Skip to main content
Erschienen in: Cancer and Metastasis Reviews 3-4/2012

01.12.2012

Non-glucose metabolism in cancer cells—is it all in the fat?

verfasst von: Swethajit Biswas, John Lunec, Kim Bartlett

Erschienen in: Cancer and Metastasis Reviews | Ausgabe 3-4/2012

Einloggen, um Zugang zu erhalten

Abstract

Cancer biologists seem to have overlooked tumor metabolism in their research endeavors over the last 80 years of the last century, only to have “rediscovered Warburg” (Warburg et al. 1930; Warburg, Science 123(3191):309–314, 1956) within the first decade of the twenty-first century, as well as to suggest the importance of other, non-glucose-dependent, metabolic pathways such as such as fatty acid de novo synthesis and catabolism (β-oxidation) (Mashima et al., Br J Cancer 100:1369–1372, 2009) and glutamine catabolism (glutaminolysis) (DeBerardinis et al., Proc Nat Acad Sci 104(49):19345–19350, 2007). These non-glucose metabolic pathways seem to be just as important as the Warburg effect, if not potentially more so in human cancer. The purpose of this review is to highlight the importance of fatty acid metabolism in cancer cells and, where necessary, identify gaps in current knowledge and postulate hypothesis based upon findings in the cellular physiology of metabolic diseases and normal cells.
Literatur
1.
Zurück zum Zitat Hannhan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. Cell, 144(5), 646–674.CrossRef Hannhan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. Cell, 144(5), 646–674.CrossRef
2.
Zurück zum Zitat Warburg, O., Wind, F., & Neglers, E. (1930). In O. Warburg (Ed.), Metabolism of tumours (pp. 254–270). London: Constable & Co. Warburg, O., Wind, F., & Neglers, E. (1930). In O. Warburg (Ed.), Metabolism of tumours (pp. 254–270). London: Constable & Co.
4.
Zurück zum Zitat Koukourakis, M. I., Pitiakoudis, M., Giatromanolaki, A. S., et al. (2006). Oxygen and glucose consumption in gastrointestinal adenocarcinomas: correlation with markers of hypoxia, acidity and aerobic glycolysis. Cancer Science, 97(10), 1056–1060.PubMedCrossRef Koukourakis, M. I., Pitiakoudis, M., Giatromanolaki, A. S., et al. (2006). Oxygen and glucose consumption in gastrointestinal adenocarcinomas: correlation with markers of hypoxia, acidity and aerobic glycolysis. Cancer Science, 97(10), 1056–1060.PubMedCrossRef
5.
Zurück zum Zitat Koukourakis, M. I., Giatromanolaki, A., Harris, A. L., & Sivridis, E. (2006). Comparison of metabolic pathways between cancer cells and stromal cells in colorectal carcinomas: a metabolic survival role for tumor-associated stroma. Cancer Research, 66, 63.CrossRef Koukourakis, M. I., Giatromanolaki, A., Harris, A. L., & Sivridis, E. (2006). Comparison of metabolic pathways between cancer cells and stromal cells in colorectal carcinomas: a metabolic survival role for tumor-associated stroma. Cancer Research, 66, 63.CrossRef
6.
Zurück zum Zitat Gottlieb, E., & Tomlinson, I. P. M. (2005). Mitochondrial tumour suppressors: a genetic and biochemical update. Nature Reviews. Cancer, 5, 857–866.PubMedCrossRef Gottlieb, E., & Tomlinson, I. P. M. (2005). Mitochondrial tumour suppressors: a genetic and biochemical update. Nature Reviews. Cancer, 5, 857–866.PubMedCrossRef
7.
Zurück zum Zitat Pike, L. S., Smift, A. L., Croteau, N. J., Ferrick, D. A., & Wu, M. (2010). Inhibition of fatty acid oxidation by etomoxir impairs NADPH production and increases reactive oxygen species resulting in ATP depletion and cell death in human glioblastoma cells. Biochimica et Biophysica Acta, 1807(6), 726–734.CrossRef Pike, L. S., Smift, A. L., Croteau, N. J., Ferrick, D. A., & Wu, M. (2010). Inhibition of fatty acid oxidation by etomoxir impairs NADPH production and increases reactive oxygen species resulting in ATP depletion and cell death in human glioblastoma cells. Biochimica et Biophysica Acta, 1807(6), 726–734.CrossRef
8.
Zurück zum Zitat Gao, P., Tchernyshyov, I., Chang, T. C., Lee, Y. S., Kita, K., Ochi, T., et al. (2009). C-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature, 458(7239), 762–765.PubMedCrossRef Gao, P., Tchernyshyov, I., Chang, T. C., Lee, Y. S., Kita, K., Ochi, T., et al. (2009). C-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature, 458(7239), 762–765.PubMedCrossRef
9.
Zurück zum Zitat Gurel, B., et al. (2008). Nuclear MYC protein overexpression is an early alteration in human prostate carcinogenesis. Modern Pathology, 21, 1156–1167.PubMedCrossRef Gurel, B., et al. (2008). Nuclear MYC protein overexpression is an early alteration in human prostate carcinogenesis. Modern Pathology, 21, 1156–1167.PubMedCrossRef
10.
