso, S., et al. (1996). High levels of transforming growth factor β 1 in patients with colorectal cancer: association with disease progression. Gastroenterology, 110(2), 375–382.PubMed Tsushima, H., Kawata, S., Tamura, S., Ito, N., Shirai, Y., Kiso, S., et al. (1996). High levels of transforming growth factor β 1 in patients with colorectal cancer: association with disease progression. Gastroenterology, 110(2), 375–382.PubMed
69.
Zurück zum Zitat Friedman, E., Gold, L. I., Klimstra, D., Zeng, Z. S., Winawer, S., & Cohen, A. (1995). High levels of transforming growth factor β 1 correlate with disease progression in human colon cancer. Cancer Epidemiology, Biomarkers & Prevention, 4(5), 549–554. Friedman, E., Gold, L. I., Klimstra, D., Zeng, Z. S., Winawer, S., & Cohen, A. (1995). High levels of transforming growth factor β 1 correlate with disease progression in human colon cancer. Cancer Epidemiology, Biomarkers & Prevention, 4(5), 549–554.
70.
Zurück zum Zitat Robson, H., Anderson, E., James, R. D., & Schofield, P. F. (1996). Transforming growth factor β 1 expression in human colorectal tumours: an independent prognostic marker in a subgroup of poor prognosis patients. British Journal of Cancer, 74(5), 753–758.PubMed Robson, H., Anderson, E., James, R. D., & Schofield, P. F. (1996). Transforming growth factor β 1 expression in human colorectal tumours: an independent prognostic marker in a subgroup of poor prognosis patients. British Journal of Cancer, 74(5), 753–758.PubMed
71.
Zurück zum Zitat Wikstrom, P., Stattin, P., Franck-Lissbrant, I., Damber, J. E., & Bergh, A. (1998). Transforming growth factor β1 is associated with angiogenesis, metastasis, and poor clinical outcome in prostate cancer. The Prostate, 37(1), 19–29.PubMed Wikstrom, P., Stattin, P., Franck-Lissbrant, I., Damber, J. E., & Bergh, A. (1998). Transforming growth factor β1 is associated with angiogenesis, metastasis, and poor clinical outcome in prostate cancer. The Prostate, 37(1), 19–29.PubMed
72.
Zurück zum Zitat Diener, K. R., Need, E. F., Buchanan, G., & Hayball, J. D. (2010). TGF-β signalling and immunity in prostate tumourigenesis. Expert Opinion on Therapeutic Targets, 14(2), 179–192.PubMed Diener, K. R., Need, E. F., Buchanan, G., & Hayball, J. D. (2010). TGF-β signalling and immunity in prostate tumourigenesis. Expert Opinion on Therapeutic Targets, 14(2), 179–192.PubMed
73.
Zurück zum Zitat Bierie, B., & Moses, H. L. (2006). TGF-β and cancer. Cytokine & Growth Factor Reviews, 17(1–2), 29–40. Bierie, B., & Moses, H. L. (2006). TGF-β and cancer. Cytokine & Growth Factor Reviews, 17(1–2), 29–40.
74.
Zurück zum Zitat Biswas, S., Trobridge, P., Romero-Gallo, J., Billheimer, D., Myeroff, L. L., Willson, J. K., et al. (2008). Mutational inactivation of TGFβR2 in microsatellite unstable colon cancer arises from the cooperation of genomic instability and the clonal outgrowth of transforming growth factor β resistant cells. Genes, Chromosomes & Cancer, 47(2), 95–106. Biswas, S., Trobridge, P., Romero-Gallo, J., Billheimer, D., Myeroff, L. L., Willson, J. K., et al. (2008). Mutational inactivation of TGFβR2 in microsatellite unstable colon cancer arises from the cooperation of genomic instability and the clonal outgrowth of transforming growth factor β resistant cells. Genes, Chromosomes & Cancer, 47(2), 95–106.
75.
Zurück zum Zitat Grady, W. M., Myeroff, L. L., Swinler, S. E., Rajput, A., Thiagalingam, S., Lutterbaugh, J. D., et al. (1999). Mutational inactivation of transforming growth factor β receptor type Ii in microsatellite stable colon cancers. Cancer Research, 59(2), 320–324.PubMed Grady, W. M., Myeroff, L. L., Swinler, S. E., Rajput, A., Thiagalingam, S., Lutterbaugh, J. D., et al. (1999). Mutational inactivation of transforming growth factor β receptor type Ii in microsatellite stable colon cancers. Cancer Research, 59(2), 320–324.PubMed
76.
Zurück zum Zitat Akhurst, R. J., & Derynck, R. (2001). TGF-β signaling in cancer—a double-edged sword. Trends in Cell Biology, 11(11), S44–S51.PubMed Akhurst, R. J., & Derynck, R. (2001). TGF-β signaling in cancer—a double-edged sword. Trends in Cell Biology, 11(11), S44–S51.PubMed
77.
Zurück zum Zitat Parsons, R., Myeroff, L. L., Liu, B., Willson, J. K., Markowitz, S. D., Kinzler, K. W., et al. (1995). Microsatellite instability and mutations of the transforming growth factor β type II receptor gene in colorectal cancer. Cancer Research, 55(23), 5548–5550.PubMed Parsons, R., Myeroff, L. L., Liu, B., Willson, J. K., Markowitz, S. D., Kinzler, K. W., et al. (1995). Microsatellite instability and mutations of the transforming growth factor β type II receptor gene in colorectal cancer. Cancer Research, 55(23), 5548–5550.PubMed
78.
Zurück zum Zitat Shima, K., Morikawa, T., Yamauchi, M., Kuchiba, A., Imamura, Y., Liao, X., et al. (2011). TGRβR2 and bax mononucleotide tract mutations, microsatellite instability, and prognosis in 1072 colorectal cancers. PLoS One, 6(9), e25062.PubMed Shima, K., Morikawa, T., Yamauchi, M., Kuchiba, A., Imamura, Y., Liao, X., et al. (2011). TGRβR2 and bax mononucleotide tract mutations, microsatellite instability, and prognosis in 1072 colorectal cancers. PLoS One, 6(9), e25062.PubMed
79.
Zurück zum Zitat Lucke, C. D., Philpott, A., Metcalfe, J. C., Thompson, A. M., Hughes-Davies, L., Kemp, P. R., et al. (2001). Inhibiting mutations in the transforming growth factor β type 2 receptor in recurrent human breast cancer. Cancer Research, 61(2), 482–485.PubMed Lucke, C. D., Philpott, A., Metcalfe, J. C., Thompson, A. M., Hughes-Davies, L., Kemp, P. R., et al. (2001). Inhibiting mutations in the transforming growth factor β type 2 receptor in recurrent human breast cancer. Cancer Research, 61(2), 482–485.PubMed
80.
Zurück zum Zitat Antony, M. L., Nair, R., Sebastian, P., & Karunagaran, D. (2010). Changes in expression, and/or mutations in TGF-β receptors (TGF-βRI and TGF-βRII) and SMAD 4 in human ovarian tumors. Journal of Cancer Research and Clinical Oncology, 136(3), 351–361.PubMed Antony, M. L., Nair, R., Sebastian, P., & Karunagaran, D. (2010). Changes in expression, and/or mutations in TGF-β receptors (TGF-βRI and TGF-βRII) and SMAD 4 in human ovarian tumors. Journal of Cancer Research and Clinical Oncology, 136(3), 351–361.PubMed
81.
Zurück zum Zitat Scollen, S., Luccarini, C., Baynes, C., Driver, K., Humphreys, M. K., Garcia-Closas, M., et al. (2011). TGF-β signaling pathway and breast cancer susceptibility. Cancer Epidemiology, Biomarkers & Prevention, 20(6), 1112–1119. Scollen, S., Luccarini, C., Baynes, C., Driver, K., Humphreys, M. K., Garcia-Closas, M., et al. (2011). TGF-β signaling pathway and breast cancer susceptibility. Cancer Epidemiology, Biomarkers & Prevention, 20(6), 1112–1119.
82.
Zurück zum Zitat Bellam, N., & Pasche, B. (2010). TGF-β signaling alterations and colon cancer. Cancer Treatment and Research, 155, 85–103.PubMed Bellam, N., & Pasche, B. (2010). TGF-β signaling alterations and colon cancer. Cancer Treatment and Research, 155, 85–103.PubMed
83.
Zurück zum Zitat Yang, G., & Yang, X. (2010). SMAD4-mediated TGF-β signaling in tumorigenesis. International Journal of Biological Sciences, 6(1), 1–8.PubMed Yang, G., & Yang, X. (2010). SMAD4-mediated TGF-β signaling in tumorigenesis. International Journal of Biological Sciences, 6(1), 1–8.PubMed
84.
Zurück zum Zitat Hahn, S. A., Schutte, M., Hoque, A. T., Moskaluk, C. A., da Costa, L. T., Rozenblum, E., et al. (1996). Dpc4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science, 271(5247), 350–353.PubMed Hahn, S. A., Schutte, M., Hoque, A. T., Moskaluk, C. A., da Costa, L. T., Rozenblum, E., et al. (1996). Dpc4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science, 271(5247), 350–353.PubMed
85.
Zurück zum Zitat Kretzschmar, M. (2000). Transforming growth factor-β and breast cancer: transforming growth factor-β/SMAD signaling defects and cancer. Breast Cancer Research, 2(2), 107–115.PubMed Kretzschmar, M. (2000). Transforming growth factor-β and breast cancer: transforming growth factor-β/SMAD signaling defects and cancer. Breast Cancer Research, 2(2), 107–115.PubMed
86.
Zurück zum Zitat Tram, E., Ibrahim-Zada, I., Briollais, L., Knight, J. A., Andrulis, I. L., & Ozcelik, H. (2011). Identification of germline alterations of the mad homology 2 domain of SMAD3 and SMAD4 from the Ontario Site of the Breast Cancer Family Registry (CFR). Breast Cancer Research, 13(4), R77.PubMed Tram, E., Ibrahim-Zada, I., Briollais, L., Knight, J. A., Andrulis, I. L., & Ozcelik, H. (2011). Identification of germline alterations of the mad homology 2 domain of SMAD3 and SMAD4 from the Ontario Site of the Breast Cancer Family Registry (CFR). Breast Cancer Research, 13(4), R77.PubMed
87.
Zurück zum Zitat Ashktorab, H., Schaffer, A. A., Daremipouran, M., Smoot, D. T., Lee, E., & Brim, H. (2010). Distinct genetic alterations in colorectal cancer. PLoS One, 5(1), e8879.PubMed Ashktorab, H., Schaffer, A. A., Daremipouran, M., Smoot, D. T., Lee, E., & Brim, H. (2010). Distinct genetic alterations in colorectal cancer. PLoS One, 5(1), e8879.PubMed
88.
Zurück zum Zitat Shao, Y., Zhang, J., Zhang, R., Wan, J., Zhang, W., & Yu, B. (2012). Examination of SMAD2 and SMAD4 copy-number variations in skin cancers. Clinical & Translational Oncology, 14(2), 138–142. Shao, Y., Zhang, J., Zhang, R., Wan, J., Zhang, W., & Yu, B. (2012). Examination of SMAD2 and SMAD4 copy-number variations in skin cancers. Clinical & Translational Oncology, 14(2), 138–142.
89.
Zurück zum Zitat Xu, G., Chakraborty, C., & Lala, P. K. (2003). Reconstitution of SMAD3 restores TGF-β response of tissue inhibitor of metalloprotease-1 upregulation in human choriocarcinoma cells. Biochemical and Biophysical Research Communications, 300(2), 383–390.PubMed Xu, G., Chakraborty, C., & Lala, P. K. (2003). Reconstitution of SMAD3 restores TGF-β response of tissue inhibitor of metalloprotease-1 upregulation in human choriocarcinoma cells. Biochemical and Biophysical Research Communications, 300(2), 383–390.PubMed
90.
Zurück zum Zitat Han, S. U., Kim, H. T., Seong, D. H., Kim, Y. S., Park, Y. S., Bang, Y. J., et al. (2004). Loss of the SMAD3 expression increases susceptibility to tumorigenicity in human gastric cancer. Oncogene, 23(7), 1333–1341.PubMed Han, S. U., Kim, H. T., Seong, D. H., Kim, Y. S., Park, Y. S., Bang, Y. J., et al. (2004). Loss of the SMAD3 expression increases susceptibility to tumorigenicity in human gastric cancer. Oncogene, 23(7), 1333–1341.PubMed
91.
Zurück zum Zitat Walker, L. C., Fredericksen, Z. S., Wang, X., Tarrell, R., Pankratz, V. S., Lindor, N. M., et al. (2010). Evidence for SMAD3 as a modifier of breast cancer risk in BRCA2 mutation carriers. Breast Cancer Research: BCR, 12(6), R102.PubMed Walker, L. C., Fredericksen, Z. S., Wang, X., Tarrell, R., Pankratz, V. S., Lindor, N. M., et al. (2010). Evidence for SMAD3 as a modifier of breast cancer risk in BRCA2 mutation carriers. Breast Cancer Research: BCR, 12(6), R102.PubMed
92.
Zurück zum Zitat Arany, P. R., Flanders, K. C., DeGraff, W., Cook, J., Mitchell, J. B., & Roberts, A. B. (2007). Absence of SMAD3 confers radioprotection through modulation of Erk-Mapk in primary dermal fibroblasts. Journal of Dermatological Science, 48(1), 35–42.PubMed Arany, P. R., Flanders, K. C., DeGraff, W., Cook, J., Mitchell, J. B., & Roberts, A. B. (2007). Absence of SMAD3 confers radioprotection through modulation of Erk-Mapk in primary dermal fibroblasts. Journal of Dermatological Science, 48(1), 35–42.PubMed
93.
Zurück zum Zitat Samanta, D., Gonzalez, A. L., Nagathihalli, N., Ye, F., Carbone, D. P., & Datta, P. K. (2012). Smoking attenuates transforming growth factor-β-mediated tumor suppression function through downregulation of SMAD3 in lung cancer. Cancer Prevention Research, 5, 452–463. Samanta, D., Gonzalez, A. L., Nagathihalli, N., Ye, F., Carbone, D. P., & Datta, P. K. (2012). Smoking attenuates transforming growth factor-β-mediated tumor suppression function through downregulation of SMAD3 in lung cancer. Cancer Prevention Research, 5, 452–463.
94.
Zurück zum Zitat Ahn, S.M., Cha, J.Y., Kim, J., Kim, D., Trang, H.T., Kim, Y.M. et al. (2012). SMAD3 regulates E-cadherin via miRNA-200 pathway. Oncogene. doi:10.1038/onc.2011.484 Ahn, S.M., Cha, J.Y., Kim, J., Kim, D., Trang, H.T., Kim, Y.M. et al. (2012). SMAD3 regulates E-cadherin via miRNA-200 pathway. Oncogene. doi:10.​1038/​onc.​2011.​484
95.
Zurück zum Zitat Tian, F., Byfield, S. D., Parks, W. T., Yoo, S., Felici, A., Tang, B. W., et al. (2003). Reduction in SMAD2/3 signaling enhances tumorigenesis but suppresses metastasis of breast cancer cell lines. Cancer Research, 63(23), 8284–8292.PubMed Tian, F., Byfield, S. D., Parks, W. T., Yoo, S., Felici, A., Tang, B. W., et al. (2003). Reduction in SMAD2/3 signaling enhances tumorigenesis but suppresses metastasis of breast cancer cell lines. Cancer Research, 63(23), 8284–8292.PubMed
96.
Zurück zum Zitat Xu, J., Lamouille, S., & Derynck, R. (2009). TGF-β -induced epithelial to mesenchymal transition. Cell Research, 19(2), 156–172.PubMed Xu, J., Lamouille, S., & Derynck, R. (2009). TGF-β -induced epithelial to mesenchymal transition. Cell Research, 19(2), 156–172.PubMed
97.
Zurück zum Zitat Miyazono, K. (2009). Transforming growth factor-β signaling in epithelial–mesenchymal transition and progression of cancer. Proceedings of the Japan Academy, 85(8), 314–323. Miyazono, K. (2009). Transforming growth factor-β signaling in epithelial–mesenchymal transition and progression of cancer. Proceedings of the Japan Academy, 85(8), 314–323.
98.
Zurück zum Zitat Kimelman, D., & Kirschner, M. (1987). Synergistic induction of mesoderm by FGF and TGF-β and the identification of an mRNA coding for FGF in the early Xenopus embryo. Cell, 51(5), 869–877.PubMed Kimelman, D., & Kirschner, M. (1987). Synergistic induction of mesoderm by FGF and TGF-β and the identification of an mRNA coding for FGF in the early Xenopus embryo. Cell, 51(5), 869–877.PubMed
99.
Zurück zum Zitat Thiery, J. P. (2003). Epithelial–mesenchymal transitions in development and pathologies. Current Opinion in Cell Biology, 15(6), 740–746.PubMed Thiery, J. P. (2003). Epithelial–mesenchymal transitions in development and pathologies. Current Opinion in Cell Biology, 15(6), 740–746.PubMed
100.