Zurück zum Zitat Mashima, T., Seimiya, H., & Tsuruo, T. (2009). De novo fatty-acid synthesis and related pathways as molecular targets for cancer therapy. British Journal of Cancer, 100, 1369–1372.PubMedCrossRef Mashima, T., Seimiya, H., & Tsuruo, T. (2009). De novo fatty-acid synthesis and related pathways as molecular targets for cancer therapy. British Journal of Cancer, 100, 1369–1372.PubMedCrossRef
11.
Zurück zum Zitat Koonen, D. P., Glatz, J. F., Bonen, A., & Luiken, J. J. (2005). Long-chain fatty acid and FAT/CD36 translocation in heart and skeletal muscle. Biochimica et Biophysica Acta, 1736(3), 163–180.PubMedCrossRef Koonen, D. P., Glatz, J. F., Bonen, A., & Luiken, J. J. (2005). Long-chain fatty acid and FAT/CD36 translocation in heart and skeletal muscle. Biochimica et Biophysica Acta, 1736(3), 163–180.PubMedCrossRef
12.
Zurück zum Zitat Hatzivassiliou, G., Zhao, F., Bauer, D. E., Andreadis, C., Shaw, A. N., Dhanak, D., et al. (2005). ATP citrate lyase inhibition can suppress tumor cell growth. Cancer Cell, 8(4), 311–321.PubMedCrossRef Hatzivassiliou, G., Zhao, F., Bauer, D. E., Andreadis, C., Shaw, A. N., Dhanak, D., et al. (2005). ATP citrate lyase inhibition can suppress tumor cell growth. Cancer Cell, 8(4), 311–321.PubMedCrossRef
13.
Zurück zum Zitat Paton, C. M., & Ntambi, J. M. (2009). Biochemical and physiological function of stearoyl-CoA desaturase. American Journal of Physiology, Endocrinology and Metabolism, 297, E28–E37.CrossRef Paton, C. M., & Ntambi, J. M. (2009). Biochemical and physiological function of stearoyl-CoA desaturase. American Journal of Physiology, Endocrinology and Metabolism, 297, E28–E37.CrossRef
14.
Zurück zum Zitat Li, J., Ding, S. F., Habib, N. A., Fermor, B. F., Wood, C. B., & Gilmour, R. S. (1994). Partial characterization of a cDNA for human stearoyl-CoA desaturase and changes in its mRNA expression in some normal and malignant tissues. International Journal of Cancer, 57, 348–352.CrossRef Li, J., Ding, S. F., Habib, N. A., Fermor, B. F., Wood, C. B., & Gilmour, R. S. (1994). Partial characterization of a cDNA for human stearoyl-CoA desaturase and changes in its mRNA expression in some normal and malignant tissues. International Journal of Cancer, 57, 348–352.CrossRef
15.
Zurück zum Zitat Scaglia, N., & Igal, R. A. (2005). Stearoyl-CoA desaturase is involved in the control of proliferation, anchorage-independent growth, and survival in human transformed cells. Journal of Biological Chemistry, 280, 25339–25349.PubMedCrossRef Scaglia, N., & Igal, R. A. (2005). Stearoyl-CoA desaturase is involved in the control of proliferation, anchorage-independent growth, and survival in human transformed cells. Journal of Biological Chemistry, 280, 25339–25349.PubMedCrossRef
16.
Zurück zum Zitat Hue, L., & Taegtmeyer, H. (2009). The Randle cycle revisited: a new head for an old hat. American Journal of Physiology, Endocrinology and Metabolism, 297, E578–E591.CrossRef Hue, L., & Taegtmeyer, H. (2009). The Randle cycle revisited: a new head for an old hat. American Journal of Physiology, Endocrinology and Metabolism, 297, E578–E591.CrossRef
17.
Zurück zum Zitat Koltun, D. O., Parkhill, E. Q., Vasilevich, N. I., Glushkov, A. I., Zilbershtein, T. M., et al. (2009). Novel, potent, selective, and metabolically stable stearoyl-CoA desaturase (SCD) inhibitors. Bioorganic & Medicinal Chemistry Letters, 19, 2048–2052.CrossRef Koltun, D. O., Parkhill, E. Q., Vasilevich, N. I., Glushkov, A. I., Zilbershtein, T. M., et al. (2009). Novel, potent, selective, and metabolically stable stearoyl-CoA desaturase (SCD) inhibitors. Bioorganic & Medicinal Chemistry Letters, 19, 2048–2052.CrossRef
18.
Zurück zum Zitat Scaglia, N., Chisholm, J. W., & Igal, R. A. (2009). Inhibition of stearoylCoA desaturase-1 inactivates acetyl-CoA carboxylase and impairs proliferation in cancer cells: role of AMPK. PLoS One, 4(8), e6812.PubMedCrossRef Scaglia, N., Chisholm, J. W., & Igal, R. A. (2009). Inhibition of stearoylCoA desaturase-1 inactivates acetyl-CoA carboxylase and impairs proliferation in cancer cells: role of AMPK. PLoS One, 4(8), e6812.PubMedCrossRef
19.