Zurück zum Zitat Singh, A., & Settleman, J. (2010). EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene, 29(34), 4741–4751.PubMed Singh, A., & Settleman, J. (2010). EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene, 29(34), 4741–4751.PubMed
101.
Zurück zum Zitat Edme, N., Downward, J., Thiery, J. P., & Boyer, B. (2002). Ras induces NBT-II epithelial cell scattering through the coordinate activities of Rac and MAPK pathways. Journal of Cell Science, 115(Pt 12), 2591–2601.PubMed Edme, N., Downward, J., Thiery, J. P., & Boyer, B. (2002). Ras induces NBT-II epithelial cell scattering through the coordinate activities of Rac and MAPK pathways. Journal of Cell Science, 115(Pt 12), 2591–2601.PubMed
102.
Zurück zum Zitat Horiguchi, K., Shirakihara, T., Nakano, A., Imamura, T., Miyazono, K., & Saitoh, M. (2009). Role of Ras signaling in the induction of snail by transforming growth factor-β. The Journal of Biological Chemistry, 284(1), 245–253.PubMed Horiguchi, K., Shirakihara, T., Nakano, A., Imamura, T., Miyazono, K., & Saitoh, M. (2009). Role of Ras signaling in the induction of snail by transforming growth factor-β. The Journal of Biological Chemistry, 284(1), 245–253.PubMed
103.
Zurück zum Zitat Jenndahl, L. E., Isakson, P., & Baeckstrom, D. (2005). C-Erbb2-induced epithelial–mesenchymal transition in mammary epithelial cells is suppressed by cell–cell contact and initiated prior to E-cadherin downregulation. International Journal of Oncology, 27(2), 439–448.PubMed Jenndahl, L. E., Isakson, P., & Baeckstrom, D. (2005). C-Erbb2-induced epithelial–mesenchymal transition in mammary epithelial cells is suppressed by cell–cell contact and initiated prior to E-cadherin downregulation. International Journal of Oncology, 27(2), 439–448.PubMed
104.
Zurück zum Zitat Moustakas, A., & Heldin, C. H. (2007). Signaling networks guiding epithelial–mesenchymal transitions during embryogenesis and cancer progression. Cancer Science, 98(10), 1512–1520.PubMed Moustakas, A., & Heldin, C. H. (2007). Signaling networks guiding epithelial–mesenchymal transitions during embryogenesis and cancer progression. Cancer Science, 98(10), 1512–1520.PubMed
105.
Zurück zum Zitat Fuxe, J., Vincent, T., & Garcia de Herreros, A. (2010). Transcriptional crosstalk between TGF-β and stem cell pathways in tumor cell invasion: role of EMT promoting SMAD complexes. Cell Cycle, 9(12), 2363–2374.PubMed Fuxe, J., Vincent, T., & Garcia de Herreros, A. (2010). Transcriptional crosstalk between TGF-β and stem cell pathways in tumor cell invasion: role of EMT promoting SMAD complexes. Cell Cycle, 9(12), 2363–2374.PubMed
106.
Zurück zum Zitat Hills, C. E., Siamantouras, E., Smith, S. W., Cockwell, P., Liu, K. K., & Squires, P. E. (2012). TGF-β modulates cell-to-cell communication in early epithelial-to-mesenchymal transition. Diabetologia, 55(3), 812–824.PubMed Hills, C. E., Siamantouras, E., Smith, S. W., Cockwell, P., Liu, K. K., & Squires, P. E. (2012). TGF-β modulates cell-to-cell communication in early epithelial-to-mesenchymal transition. Diabetologia, 55(3), 812–824.PubMed
107.
Zurück zum Zitat Xie, L., Law, B. K., Chytil, A. M., Brown, K. A., Aakre, M. E., & Moses, H. L. (2004). Activation of the Erk pathway is required for TGF-β1-induced EMT in vitro. Neoplasia, 6(5), 603–610.PubMed Xie, L., Law, B. K., Chytil, A. M., Brown, K. A., Aakre, M. E., & Moses, H. L. (2004). Activation of the Erk pathway is required for TGF-β1-induced EMT in vitro. Neoplasia, 6(5), 603–610.PubMed
108.
Zurück zum Zitat Bhowmick, N. A., Zent, R., Ghiassi, M., McDonnell, M., & Moses, H. L. (2001). Integrin β 1 signaling is necessary for transforming growth factor-β activation of p38MAPK and epithelial plasticity. The Journal of Biological Chemistry, 276(50), 46707–46713.PubMed Bhowmick, N. A., Zent, R., Ghiassi, M., McDonnell, M., & Moses, H. L. (2001). Integrin β 1 signaling is necessary for transforming growth factor-β activation of p38MAPK and epithelial plasticity. The Journal of Biological Chemistry, 276(50), 46707–46713.PubMed
109.
Zurück zum Zitat Galliher, A. J., & Schiemann, W. P. (2006). β3 integrin and Src facilitate transforming growth factor-β mediated induction of epithelial–mesenchymal transition in mammary epithelial cells. Breast Cancer Research, 8(4), R42.PubMed Galliher, A. J., & Schiemann, W. P. (2006). β3 integrin and Src facilitate transforming growth factor-β mediated induction of epithelial–mesenchymal transition in mammary epithelial cells. Breast Cancer Research, 8(4), R42.PubMed
110.
Zurück zum Zitat Galliher, A. J., & Schiemann, W. P. (2007). Src phosphorylates Tyr284 in TGF-β type II receptor and regulates TGF-β stimulation of p38 MAPK during breast cancer cell proliferation and invasion. Cancer Research, 67(8), 3752–3758.PubMed Galliher, A. J., & Schiemann, W. P. (2007). Src phosphorylates Tyr284 in TGF-β type II receptor and regulates TGF-β stimulation of p38 MAPK during breast cancer cell proliferation and invasion. Cancer Research, 67(8), 3752–3758.PubMed
111.
Zurück zum Zitat Wendt, M. K., & Schiemann, W. P. (2009). Therapeutic targeting of the focal adhesion complex prevents oncogenic TGF-β signaling and metastasis. Breast Cancer Research, 11(5), R68.PubMed Wendt, M. K., & Schiemann, W. P. (2009). Therapeutic targeting of the focal adhesion complex prevents oncogenic TGF-β signaling and metastasis. Breast Cancer Research, 11(5), R68.PubMed
112.
Zurück zum Zitat Wendt, M. K., Smith, J. A., & Schiemann, W. P. (2009). P130cas is required for mammary tumor growth and transforming growth factor-β-mediated metastasis through regulation of SMAD2/3 activity. The Journal of Biological Chemistry, 284(49), 34145–34156.PubMed Wendt, M. K., Smith, J. A., & Schiemann, W. P. (2009). P130cas is required for mammary tumor growth and transforming growth factor-β-mediated metastasis through regulation of SMAD2/3 activity. The Journal of Biological Chemistry, 284(49), 34145–34156.PubMed
113.
Zurück zum Zitat Huber, M. A., Azoitei, N., Baumann, B., Grunert, S., Sommer, A., Pehamberger, H., et al. (2004). NF-κB is essential for epithelial–mesenchymal transition and metastasis in a model of breast cancer progression. The Journal of Clinical Investigation, 114(4), 569–581.PubMed Huber, M. A., Azoitei, N., Baumann, B., Grunert, S., Sommer, A., Pehamberger, H., et al. (2004). NF-κB is essential for epithelial–mesenchymal transition and metastasis in a model of breast cancer progression. The Journal of Clinical Investigation, 114(4), 569–581.PubMed
114.
Zurück zum Zitat Neil, J. R., Johnson, K. M., Nemenoff, R. A., & Schiemann, W. P. (2008). Cox-2 inactivates SMAD signaling and enhances EMT stimulated by TGF-β through a Pge2-dependent mechanisms. Carcinogenesis, 29(11), 2227–2235.PubMed Neil, J. R., Johnson, K. M., Nemenoff, R. A., & Schiemann, W. P. (2008). Cox-2 inactivates SMAD signaling and enhances EMT stimulated by TGF-β through a Pge2-dependent mechanisms. Carcinogenesis, 29(11), 2227–2235.PubMed
115.
Zurück zum Zitat Tian, M., & Schiemann, W. P. (2010). PGE2 receptor EP2 mediates the antagonistic effect of COX-2 on TGF-β signaling during mammary tumorigenesis. The FASEB Journal, 24(4), 1105–1116. Tian, M., & Schiemann, W. P. (2010). PGE2 receptor EP2 mediates the antagonistic effect of COX-2 on TGF-β signaling during mammary tumorigenesis. The FASEB Journal, 24(4), 1105–1116.
116.
Zurück zum Zitat Bakin, A. V., Tomlinson, A. K., Bhowmick, N. A., Moses, H. L., & Arteaga, C. L. (2000). Phosphatidylinositol 3-kinase function is required for transforming growth factor β-mediated epithelial to mesenchymal transition and cell migration. The Journal of Biological Chemistry, 275(47), 36803–36810.PubMed Bakin, A. V., Tomlinson, A. K., Bhowmick, N. A., Moses, H. L., & Arteaga, C. L. (2000). Phosphatidylinositol 3-kinase function is required for transforming growth factor β-mediated epithelial to mesenchymal transition and cell migration. The Journal of Biological Chemistry, 275(47), 36803–36810.PubMed
117.
Zurück zum Zitat Lamouille, S., & Derynck, R. (2007). Cell size and invasion in TGF-β-induced epithelial to mesenchymal transition is regulated by activation of the mTOR pathway. The Journal of Cell Biology, 178(3), 437–451.PubMed Lamouille, S., & Derynck, R. (2007). Cell size and invasion in TGF-β-induced epithelial to mesenchymal transition is regulated by activation of the mTOR pathway. The Journal of Cell Biology, 178(3), 437–451.PubMed
118.
Zurück zum Zitat Lamouille, S., & Derynck, R. (2011). Emergence of the phosphoinositide 3-kinase-Akt-mammalian target of rapamycin axis in transforming growth factor-β-induced epithelial–mesenchymal transition. Cells, Tissues, Organs, 193(1–2), 8–22.PubMed Lamouille, S., & Derynck, R. (2011). Emergence of the phosphoinositide 3-kinase-Akt-mammalian target of rapamycin axis in transforming growth factor-β-induced epithelial–mesenchymal transition. Cells, Tissues, Organs, 193(1–2), 8–22.PubMed
119.
Zurück zum Zitat Wendt, M. K., Allington, T. M., & Schiemann, W. P. (2009). Mechanisms of the epithelial–mesenchymal transition by TGF-β. Future Oncology, 5(8), 1145–1168.PubMed Wendt, M. K., Allington, T. M., & Schiemann, W. P. (2009). Mechanisms of the epithelial–mesenchymal transition by TGF-β. Future Oncology, 5(8), 1145–1168.PubMed
120.
Zurück zum Zitat Hurd, T. W., Gao, L., Roh, M. H., Macara, I. G., & Margolis, B. (2003). Direct interaction of two polarity complexes implicated in epithelial tight junction assembly. Nature Cell Biology, 5(2), 137–142.PubMed Hurd, T. W., Gao, L., Roh, M. H., Macara, I. G., & Margolis, B. (2003). Direct interaction of two polarity complexes implicated in epithelial tight junction assembly. Nature Cell Biology, 5(2), 137–142.PubMed
121.
Zurück zum Zitat Ozdamar, B., Bose, R., Barrios-Rodiles, M., Wang, H. R., Zhang, Y., & Wrana, J. L. (2005). Regulation of the polarity protein Par6 by TGF-β receptors controls epithelial cell plasticity. Science, 307(5715), 1603–1609.PubMed Ozdamar, B., Bose, R., Barrios-Rodiles, M., Wang, H. R., Zhang, Y., & Wrana, J. L. (2005). Regulation of the polarity protein Par6 by TGF-β receptors controls epithelial cell plasticity. Science, 307(5715), 1603–1609.PubMed
122.
Zurück zum Zitat Viloria-Petit, A. M., David, L., Jia, J. Y., Erdemir, T., Bane, A. L., Pinnaduwage, D., et al. (2009). A role for the TGF-β–Par6 polarity pathway in breast cancer progression. Proceedings of the National Academy of Sciences of the United States of America, 106(33), 14028–14033.PubMed Viloria-Petit, A. M., David, L., Jia, J. Y., Erdemir, T., Bane, A. L., Pinnaduwage, D., et al. (2009). A role for the TGF-β–Par6 polarity pathway in breast cancer progression. Proceedings of the National Academy of Sciences of the United States of America, 106(33), 14028–14033.PubMed
123.
Zurück zum Zitat Araki, S., Eitel, J. A., Batuello, C. N., Bijangi-Vishehsaraei, K., Xie, X. J., Danielpour, D., et al. (2010). TGF-β1-induced expression of human Mdm2 correlates with late-stage metastatic breast cancer. The Journal of Clinical Investigation, 120(1), 290–302.PubMed Araki, S., Eitel, J. A., Batuello, C. N., Bijangi-Vishehsaraei, K., Xie, X. J., Danielpour, D., et al. (2010). TGF-β1-induced expression of human Mdm2 correlates with late-stage metastatic breast cancer. The Journal of Clinical Investigation, 120(1), 290–302.PubMed
124.
Zurück zum Zitat Pandey, J., Umphress, S. M., Kang, Y., Angdisen, J., Naumova, A., Mercer, K. L., et al. (2007). Modulation of tumor induction and progression of oncogenic K-Ras-positive tumors in the presence of TGF-β 1 haploinsufficiency. Carcinogenesis, 28(12), 2589–2596.PubMed Pandey, J., Umphress, S. M., Kang, Y., Angdisen, J., Naumova, A., Mercer, K. L., et al. (2007). Modulation of tumor induction and progression of oncogenic K-Ras-positive tumors in the presence of TGF-β 1 haploinsufficiency. Carcinogenesis, 28(12), 2589–2596.PubMed
125.
Zurück zum Zitat Padua, D., Zhang, X. H., Wang, Q., Nadal, C., Gerald, W. L., Gomis, R. R., et al. (2008). TGF-β primes breast tumors for lung metastasis seeding through angiopoietin-like 4. Cell, 133(1), 66–77.PubMed Padua, D., Zhang, X. H., Wang, Q., Nadal, C., Gerald, W. L., Gomis, R. R., et al. (2008). TGF-β primes breast tumors for lung metastasis seeding through angiopoietin-like 4. Cell, 133(1), 66–77.PubMed
126.
Zurück zum Zitat Greco, C., Forte, L., Erba, P., & Mariani, G. (2011). Bone metastases, general and clinical issues. The Quarterly Journal of Nuclear Medicine and Molecular Imaging, 55(4), 337–352.PubMed Greco, C., Forte, L., Erba, P., & Mariani, G. (2011). Bone metastases, general and clinical issues. The Quarterly Journal of Nuclear Medicine and Molecular Imaging, 55(4), 337–352.PubMed
127.
Zurück zum Zitat Yin, J. J., Pollock, C. B., & Kelly, K. (2005). Mechanisms of cancer metastasis to the bone. Cell Research, 15(1), 57–62.PubMed Yin, J. J., Pollock, C. B., & Kelly, K. (2005). Mechanisms of cancer metastasis to the bone. Cell Research, 15(1), 57–62.PubMed
128.
Zurück zum Zitat Yin, J. J., Selander, K., Chirgwin, J. M., Dallas, M., Grubbs, B. G., Wieser, R., et al. (1999). TGF-β signaling blockade inhibits PTHrP secretion by breast cancer cells and bone metastases development. The Journal of Clinical Investigation, 103(2), 197–206.PubMed Yin, J. J., Selander, K., Chirgwin, J. M., Dallas, M., Grubbs, B. G., Wieser, R., et al. (1999). TGF-β signaling blockade inhibits PTHrP secretion by breast cancer cells and bone metastases development. The Journal of Clinical Investigation, 103(2), 197–206.PubMed
129.
Zurück zum Zitat Guise, T. A., Yin, J. J., Taylor, S. D., Kumagai, Y., Dallas, M., Boyce, B. F., et al. (1996). Evidence for a causal role of parathyroid hormone-related protein in the pathogenesis of human breast cancer-mediated osteolysis. The Journal of Clinical Investigation, 98(7), 1544–1549.PubMed Guise, T. A., Yin, J. J., Taylor, S. D., Kumagai, Y., Dallas, M., Boyce, B. F., et al. (1996). Evidence for a causal role of parathyroid hormone-related protein in the pathogenesis of human breast cancer-mediated osteolysis. The Journal of Clinical Investigation, 98(7), 1544–1549.PubMed
130.
Zurück zum Zitat Kingsley, L. A., Fournier, P. G., Chirgwin, J. M., & Guise, T. A. (2007). Molecular biology of bone metastasis. Molecular Cancer Therapeutics, 6(10), 2609–2617.PubMed Kingsley, L. A., Fournier, P. G., Chirgwin, J. M., & Guise, T. A. (2007). Molecular biology of bone metastasis. Molecular Cancer Therapeutics, 6(10), 2609–2617.PubMed
131.