Zurück zum Zitat Nomura, D. K., Long, J. Z., Niessen, S., Hoover, H. S., Ng, S. W., & Cravatt, B. F. (2010). Monoacylglycerol lipase regulates a fatty acid network that promotes cancer pathogenesis. Cell, 140(1), 49–61.PubMedCrossRef Nomura, D. K., Long, J. Z., Niessen, S., Hoover, H. S., Ng, S. W., & Cravatt, B. F. (2010). Monoacylglycerol lipase regulates a fatty acid network that promotes cancer pathogenesis. Cell, 140(1), 49–61.PubMedCrossRef
20.
Zurück zum Zitat Krycer, J. R., Sharpe, L. J., Luu, W., & Brown, A. J. (2010). The Akt-SREBP nexus: cell signalling meets lipid metabolism. Trends in Endocrinology and Metabolism, 21(5), 268–276.PubMedCrossRef Krycer, J. R., Sharpe, L. J., Luu, W., & Brown, A. J. (2010). The Akt-SREBP nexus: cell signalling meets lipid metabolism. Trends in Endocrinology and Metabolism, 21(5), 268–276.PubMedCrossRef
21.
Zurück zum Zitat Van de Sande, T., De Schrijver, E., Heyns, W., Verhoeven, G., & Swinnen, J. V. (2002). Role of phosphatidylinositol 3′-kinase/PTEN/Akt kinase pathway in the overexpression of fatty acid synthase in LNCaP prostate cancer cells. Cancer Research, 62, 642–646.PubMed Van de Sande, T., De Schrijver, E., Heyns, W., Verhoeven, G., & Swinnen, J. V. (2002). Role of phosphatidylinositol 3′-kinase/PTEN/Akt kinase pathway in the overexpression of fatty acid synthase in LNCaP prostate cancer cells. Cancer Research, 62, 642–646.PubMed
22.
Zurück zum Zitat Guo, D., Prins, R. M., Dang, J., Kuga, D., Iwanami, A., Soto, H., et al. (2009). EGFR signaling through an Akt-SREBP-1-dependent, rapamycin-resistant pathway sensitizes glioblastomas to antilipogenic therapy. Science Signaling, 2(101), ra82.PubMedCrossRef Guo, D., Prins, R. M., Dang, J., Kuga, D., Iwanami, A., Soto, H., et al. (2009). EGFR signaling through an Akt-SREBP-1-dependent, rapamycin-resistant pathway sensitizes glioblastomas to antilipogenic therapy. Science Signaling, 2(101), ra82.PubMedCrossRef
23.
Zurück zum Zitat Wullschleger, S., Loewith, R., & Hall, M. N. (2006). TOR signalling in growth and metabolism. Cell, 124(3), 471–484.PubMedCrossRef Wullschleger, S., Loewith, R., & Hall, M. N. (2006). TOR signalling in growth and metabolism. Cell, 124(3), 471–484.PubMedCrossRef
24.
Zurück zum Zitat Laplante, M., & Sabatini, D. M. (2010). mTORC1 activates SREBP-1c and uncouples lipogenesis from gluconeogenesis. Proceedings of the National Academy of Sciences, 107(8), 3281–3282.CrossRef Laplante, M., & Sabatini, D. M. (2010). mTORC1 activates SREBP-1c and uncouples lipogenesis from gluconeogenesis. Proceedings of the National Academy of Sciences, 107(8), 3281–3282.CrossRef
25.
Zurück zum Zitat Luyimbazi, D., Akcakanat, A., McAuliffe, P. F., Zhang, L., Singh, G., Gonzalez-Angulo, A. M., et al. (2010). Rapamycin regulates stearoyl CoA desaturase 1 expression in breast cancer. Molecular Cancer Therapeutics, 9(10), 2770–2784.PubMedCrossRef Luyimbazi, D., Akcakanat, A., McAuliffe, P. F., Zhang, L., Singh, G., Gonzalez-Angulo, A. M., et al. (2010). Rapamycin regulates stearoyl CoA desaturase 1 expression in breast cancer. Molecular Cancer Therapeutics, 9(10), 2770–2784.PubMedCrossRef
26.
Zurück zum Zitat Furuta, E., Pai, S. K., Zhan, R., Bandyopadhyay, S., Watabe, M., Mo, Y. Y., et al. (2008). Fatty acid synthase gene is up-regulated by hypoxia via activation of Akt and sterol regulatory element binding protein-1. Cancer Research, 68(4), 1003–1111.PubMedCrossRef Furuta, E., Pai, S. K., Zhan, R., Bandyopadhyay, S., Watabe, M., Mo, Y. Y., et al. (2008). Fatty acid synthase gene is up-regulated by hypoxia via activation of Akt and sterol regulatory element binding protein-1. Cancer Research, 68(4), 1003–1111.PubMedCrossRef
27.