Zurück zum Zitat Muller, A., Homey, B., Soto, H., Ge, N., Catron, D., Buchanan, M. E., et al. (2001). Involvement of chemokine receptors in breast cancer metastasis. Nature, 410(6824), 50–56.PubMed Muller, A., Homey, B., Soto, H., Ge, N., Catron, D., Buchanan, M. E., et al. (2001). Involvement of chemokine receptors in breast cancer metastasis. Nature, 410(6824), 50–56.PubMed
132.
Zurück zum Zitat Kang, Y., Siegel, P. M., Shu, W., Drobnjak, M., Kakonen, S. M., Cordon-Cardo, C., et al. (2003). A multigenic program mediating breast cancer metastasis to bone. Cancer Cell, 3(6), 537–549.PubMed Kang, Y., Siegel, P. M., Shu, W., Drobnjak, M., Kakonen, S. M., Cordon-Cardo, C., et al. (2003). A multigenic program mediating breast cancer metastasis to bone. Cancer Cell, 3(6), 537–549.PubMed
133.
Zurück zum Zitat Thiery, J. P., Acloque, H., Huang, R. Y., & Nieto, M. A. (2009). Epithelial–mesenchymal transitions in development and disease. Cell, 139(5), 871–890.PubMed Thiery, J. P., Acloque, H., Huang, R. Y., & Nieto, M. A. (2009). Epithelial–mesenchymal transitions in development and disease. Cell, 139(5), 871–890.PubMed
134.
Zurück zum Zitat Soto, A. M., & Sonnenschein, C. (2011). The tissue organization field theory of cancer: a testable replacement for the somatic mutation theory. BioEssays: News and Reviews in Molecular, Cellular and Developmental Biology, 33(5), 332–340. Soto, A. M., & Sonnenschein, C. (2011). The tissue organization field theory of cancer: a testable replacement for the somatic mutation theory. BioEssays: News and Reviews in Molecular, Cellular and Developmental Biology, 33(5), 332–340.
135.
Zurück zum Zitat Leight, J. L., Wozniak, M. A., Chen, S., Lynch, M. L., & Chen, C. S. (2012). Matrix rigidity regulates a switch between TGF-β 1-induced apoptosis and epithelial–mesenchymal transition. Molecular Biology of the Cell, 23, 781–791.PubMed Leight, J. L., Wozniak, M. A., Chen, S., Lynch, M. L., & Chen, C. S. (2012). Matrix rigidity regulates a switch between TGF-β 1-induced apoptosis and epithelial–mesenchymal transition. Molecular Biology of the Cell, 23, 781–791.PubMed
136.
Zurück zum Zitat Copple, B. L. (2010). Hypoxia stimulates hepatocyte epithelial to mesenchymal transition by hypoxia-inducible factor and transforming growth factor-β-dependent mechanisms. Liver International, 30(5), 669–682.PubMed Copple, B. L. (2010). Hypoxia stimulates hepatocyte epithelial to mesenchymal transition by hypoxia-inducible factor and transforming growth factor-β-dependent mechanisms. Liver International, 30(5), 669–682.PubMed
137.
Zurück zum Zitat Guan, F., Schaffer, L., Handa, K., & Hakomori, S. I. (2010). Functional role of gangliotetraosylceramide in epithelial-to-mesenchymal transition process induced by hypoxia and by TGF-β. The FASEB Journal, 24(12), 4889–4903. Guan, F., Schaffer, L., Handa, K., & Hakomori, S. I. (2010). Functional role of gangliotetraosylceramide in epithelial-to-mesenchymal transition process induced by hypoxia and by TGF-β. The FASEB Journal, 24(12), 4889–4903.
138.
Zurück zum Zitat Mak, P., Leav, I., Pursell, B., Bae, D., Yang, X., Taglienti, C. A., et al. (2010). ERbβ impedes prostate cancer EMT by destabilizing HIF-1α and inhibiting VEGF-mediated snail nuclear localization: implications for Gleason grading. Cancer Cell, 17(4), 319–332.PubMed Mak, P., Leav, I., Pursell, B., Bae, D., Yang, X., Taglienti, C. A., et al. (2010). ERbβ impedes prostate cancer EMT by destabilizing HIF-1α and inhibiting VEGF-mediated snail nuclear localization: implications for Gleason grading. Cancer Cell, 17(4), 319–332.PubMed
139.
Zurück zum Zitat Kuperwasser, C., Chavarria, T., Wu, M., Magrane, G., Gray, J. W., Carey, L., et al. (2004). Reconstruction of functionally normal and malignant human breast tissues in mice. Proceedings of the National Academy of Sciences of the United States of America, 101(14), 4966–4971.PubMed Kuperwasser, C., Chavarria, T., Wu, M., Magrane, G., Gray, J. W., Carey, L., et al. (2004). Reconstruction of functionally normal and malignant human breast tissues in mice. Proceedings of the National Academy of Sciences of the United States of America, 101(14), 4966–4971.PubMed
140.
Zurück zum Zitat Bhowmick, N. A., Chytil, A., Plieth, D., Gorska, A. E., Dumont, N., Shappell, S., et al. (2004). TGF-β signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science, 303(5659), 848–851.PubMed Bhowmick, N. A., Chytil, A., Plieth, D., Gorska, A. E., Dumont, N., Shappell, S., et al. (2004). TGF-β signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science, 303(5659), 848–851.PubMed
141.
Zurück zum Zitat Maffini, M. V., Soto, A. M., Calabro, J. M., Ucci, A. A., & Sonnenschein, C. (2004). The stroma as a crucial target in rat mammary gland carcinogenesis. Journal of Cell Science, 117(Pt 8), 1495–1502.PubMed Maffini, M. V., Soto, A. M., Calabro, J. M., Ucci, A. A., & Sonnenschein, C. (2004). The stroma as a crucial target in rat mammary gland carcinogenesis. Journal of Cell Science, 117(Pt 8), 1495–1502.PubMed
142.
Zurück zum Zitat de Visser, K. E., Eichten, A., & Coussens, L. M. (2006). Paradoxical roles of the immune system during cancer development. Nature Reviews. Cancer, 6(1), 24–37.PubMed de Visser, K. E., Eichten, A., & Coussens, L. M. (2006). Paradoxical roles of the immune system during cancer development. Nature Reviews. Cancer, 6(1), 24–37.PubMed
143.
Zurück zum Zitat Shull, M. M., Ormsby, I., Kier, A. B., Pawlowski, S., Diebold, R. J., Yin, M., et al. (1992). Targeted disruption of the mouse transforming growth factor-β 1 gene results in multifocal inflammatory disease. Nature, 359(6397), 693–699.PubMed Shull, M. M., Ormsby, I., Kier, A. B., Pawlowski, S., Diebold, R. J., Yin, M., et al. (1992). Targeted disruption of the mouse transforming growth factor-β 1 gene results in multifocal inflammatory disease. Nature, 359(6397), 693–699.PubMed
144.
Zurück zum Zitat Engle, S. J., Ormsby, I., Pawlowski, S., Boivin, G. P., Croft, J., Balish, E., et al. (2002). Elimination of colon cancer in germ-free transforming growth factor β 1-deficient mice. Cancer Research, 62(22), 6362–6366.PubMed Engle, S. J., Ormsby, I., Pawlowski, S., Boivin, G. P., Croft, J., Balish, E., et al. (2002). Elimination of colon cancer in germ-free transforming growth factor β 1-deficient mice. Cancer Research, 62(22), 6362–6366.PubMed
145.
Zurück zum Zitat Ewan, K. B., Oketch-Rabah, H. A., Ravani, S. A., Shyamala, G., Moses, H. L., & Barcellos-Hoff, M. H. (2005). Proliferation of estrogen receptor-α-positive mammary epithelial cells is restrained by transforming growth factor-β1 in adult mice. The American Journal of Pathology, 167(2), 409–417.PubMed Ewan, K. B., Oketch-Rabah, H. A., Ravani, S. A., Shyamala, G., Moses, H. L., & Barcellos-Hoff, M. H. (2005). Proliferation of estrogen receptor-α-positive mammary epithelial cells is restrained by transforming growth factor-β1 in adult mice. The American Journal of Pathology, 167(2), 409–417.PubMed
146.