Zurück zum Zitat Vinciguerra, M., Sgroi, A., Veyrat-Durebex, C., Rubbia-Brandt, L., Buhler, L. H., & Foti, M. (2009). Unsaturated fatty acids inhibit the expression of tumor suppressor phosphatase and tensin homolog (PTEN) via microRNA-21 up-regulation in hepatocytes. Hepatology, 49(4), 1176–1184.PubMedCrossRef Vinciguerra, M., Sgroi, A., Veyrat-Durebex, C., Rubbia-Brandt, L., Buhler, L. H., & Foti, M. (2009). Unsaturated fatty acids inhibit the expression of tumor suppressor phosphatase and tensin homolog (PTEN) via microRNA-21 up-regulation in hepatocytes. Hepatology, 49(4), 1176–1184.PubMedCrossRef
28.
Zurück zum Zitat DeBerardinis, R. J., Lum, J. J., & Thompson, C. B. (2006). Phosphatidylinositol 3-kinase-dependent modulation of carnitine palmitoyltransferase 1A expression regulates lipid metabolism during hematopoietic cell growth. Journal of Biological Chemistry, 281, 37372–37380.PubMedCrossRef DeBerardinis, R. J., Lum, J. J., & Thompson, C. B. (2006). Phosphatidylinositol 3-kinase-dependent modulation of carnitine palmitoyltransferase 1A expression regulates lipid metabolism during hematopoietic cell growth. Journal of Biological Chemistry, 281, 37372–37380.PubMedCrossRef
29.
Zurück zum Zitat D’Erchia, A. M., Tullo, A., Lefkimmiatis, K., Saccone, C., & Sbisa, E. (2006). The fatty acid synthase is a conserved p53 family target from worm to human. Cell Cycle, 5, 750–758.PubMedCrossRef D’Erchia, A. M., Tullo, A., Lefkimmiatis, K., Saccone, C., & Sbisa, E. (2006). The fatty acid synthase is a conserved p53 family target from worm to human. Cell Cycle, 5, 750–758.PubMedCrossRef
30.
Zurück zum Zitat Martel, P. M., Binqham, C. M., Mcgraw, C. J., Baker, C. L., Morganelli, P. M., Meng, M. L., et al. (2006). S14 protein in breast cancer cells: direct evidence of regulation by SREBP-1c, superinduction with progestin, and effects on cell growth. Experimental Cell Research, 312, 278–288.PubMed Martel, P. M., Binqham, C. M., Mcgraw, C. J., Baker, C. L., Morganelli, P. M., Meng, M. L., et al. (2006). S14 protein in breast cancer cells: direct evidence of regulation by SREBP-1c, superinduction with progestin, and effects on cell growth. Experimental Cell Research, 312, 278–288.PubMed
31.
Zurück zum Zitat Graner, E., Tang, D., Rossi, S., Baron, A., Migita, T., Weinstein, L. J., et al. (2004). The isopeptidase USP2a regulates the stability of fatty acid synthase in prostate cancer. Cancer Cell, 5, 253–261.PubMedCrossRef Graner, E., Tang, D., Rossi, S., Baron, A., Migita, T., Weinstein, L. J., et al. (2004). The isopeptidase USP2a regulates the stability of fatty acid synthase in prostate cancer. Cancer Cell, 5, 253–261.PubMedCrossRef
32.
Zurück zum Zitat Shah, U. S., Dhir, R., Gollin, S. M., Chandran, U. R., Lewis, D., Acquafondata, M., et al. (2006). Fatty acid synthase gene overexpression and copy number gain in prostate adenocarcinoma. Human Pathology, 37, 401–409.PubMedCrossRef Shah, U. S., Dhir, R., Gollin, S. M., Chandran, U. R., Lewis, D., Acquafondata, M., et al. (2006). Fatty acid synthase gene overexpression and copy number gain in prostate adenocarcinoma. Human Pathology, 37, 401–409.PubMedCrossRef
33.
Zurück zum Zitat Horton, J. D. (2002). Sterol regulatory element-binding proteins: transcriptional activators of lipid synthesis. Biochemical Society Transactions, 30(Pt 6), 1091–1095.PubMed Horton, J. D. (2002). Sterol regulatory element-binding proteins: transcriptional activators of lipid synthesis. Biochemical Society Transactions, 30(Pt 6), 1091–1095.PubMed
34.
Zurück zum Zitat Menendez, J. A., Decker, J. P., & Lupu, R. (2005). In support of fatty acid synthase (FAS) as a metabolic oncogene: extracellular acidosis acts in an epigenetic fashion activating FAS gene expression in cancer cells. Journal of Cellular Biochemistry, 94, 1–4.PubMedCrossRef Menendez, J. A., Decker, J. P., & Lupu, R. (2005). In support of fatty acid synthase (FAS) as a metabolic oncogene: extracellular acidosis acts in an epigenetic fashion activating FAS gene expression in cancer cells. Journal of Cellular Biochemistry, 94, 1–4.PubMedCrossRef
35.
Zurück zum Zitat Pike, L. S., Smift, A. L., Croteau, N. J., Ferrick, D. A., & Wu, M. (2010). Inhibition of fatty acid oxidation by etomoxir impairs NADPH production and increases reactive oxygen species resulting in ATP depletion and cell death in human glioblastoma cells. Biochimica et Biophysica Acta, 1807(6), 726–734.CrossRef Pike, L. S., Smift, A. L., Croteau, N. J., Ferrick, D. A., & Wu, M. (2010). Inhibition of fatty acid oxidation by etomoxir impairs NADPH production and increases reactive oxygen species resulting in ATP depletion and cell death in human glioblastoma cells. Biochimica et Biophysica Acta, 1807(6), 726–734.CrossRef
36.
Zurück zum Zitat Rytkonen, K. T., Williams, T. A., Renshaw, G. M., Primmer, C. R., & Mikinmaa, M. (2011). Molecular evolution of the metazoan PHD-HIF oxygen-sensing system. Molecular Biology and Evolution, 28, 1913–1926.PubMedCrossRef Rytkonen, K. T., Williams, T. A., Renshaw, G. M., Primmer, C. R., & Mikinmaa, M. (2011). Molecular evolution of the metazoan PHD-HIF oxygen-sensing system. Molecular Biology and Evolution, 28, 1913–1926.PubMedCrossRef
37.
Zurück zum Zitat Dang, L., Jin, S., & Su, S. M. (2010). IDH mutations in glioma and acute myeloid leukemia. Trends in Molecular Medicine, 16(9), 387–397.PubMedCrossRef Dang, L., Jin, S., & Su, S. M. (2010). IDH mutations in glioma and acute myeloid leukemia. Trends in Molecular Medicine, 16(9), 387–397.PubMedCrossRef
38.
Zurück zum Zitat Ho, P. A., Alonzo, T. A., Kopecky, K. J., Miller, K. L., Kuhn, J., Zeng, R., et al. (2010). Molecular alterations of the IDH1 gene in AML: a Children’s Oncology Group and SouthWest Oncology Group Study. Leukemia, 24, 909–913.PubMedCrossRef Ho, P. A., Alonzo, T. A., Kopecky, K. J., Miller, K. L., Kuhn, J., Zeng, R., et al. (2010). Molecular alterations of the IDH1 gene in AML: a Children’s Oncology Group and SouthWest Oncology Group Study. Leukemia, 24, 909–913.PubMedCrossRef
39.
Zurück zum Zitat Labussiere, M., Idbaih, A., Wang, X. W., Marie, Y., Boisselier, B., Falet, C., et al. (2010). All the 1p19q codeleted gliomas are mutated on IDH1 or IDH2. Neurology, 74(23), 1886–1890.PubMedCrossRef Labussiere, M., Idbaih, A., Wang, X. W., Marie, Y., Boisselier, B., Falet, C., et al. (2010). All the 1p19q codeleted gliomas are mutated on IDH1 or IDH2. Neurology, 74(23), 1886–1890.PubMedCrossRef
40.
Zurück zum Zitat Yen, K. E., Bittinger, M. A., Su, S. M., & Fantin, V. R. (2010). Cancer-associated IDH mutations: biomarker and therapeutic opportunities. Oncogene, 29, 6409–6417.PubMedCrossRef Yen, K. E., Bittinger, M. A., Su, S. M., & Fantin, V. R. (2010). Cancer-associated IDH mutations: biomarker and therapeutic opportunities. Oncogene, 29, 6409–6417.PubMedCrossRef
41.
Zurück zum Zitat Reitman, Z. J., & Yan, H. (2010). Isocitrate dehydrogenase 1 and 2 mutations in cancer: alterations at a crossroads of cellular metabolism. Journal of the National Cancer Institute, 102(13), 932–941.PubMedCrossRef Reitman, Z. J., & Yan, H. (2010). Isocitrate dehydrogenase 1 and 2 mutations in cancer: alterations at a crossroads of cellular metabolism. Journal of the National Cancer Institute, 102(13), 932–941.PubMedCrossRef
42.
Zurück zum Zitat Biswas, S., Troy, H., Leek, R., Chung, Y. L., Li, J. L., Raval, R. R., et al. (2010). Effects of HIF-1α and HIF2α on growth and metabolism of clear-cell renal cell carcinoma 786-0 xenografts. Journal of Oncology. doi:10.1155/2010/757908. Biswas, S., Troy, H., Leek, R., Chung, Y. L., Li, J. L., Raval, R. R., et al. (2010). Effects of HIF-1α and HIF2α on growth and metabolism of clear-cell renal cell carcinoma 786-0 xenografts. Journal of Oncology. doi:10.​1155/​2010/​757908.
43.