Zurück zum Zitat Barcellos-Hoff, M. H., & Akhurst, R. J. (2009). Transforming growth factor-β in breast cancer: too much, too late. Breast Cancer Research, 11(1), 202.PubMed Barcellos-Hoff, M. H., & Akhurst, R. J. (2009). Transforming growth factor-β in breast cancer: too much, too late. Breast Cancer Research, 11(1), 202.PubMed
147.
Zurück zum Zitat Saunier, E. F., & Akhurst, R. J. (2006). TGF-β inhibition for cancer therapy. Current Cancer Drug Targets, 6(7), 565–578.PubMed Saunier, E. F., & Akhurst, R. J. (2006). TGF-β inhibition for cancer therapy. Current Cancer Drug Targets, 6(7), 565–578.PubMed
148.
Zurück zum Zitat Yang, L. (2010). TGF-β and cancer metastasis: an inflammation link. Cancer Metastasis Reviews, 29(2), 263–271.PubMed Yang, L. (2010). TGF-β and cancer metastasis: an inflammation link. Cancer Metastasis Reviews, 29(2), 263–271.PubMed
149.
Zurück zum Zitat Nam, J. S., Terabe, M., Mamura, M., Kang, M. J., Chae, H., Stuelten, C., et al. (2008). An anti-transforming growth factor β antibody suppresses metastasis via cooperative effects on multiple cell compartments. Cancer Research, 68(10), 3835–3843.PubMed Nam, J. S., Terabe, M., Mamura, M., Kang, M. J., Chae, H., Stuelten, C., et al. (2008). An anti-transforming growth factor β antibody suppresses metastasis via cooperative effects on multiple cell compartments. Cancer Research, 68(10), 3835–3843.PubMed
150.
Zurück zum Zitat Ohmori, T., Yang, J. L., Price, J. O., & Arteaga, C. L. (1998). Blockade of tumor cell transforming growth factor-βs enhances cell cycle progression and sensitizes human breast carcinoma cells to cytotoxic chemotherapy. Experimental Cell Research, 245(2), 350–359.PubMed Ohmori, T., Yang, J. L., Price, J. O., & Arteaga, C. L. (1998). Blockade of tumor cell transforming growth factor-βs enhances cell cycle progression and sensitizes human breast carcinoma cells to cytotoxic chemotherapy. Experimental Cell Research, 245(2), 350–359.PubMed
151.
Zurück zum Zitat Liu, P., Menon, K., Alvarez, E., Lu, K., & Teicher, B. A. (2000). Transforming growth factor-β and response to anticancer therapies in human liver and gastric tumors in vitro and in vivo. International Journal of Oncology, 16(3), 599–610.PubMed Liu, P., Menon, K., Alvarez, E., Lu, K., & Teicher, B. A. (2000). Transforming growth factor-β and response to anticancer therapies in human liver and gastric tumors in vitro and in vivo. International Journal of Oncology, 16(3), 599–610.PubMed
152.
Zurück zum Zitat Teicher, B. A. (2001). Malignant cells, directors of the malignant process: role of transforming growth factor-β. Cancer Metastasis Reviews, 20(1–2), 133–143.PubMed Teicher, B. A. (2001). Malignant cells, directors of the malignant process: role of transforming growth factor-β. Cancer Metastasis Reviews, 20(1–2), 133–143.PubMed
153.
Zurück zum Zitat Teicher, B. A., Ikebe, M., Ara, G., Keyes, S. R., & Herbst, R. S. (1997). Transforming growth factor-β 1 overexpression produces drug resistance in vivo: reversal by decorin. In Vivo, 11(6), 463–472.PubMed Teicher, B. A., Ikebe, M., Ara, G., Keyes, S. R., & Herbst, R. S. (1997). Transforming growth factor-β 1 overexpression produces drug resistance in vivo: reversal by decorin. In Vivo, 11(6), 463–472.PubMed
154.
Zurück zum Zitat Kirshner, J., Jobling, M. F., Pajares, M. J., Ravani, S. A., Glick, A. B., Lavin, M. J., et al. (2006). Inhibition of transforming growth factor-β1 signaling attenuates ataxia telangiectasia mutated activity in response to genotoxic stress. Cancer Research, 66(22), 10861–10869.PubMed Kirshner, J., Jobling, M. F., Pajares, M. J., Ravani, S. A., Glick, A. B., Lavin, M. J., et al. (2006). Inhibition of transforming growth factor-β1 signaling attenuates ataxia telangiectasia mutated activity in response to genotoxic stress. Cancer Research, 66(22), 10861–10869.PubMed
155.
Zurück zum Zitat Ewan, K. B., Henshall-Powell, R. L., Ravani, S. A., Pajares, M. J., Arteaga, C., Warters, R., et al. (2002). Transforming growth factor-β1 mediates cellular response to DNA damage in situ. Cancer Research, 62(20), 5627–5631.PubMed Ewan, K. B., Henshall-Powell, R. L., Ravani, S. A., Pajares, M. J., Arteaga, C., Warters, R., et al. (2002). Transforming growth factor-β1 mediates cellular response to DNA damage in situ. Cancer Research, 62(20), 5627–5631.PubMed
156.
Zurück zum Zitat Zhang, M., Kleber, S., Rohrich, M., Timke, C., Han, N., Tuettenberg, J., et al. (2011). Blockade of TGF-β signaling by the TGF-β R-I kinase inhibitor Ly2109761 enhances radiation response and prolongs survival in glioblastoma. Cancer Research, 71(23), 7155–7167.PubMed Zhang, M., Kleber, S., Rohrich, M., Timke, C., Han, N., Tuettenberg, J., et al. (2011). Blockade of TGF-β signaling by the TGF-β R-I kinase inhibitor Ly2109761 enhances radiation response and prolongs survival in glioblastoma. Cancer Research, 71(23), 7155–7167.PubMed
157.
Zurück zum Zitat Liu, Y., Kudo, K., Abe, Y., Hu, D. L., Kijima, H., Nakane, A., et al. (2009). Inhibition of transforming growth factor-β, hypoxia-inducible factor-α and vascular endothelial growth factor reduced late rectal injury induced by irradiation. Journal of Radiation Research, 50(3), 233–239.PubMed Liu, Y., Kudo, K., Abe, Y., Hu, D. L., Kijima, H., Nakane, A., et al. (2009). Inhibition of transforming growth factor-β, hypoxia-inducible factor-α and vascular endothelial growth factor reduced late rectal injury induced by irradiation. Journal of Radiation Research, 50(3), 233–239.PubMed
158.
Zurück zum Zitat Kakeji, Y., Maehara, Y., Ikebe, M., & Teicher, B. A. (1997). Dynamics of tumor oxygenation, CD31 staining and transforming growth factor-β levels after treatment with radiation or cyclophosphamide in the rat 13762 mammary carcinoma. International Journal of Radiation Oncology, Biology, Physics, 37(5), 1115–1123.PubMed Kakeji, Y., Maehara, Y., Ikebe, M., & Teicher, B. A. (1997). Dynamics of tumor oxygenation, CD31 staining and transforming growth factor-β levels after treatment with radiation or cyclophosphamide in the rat 13762 mammary carcinoma. International Journal of Radiation Oncology, Biology, Physics, 37(5), 1115–1123.PubMed
159.
Zurück zum Zitat Vujaskovic, Z., Marks, L. B., & Anscher, M. S. (2000). The physical parameters and molecular events associated with radiation-induced lung toxicity. Seminars in Radiation Oncology, 10(4), 296–307.PubMed Vujaskovic, Z., Marks, L. B., & Anscher, M. S. (2000). The physical parameters and molecular events associated with radiation-induced lung toxicity. Seminars in Radiation Oncology, 10(4), 296–307.PubMed
160.
Zurück zum Zitat Hofer, S. O., Molema, G., Hermens, R. A., Wanebo, H. J., Reichner, J. S., & Hoekstra, H. J. (1999). The effect of surgical wounding on tumour development. European Journal of Surgical Oncology, 25(3), 231–243.PubMed Hofer, S. O., Molema, G., Hermens, R. A., Wanebo, H. J., Reichner, J. S., & Hoekstra, H. J. (1999). The effect of surgical wounding on tumour development. European Journal of Surgical Oncology, 25(3), 231–243.PubMed
161.
Zurück zum Zitat Teicher, B. A., Maehara, Y., Kakeji, Y., Ara, G., Keyes, S. R., Wong, J., et al. (1997). Reversal of in vivo drug resistance by the transforming growth factor-β inhibitor decorin. International Journal of Cancer, 71(1), 49–58. Teicher, B. A., Maehara, Y., Kakeji, Y., Ara, G., Keyes, S. R., Wong, J., et al. (1997). Reversal of in vivo drug resistance by the transforming growth factor-β inhibitor decorin. International Journal of Cancer, 71(1), 49–58.