Zurück zum Zitat Rankin, E. B., Rha, J., Selak, M. A., Unger, T. L., Keith, B., Liu, Q., et al. (2009). Hypoxia-inducible factor 2 regulates hepatic lipid metabolism. Molecular and Cellular Biology, 29(16), 4527–4538.PubMedCrossRef Rankin, E. B., Rha, J., Selak, M. A., Unger, T. L., Keith, B., Liu, Q., et al. (2009). Hypoxia-inducible factor 2 regulates hepatic lipid metabolism. Molecular and Cellular Biology, 29(16), 4527–4538.PubMedCrossRef
44.
Zurück zum Zitat Yao, M., Huang, Y., Shioi, K., Hattori, K., Murakami, T., Nakaigawa, N., et al. (2007). Expression of adipose differentiation-related protein: a predictor of cancer-specific survival in clear cell renal carcinoma. Clinical Cancer Research, 13(1), 152–160.PubMedCrossRef Yao, M., Huang, Y., Shioi, K., Hattori, K., Murakami, T., Nakaigawa, N., et al. (2007). Expression of adipose differentiation-related protein: a predictor of cancer-specific survival in clear cell renal carcinoma. Clinical Cancer Research, 13(1), 152–160.PubMedCrossRef
45.
Zurück zum Zitat Zeng, L., Wu, G. Z., Goh, K. J., Lee, Y. M., Ng, C. C., You, A. B., et al. (2008). Saturated fatty acids modulate cell response to DNA damage: implication for their role in tumorigenesis. PLoS One, 3(6), e2329.PubMedCrossRef Zeng, L., Wu, G. Z., Goh, K. J., Lee, Y. M., Ng, C. C., You, A. B., et al. (2008). Saturated fatty acids modulate cell response to DNA damage: implication for their role in tumorigenesis. PLoS One, 3(6), e2329.PubMedCrossRef
46.
Zurück zum Zitat Liu, H., Liu, Y., & Zhang, J. T. (2008). A new mechanism of drug resistance in breast cancer cells: fatty acid synthase overexpression-mediated palmitate overproduction. Molecular Cancer Therapeutics, 7, 263–270.PubMedCrossRef Liu, H., Liu, Y., & Zhang, J. T. (2008). A new mechanism of drug resistance in breast cancer cells: fatty acid synthase overexpression-mediated palmitate overproduction. Molecular Cancer Therapeutics, 7, 263–270.PubMedCrossRef
47.
Zurück zum Zitat Menendez, J. A., Vellon, L., Mehmi, I., Oza, B. P., Ropero, S., Colomer, R., et al. (2004). Inhibition of fatty acid synthase (FAS) suppresses HER2/neu (erbB-2) oncogene overexpression in cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 101, 10715–10720.PubMedCrossRef Menendez, J. A., Vellon, L., Mehmi, I., Oza, B. P., Ropero, S., Colomer, R., et al. (2004). Inhibition of fatty acid synthase (FAS) suppresses HER2/neu (erbB-2) oncogene overexpression in cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 101, 10715–10720.PubMedCrossRef
48.
Zurück zum Zitat Anilkumar, N., Uekita, T., Couchman, J. R., Nagase, H., Seiki, M., & Itoh, Y. (2005). Palmitoylation at Cys574 is essential for MT1-MMP to promote cell migration. FASEB, 19, 1326–1328. Anilkumar, N., Uekita, T., Couchman, J. R., Nagase, H., Seiki, M., & Itoh, Y. (2005). Palmitoylation at Cys574 is essential for MT1-MMP to promote cell migration. FASEB, 19, 1326–1328.
49.
Zurück zum Zitat Reddy, J. K., & Hashimoto, T. (2001). Peroxisomal beta-oxidation and peroxisome proliferator-activated receptor alpha: an adaptive metabolic system. Annual Review of Nutrition, 21, 193–230.PubMedCrossRef Reddy, J. K., & Hashimoto, T. (2001). Peroxisomal beta-oxidation and peroxisome proliferator-activated receptor alpha: an adaptive metabolic system. Annual Review of Nutrition, 21, 193–230.PubMedCrossRef
50.
Zurück zum Zitat Eaton, S., Bartlett, K., & Pourfarzam, M. (1996). Mammalian mitochondrial beta-oxidation. Biochemistry Journal, 320, 345–357. Eaton, S., Bartlett, K., & Pourfarzam, M. (1996). Mammalian mitochondrial beta-oxidation. Biochemistry Journal, 320, 345–357.
51.
Zurück zum Zitat Watkins, P. A., Maiguel, D., Zhenzhen, J., & Pevsner, J. (2007). Evidence for 26 distinct acyl-CoA synthetase genes in the human genome. Journal of Lipid Research, 48, 2736–2750.PubMedCrossRef Watkins, P. A., Maiguel, D., Zhenzhen, J., & Pevsner, J. (2007). Evidence for 26 distinct acyl-CoA synthetase genes in the human genome. Journal of Lipid Research, 48, 2736–2750.PubMedCrossRef
52.
Zurück zum Zitat Pei, Z., Sun, P., Huang, P., Lal, B., Laterra, J., & Watkins, P. A. (2009). Acyl-CoA synthetase VL3 knockdown inhibits human glioma cell proliferation and tumorigenicity. Cancer Research, 69(24), 9175–9182.PubMedCrossRef Pei, Z., Sun, P., Huang, P., Lal, B., Laterra, J., & Watkins, P. A. (2009). Acyl-CoA synthetase VL3 knockdown inhibits human glioma cell proliferation and tumorigenicity. Cancer Research, 69(24), 9175–9182.PubMedCrossRef
53.
Zurück zum Zitat Yamoutpour, F., Bodempudi, V., Park, S. E., Pan, W., Mauzy, M. J., Kratzke, R. A., et al. (2008). Gene silencing for epidermal growth factor receptor variant III induces cell-specific cytotoxicity. Molecular Cancer Therapeutics, 7(11), 3586–3597.PubMedCrossRef Yamoutpour, F., Bodempudi, V., Park, S. E., Pan, W., Mauzy, M. J., Kratzke, R. A., et al. (2008). Gene silencing for epidermal growth factor receptor variant III induces cell-specific cytotoxicity. Molecular Cancer Therapeutics, 7(11), 3586–3597.PubMedCrossRef
54.
Zurück zum Zitat Bartlett, K., & Eaton, S. (2004). Mitochondrial β-oxidation. European Journal of Biochemistry, 271, 462–469.PubMedCrossRef Bartlett, K., & Eaton, S. (2004). Mitochondrial β-oxidation. European Journal of Biochemistry, 271, 462–469.PubMedCrossRef
55.
Zurück zum Zitat Zhang, J., Zhang, W., Zou, D., Chen, G., Wan, T., & Zhang, M. (2002). Cloning and functional characterization of ACAD-9, a novel member of human acyl-CoA dehydrogenase family. Biochemical and Biophysical Research Communications, 297, 1033–1042.PubMedCrossRef Zhang, J., Zhang, W., Zou, D., Chen, G., Wan, T., & Zhang, M. (2002). Cloning and functional characterization of ACAD-9, a novel member of human acyl-CoA dehydrogenase family. Biochemical and Biophysical Research Communications, 297, 1033–1042.PubMedCrossRef
56.
Zurück zum Zitat Rinaldo, P., Matern, D., & Bennett, M. J. (2002). Fatty acid oxidation disorders. Annual Review of Physiology, 64, 477–502.PubMedCrossRef Rinaldo, P., Matern, D., & Bennett, M. J. (2002). Fatty acid oxidation disorders. Annual Review of Physiology, 64, 477–502.PubMedCrossRef
57.
Zurück zum Zitat Orii, K. E., Aoyama, T., Wakui, K., Kukushima, Y., Miyajima, Y. S., et al. (1997). Genomic and mutational analysis of the mitochondrial trifunctional protein β-subunit (HADHB) gene in patients with trifunctional protein deficiency. Human Molecular Genetics, 6(8), 1215–1224.PubMedCrossRef Orii, K. E., Aoyama, T., Wakui, K., Kukushima, Y., Miyajima, Y. S., et al. (1997). Genomic and mutational analysis of the mitochondrial trifunctional protein β-subunit (HADHB) gene in patients with trifunctional protein deficiency. Human Molecular Genetics, 6(8), 1215–1224.PubMedCrossRef
58.
Zurück zum Zitat Orii, K. E., Orii, K. O., Souri, M., Orii, T., Kondo, N., Hashimoto, T., et al. (1999). Genes for the human mitochondrial trifunctional protein alpha- and beta-subunits are divergently transcribed from a common promoter region. Journal of Biological Chemistry, 274(12), 8077–8084.PubMedCrossRef Orii, K. E., Orii, K. O., Souri, M., Orii, T., Kondo, N., Hashimoto, T., et al. (1999). Genes for the human mitochondrial trifunctional protein alpha- and beta-subunits are divergently transcribed from a common promoter region. Journal of Biological Chemistry, 274(12), 8077–8084.PubMedCrossRef
60.
Zurück zum Zitat Yang, Y., Sharma, R., Sharma, A., Awasthi, S., & Awasthi, Y. C. (2003). Lipid peroxidation and cell cycle signalling: 4-hydroxynoneal, a key molecule in stress mediated signalling. Act Biochimica Polonica, 50(2), 319–336. Yang, Y., Sharma, R., Sharma, A., Awasthi, S., & Awasthi, Y. C. (2003). Lipid peroxidation and cell cycle signalling: 4-hydroxynoneal, a key molecule in stress mediated signalling. Act Biochimica Polonica, 50(2), 319–336.
61.
Zurück zum Zitat Russell, A. P., Somm, E., Praz, M., Crettenand, A., Hartley, O., Melotti, A., et al. (2003). UCP3 protein regulation in human skeletal muscle fibre types I, Ia and IIx is dependent on exercise intensity. The Journal of Physiology, 550(3), 855–861.PubMedCrossRef Russell, A. P., Somm, E., Praz, M., Crettenand, A., Hartley, O., Melotti, A., et al. (2003). UCP3 protein regulation in human skeletal muscle fibre types I, Ia and IIx is dependent on exercise intensity. The Journal of Physiology, 550(3), 855–861.PubMedCrossRef
62.