162.
Zurück zum Zitat Yamaguchi, K., Takagi, Y., Aoki, S., Futamura, M., & Saji, S. (2000). Significant detection of circulating cancer cells in the blood by reverse transcriptase-polymerase chain reaction during colorectal cancer resection. Annals of Surgery, 232(1), 58–65.PubMed Yamaguchi, K., Takagi, Y., Aoki, S., Futamura, M., & Saji, S. (2000). Significant detection of circulating cancer cells in the blood by reverse transcriptase-polymerase chain reaction during colorectal cancer resection. Annals of Surgery, 232(1), 58–65.PubMed
163.
Zurück zum Zitat Tsushima, H., Ito, N., Tamura, S., Matsuda, Y., Inada, M., Yabuuchi, I., et al. (2001). Circulating transforming growth factor β 1 as a predictor of liver metastasis after resection in colorectal cancer. Clinical Cancer Research, 7(5), 1258–1262.PubMed Tsushima, H., Ito, N., Tamura, S., Matsuda, Y., Inada, M., Yabuuchi, I., et al. (2001). Circulating transforming growth factor β 1 as a predictor of liver metastasis after resection in colorectal cancer. Clinical Cancer Research, 7(5), 1258–1262.PubMed
164.
Zurück zum Zitat Shim, K. S., Kim, K. H., Han, W. S., & Park, E. B. (1999). Elevated serum levels of transforming growth factor-β1 in patients with colorectal carcinoma: its association with tumor progression and its significant decrease after curative surgical resection. Cancer, 85(3), 554–561.PubMed Shim, K. S., Kim, K. H., Han, W. S., & Park, E. B. (1999). Elevated serum levels of transforming growth factor-β1 in patients with colorectal carcinoma: its association with tumor progression and its significant decrease after curative surgical resection. Cancer, 85(3), 554–561.PubMed
165.
Zurück zum Zitat Feltl, D., Zavadova, E., Pala, M., & Hozak, P. (2005). The dynamics of plasma transforming growth factor β 1 (TGF-β1) level during radiotherapy with or without simultaneous chemotherapy in advanced head and neck cancer. Oral Oncology, 41(2), 208–213.PubMed Feltl, D., Zavadova, E., Pala, M., & Hozak, P. (2005). The dynamics of plasma transforming growth factor β 1 (TGF-β1) level during radiotherapy with or without simultaneous chemotherapy in advanced head and neck cancer. Oral Oncology, 41(2), 208–213.PubMed
166.
Zurück zum Zitat Robert, F., Busby, E., Marques, M. B., Reynolds, R. E., & Carey, D. E. (2003). Phase II study of docetaxel plus enoxaparin in chemotherapy-naive patients with metastatic non-small cell lung cancer: preliminary results. Lung Cancer, 42(2), 237–245.PubMed Robert, F., Busby, E., Marques, M. B., Reynolds, R. E., & Carey, D. E. (2003). Phase II study of docetaxel plus enoxaparin in chemotherapy-naive patients with metastatic non-small cell lung cancer: preliminary results. Lung Cancer, 42(2), 237–245.PubMed
167.
Zurück zum Zitat Dave, H., Shah, M., Trivedi, S., & Shukla, S. (2011). Prognostic utility of circulating transforming growth factor β 1 in breast cancer patients. The International Journal of Biological Markers, 27, 53–59. Dave, H., Shah, M., Trivedi, S., & Shukla, S. (2011). Prognostic utility of circulating transforming growth factor β 1 in breast cancer patients. The International Journal of Biological Markers, 27, 53–59.
168.
Zurück zum Zitat Hirohashi, S., & Kanai, Y. (2003). Cell adhesion system and human cancer morphogenesis. Cancer Science, 94(7), 575–581.PubMed Hirohashi, S., & Kanai, Y. (2003). Cell adhesion system and human cancer morphogenesis. Cancer Science, 94(7), 575–581.PubMed
169.
Zurück zum Zitat Teicher, B. A., Holden, S. A., Ara, G., & Chen, G. (1996). Transforming growth factor-β in in vivo resistance. Cancer Chemotherapy and Pharmacology, 37(6), 601–609.PubMed Teicher, B. A., Holden, S. A., Ara, G., & Chen, G. (1996). Transforming growth factor-β in in vivo resistance. Cancer Chemotherapy and Pharmacology, 37(6), 601–609.PubMed
170.
Zurück zum Zitat Andarawewa, K. L., Erickson, A. C., Chou, W. S., Costes, S. V., Gascard, P., Mott, J. D., et al. (2007). Ionizing radiation predisposes nonmalignant human mammary epithelial cells to undergo transforming growth factor β induced epithelial to mesenchymal transition. Cancer Research, 67(18), 8662–8670.PubMed Andarawewa, K. L., Erickson, A. C., Chou, W. S., Costes, S. V., Gascard, P., Mott, J. D., et al. (2007). Ionizing radiation predisposes nonmalignant human mammary epithelial cells to undergo transforming growth factor β induced epithelial to mesenchymal transition. Cancer Research, 67(18), 8662–8670.PubMed
171.
Zurück zum Zitat Begg, A. C., Stewart, F. A., & Vens, C. (2011). Strategies to improve radiotherapy with targeted drugs. Nature Reviews. Cancer, 11(4), 239–253.PubMed Begg, A. C., Stewart, F. A., & Vens, C. (2011). Strategies to improve radiotherapy with targeted drugs. Nature Reviews. Cancer, 11(4), 239–253.PubMed
172.
Zurück zum Zitat Burdak-Rothkamm, S., & Prise, K. M. (2009). New molecular targets in radiotherapy: DNA damage signalling and repair in targeted and non-targeted cells. European Journal of Pharmacology, 625(1–3), 151–155.PubMed Burdak-Rothkamm, S., & Prise, K. M. (2009). New molecular targets in radiotherapy: DNA damage signalling and repair in targeted and non-targeted cells. European Journal of Pharmacology, 625(1–3), 151–155.PubMed
173.
Zurück zum Zitat Wiegman, E. M., Blaese, M. A., Loeffler, H., Coppes, R. P., & Rodemann, H. P. (2007). TGF-β-1 dependent fast stimulation of ATM and P53 phosphorylation following exposure to ionizing radiation does not involve TGF-β-receptor I signalling. Radiotherapy and Oncology, 83(3), 289–295.PubMed Wiegman, E. M., Blaese, M. A., Loeffler, H., Coppes, R. P., & Rodemann, H. P. (2007). TGF-β-1 dependent fast stimulation of ATM and P53 phosphorylation following exposure to ionizing radiation does not involve TGF-β-receptor I signalling. Radiotherapy and Oncology, 83(3), 289–295.PubMed
174.
Zurück zum Zitat Bouquet, F., Pal, A., Pilones, K. A., Demaria, S., Hann, B., Akhurst, R. J., et al. (2011). TGF-β 1 inhibition increases the radiosensitivity of breast cancer cells in vitro and promotes tumor control by radiation in vivo. Clinical Cancer Research, 17(21), 6754–6765.PubMed Bouquet, F., Pal, A., Pilones, K. A., Demaria, S., Hann, B., Akhurst, R. J., et al. (2011). TGF-β 1 inhibition increases the radiosensitivity of breast cancer cells in vitro and promotes tumor control by radiation in vivo. Clinical Cancer Research, 17(21), 6754–6765.PubMed
175.
Zurück zum Zitat Martin, M., Lefaix, J., & Delanian, S. (2000). TGF-β 1 and radiation fibrosis: a master switch and a specific therapeutic target? International Journal of Radiation Oncology, Biology, Physics, 47(2), 277–290.PubMed Martin, M., Lefaix, J., & Delanian, S. (2000). TGF-β 1 and radiation fibrosis: a master switch and a specific therapeutic target? International Journal of Radiation Oncology, Biology, Physics, 47(2), 277–290.PubMed
176.
Zurück zum Zitat Anscher, M. S., Thrasher, B., Rabbani, Z., Teicher, B., & Vujaskovic, Z. (2006). Antitransforming growth factor-β antibody 1d11 ameliorates normal tissue damage caused by high-dose radiation. International Journal of Radiation Oncology, Biology, Physics, 65(3), 876–881.PubMed Anscher, M. S., Thrasher, B., Rabbani, Z., Teicher, B., & Vujaskovic, Z. (2006). Antitransforming growth factor-β antibody 1d11 ameliorates normal tissue damage caused by high-dose radiation. International Journal of Radiation Oncology, Biology, Physics, 65(3), 876–881.PubMed
177.
Zurück zum Zitat Lan, H. Y. (2011). Diverse roles of TGF-β/SMADs in renal fibrosis and inflammation. International Journal of Biological Sciences, 7(7), 1056–1067.PubMed Lan, H. Y. (2011). Diverse roles of TGF-β/SMADs in renal fibrosis and inflammation. International Journal of Biological Sciences, 7(7), 1056–1067.PubMed
178.
Zurück zum Zitat Kalluri, R., & Neilson, E. G. (2003). Epithelial–mesenchymal transition and its implications for fibrosis. The Journal of Clinical Investigation, 112(12), 1776–1784.PubMed Kalluri, R., & Neilson, E. G. (2003). Epithelial–mesenchymal transition and its implications for fibrosis. The Journal of Clinical Investigation, 112(12), 1776–1784.PubMed
179.
Zurück zum Zitat Anido, J., Saez-Borderias, A., Gonzalez-Junca, A., Rodon, L., Folch, G., Carmona, M. A., et al. (2010). TGF-β receptor inhibitors target the CD44(High)/Id1(High) glioma-initiating cell population in human glioblastoma. Cancer Cell, 18(6), 655–668.PubMed Anido, J., Saez-Borderias, A., Gonzalez-Junca, A., Rodon, L., Folch, G., Carmona, M. A., et al. (2010). TGF-β receptor inhibitors target the CD44(High)/Id1(High) glioma-initiating cell population in human glioblastoma. Cancer Cell, 18(6), 655–668.PubMed
180.
Zurück zum Zitat Fransvea, E., Angelotti, U., Antonaci, S., & Giannelli, G. (2008). Blocking transforming growth factor-β up-regulates E-cadherin and reduces migration and invasion of hepatocellular carcinoma cells. Hepatology, 47(5), 1557–1566.PubMed Fransvea, E., Angelotti, U., Antonaci, S., & Giannelli, G. (2008). Blocking transforming growth factor-β up-regulates E-cadherin and reduces migration and invasion of hepatocellular carcinoma cells. Hepatology, 47(5), 1557–1566.PubMed
181.
Zurück zum Zitat Fu, K., Corbley, M. J., Sun, L., Friedman, J. E., Shan, F., Papadatos, J. L., et al. (2008). Sm16, an orally active TGF-β type I receptor inhibitor prevents myofibroblast induction and vascular fibrosis in the rat carotid injury model. Arteriosclerosis, Thrombosis, and Vascular Biology, 28(4), 665–671.PubMed Fu, K., Corbley, M. J., Sun, L., Friedman, J. E., Shan, F., Papadatos, J. L., et al. (2008). Sm16, an orally active TGF-β type I receptor inhibitor prevents myofibroblast induction and vascular fibrosis in the rat carotid injury model. Arteriosclerosis, Thrombosis, and Vascular Biology, 28(4), 665–671.PubMed
182.
Zurück zum Zitat Wallace, A., Kapoor, V., Sun, J., Mrass, P., Weninger, W., Heitjan, D. F., et al. (2008). Transforming growth factor-β receptor blockade augments the effectiveness of adoptive T-cell therapy of established solid cancers. Clinical Cancer Research, 14(12), 3966–3974.PubMed Wallace, A., Kapoor, V., Sun, J., Mrass, P., Weninger, W., Heitjan, D. F., et al. (2008). Transforming growth factor-β receptor blockade augments the effectiveness of adoptive T-cell therapy of established solid cancers. Clinical Cancer Research, 14(12), 3966–3974.PubMed
183.
Zurück zum Zitat Fakhrai, H., Dorigo, O., Shawler, D. L., Lin, H., Mercola, D., Black, K. L., et al. (1996). Eradication of established intracranial rat gliomas by transforming growth factor β antisense gene therapy. Proceedings of the National Academy of Sciences of the United States of America, 93(7), 2909–2914.PubMed Fakhrai, H., Dorigo, O., Shawler, D. L., Lin, H., Mercola, D., Black, K. L., et al. (1996). Eradication of established intracranial rat gliomas by transforming growth factor β antisense gene therapy. Proceedings of the National Academy of Sciences of the United States of America, 93(7), 2909–2914.PubMed
184.
Zurück zum Zitat Maggard, M., Meng, L., Ke, B., Allen, R., Devgan, L., & Imagawa, D. K. (2001). Antisense TGF-β2 immunotherapy for hepatocellular carcinoma: treatment in a rat tumor model. Annals of Surgical Oncology, 8(1), 32–37.PubMed Maggard, M., Meng, L., Ke, B., Allen, R., Devgan, L., & Imagawa, D. K. (2001). Antisense TGF-β2 immunotherapy for hepatocellular carcinoma: treatment in a rat tumor model. Annals of Surgical Oncology, 8(1), 32–37.PubMed
185.
Zurück zum Zitat Olivares, J., Kumar, P., Yu, Y., Maples, P. B., Senzer, N., Bedell, C., et al. (2011). Phase I trial of TGF-β 2 antisense GM-SCF gene-modified autologous tumor cell (Tag) vaccine. Clinical Cancer Research, 17(1), 183–192.PubMed Olivares, J., Kumar, P., Yu, Y., Maples, P. B., Senzer, N., Bedell, C., et al. (2011). Phase I trial of TGF-β 2 antisense GM-SCF gene-modified autologous tumor cell (Tag) vaccine. Clinical Cancer Research, 17(1), 183–192.PubMed
186.
Zurück zum Zitat Lampropoulos, P., Zizi-Sermpetzoglou, A., Rizos, S., Kostakis, A., Nikiteas, N., Papavassiliou, A.G. (2012). Prognostic significance of transforming growth factor β (TGF-β) signaling axis molecules and E-cadherin in colorectal cancer. Tumour Biology. doi:10.1007/s13277-012-0333-3. Lampropoulos, P., Zizi-Sermpetzoglou, A., Rizos, S., Kostakis, A., Nikiteas, N., Papavassiliou, A.G. (2012). Prognostic significance of transforming growth factor β (TGF-β) signaling axis molecules and E-cadherin in colorectal cancer. Tumour Biology. doi:10.​1007/​s13277-012-0333-3.
187.
Zurück zum Zitat Matsumura, N., Huang, Z., Mori, S., Baba, T., Fujii, S., Konishi, I., et al. (2011). Epigenetic suppression of the TGF-β pathway revealed by transcriptome profiling in ovarian cancer. Genome Research, 21(1), 74–82.PubMed Matsumura, N., Huang, Z., Mori, S., Baba, T., Fujii, S., Konishi, I., et al. (2011). Epigenetic suppression of the TGF-β pathway revealed by transcriptome profiling in ovarian cancer. Genome Research, 21(1), 74–82.PubMed
188.
Zurück zum Zitat Wang, Z., Chen, C., Finger, S. N., Kwajah, S., Jung, M., Schwarz, H., et al. (2009). Suberoylanilide hydroxamic acid: a potential epigenetic therapeutic agent for lung fibrosis? The European Respiratory Journal, 34(1), 145–155.PubMed Wang, Z., Chen, C., Finger, S. N., Kwajah, S., Jung, M., Schwarz, H., et al. (2009). Suberoylanilide hydroxamic acid: a potential epigenetic therapeutic agent for lung fibrosis? The European Respiratory Journal, 34(1), 145–155.PubMed
189.
Zurück zum Zitat Duenas-Gonzalez, A., Candelaria, M., Perez-Plascencia, C., Perez-Cardenas, E., de la Cruz-Hernandez, E., & Herrera, L. A. (2008). Valproic acid as epigenetic cancer drug: preclinical, clinical and transcriptional effects on solid tumors. Cancer Treatment Reviews, 34(3), 206–222.PubMed Duenas-Gonzalez, A., Candelaria, M., Perez-Plascencia, C., Perez-Cardenas, E., de la Cruz-Hernandez, E., & Herrera, L. A. (2008). Valproic acid as epigenetic cancer drug: preclinical, clinical and transcriptional effects on solid tumors. Cancer Treatment Reviews, 34(3), 206–222.PubMed
Metadaten
Titel
TGF-β signalling and its role in cancer progression and metastasis
verfasst von
Yvette Drabsch
Peter ten Dijke
Publikationsdatum
01.12.2012
Verlag
Springer US
Erschienen in
Cancer and Metastasis Reviews / Ausgabe 3-4/2012
Print ISSN: 0167-7659
Elektronische ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-012-9375-7

Weitere Artikel der Ausgabe 3-4/2012

Cancer and Metastasis Reviews 3-4/2012 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.