Zurück zum Zitat Samudio, I., Fiegl, M., & Andreeff, M. (2009). Mitochondrial uncoupling and the Warburg effect: molecular basis for the reprogramming of cancer cell metabolism. Cancer Research, 69(6), 2163–2166.PubMedCrossRef Samudio, I., Fiegl, M., & Andreeff, M. (2009). Mitochondrial uncoupling and the Warburg effect: molecular basis for the reprogramming of cancer cell metabolism. Cancer Research, 69(6), 2163–2166.PubMedCrossRef
63.
Zurück zum Zitat Samudio, I., Fiegl, M., McQueen, T., Clise-Dwyer, K., & Andreeff, M. (2008). The Warburg effect in leukemia-stroma cocultures is mediated by mitochondrial uncoupling associated with uncoupling protein 2 activation. Cancer Research, 68, 5198–5205.PubMedCrossRef Samudio, I., Fiegl, M., McQueen, T., Clise-Dwyer, K., & Andreeff, M. (2008). The Warburg effect in leukemia-stroma cocultures is mediated by mitochondrial uncoupling associated with uncoupling protein 2 activation. Cancer Research, 68, 5198–5205.PubMedCrossRef
64.
Zurück zum Zitat Derdak, Z., Mark, N. M., Beldi, G., et al. (2008). The mitochondria uncoupling protein-2 promotes chemoresistance in cancer cells. Cancer Research, 68, 2813–2819.PubMedCrossRef Derdak, Z., Mark, N. M., Beldi, G., et al. (2008). The mitochondria uncoupling protein-2 promotes chemoresistance in cancer cells. Cancer Research, 68, 2813–2819.PubMedCrossRef
65.
Zurück zum Zitat Echtay, K. S., Roussel, D., St-Pierre, J., Jekabsons, M. B., Cadenas, S., Stuart, J. A., et al. (2002). Superoxide activates mitochondrial uncoupling proteins. Nature, 415, 96–99.PubMedCrossRef Echtay, K. S., Roussel, D., St-Pierre, J., Jekabsons, M. B., Cadenas, S., Stuart, J. A., et al. (2002). Superoxide activates mitochondrial uncoupling proteins. Nature, 415, 96–99.PubMedCrossRef
66.
Zurück zum Zitat Passos, J. F., Saretzki, G., Ahmed, S., Nelson, G., Richter, T., Peters, H., et al. (2007). Mitochondrial dysfunction accounts for the stochastic heterogeneity in telomere-dependent senescence. PLoS Biology, 5(5), e110.PubMedCrossRef Passos, J. F., Saretzki, G., Ahmed, S., Nelson, G., Richter, T., Peters, H., et al. (2007). Mitochondrial dysfunction accounts for the stochastic heterogeneity in telomere-dependent senescence. PLoS Biology, 5(5), e110.PubMedCrossRef
67.
Zurück zum Zitat Giordano, A., Calvani, M., Petillo, O., Grippo, P., Tuccillo, F., Melone, M. A., et al. (2005). tBid induces alterations of mitochondrial fatty acid oxidation flux by malonyl-CoA-independent inhibition of carnitine plamitoyltransferase-1. Cell Death and Differentiation, 12(6), 603–613.PubMedCrossRef Giordano, A., Calvani, M., Petillo, O., Grippo, P., Tuccillo, F., Melone, M. A., et al. (2005). tBid induces alterations of mitochondrial fatty acid oxidation flux by malonyl-CoA-independent inhibition of carnitine plamitoyltransferase-1. Cell Death and Differentiation, 12(6), 603–613.PubMedCrossRef
68.
Zurück zum Zitat Paumen, M. B., Ishida, Y., Han, H., Muramatsu, M., Eguchi, Y., Tsujimoto, Y., et al. (1997). Direct interaction of the mitochondrial membrane protein carnitine palmitoyltransferase I with BCL-2. Biochemical and Biophysical Research Communications, 231(3), 523–525.PubMedCrossRef Paumen, M. B., Ishida, Y., Han, H., Muramatsu, M., Eguchi, Y., Tsujimoto, Y., et al. (1997). Direct interaction of the mitochondrial membrane protein carnitine palmitoyltransferase I with BCL-2. Biochemical and Biophysical Research Communications, 231(3), 523–525.PubMedCrossRef
69.
Zurück zum Zitat Elzein, E., Ibrahim, P., Koltun, D. O., Rehder, K., Shenk, K. D., Marquart, T. A., et al. (2004). CVT-4325: a potent fatty acid oxidation inhibitor with favourable oral bioavailability. Bioorganic & Medicinal Chemistry Letters, 14(24), 6017–6021.CrossRef Elzein, E., Ibrahim, P., Koltun, D. O., Rehder, K., Shenk, K. D., Marquart, T. A., et al. (2004). CVT-4325: a potent fatty acid oxidation inhibitor with favourable oral bioavailability. Bioorganic & Medicinal Chemistry Letters, 14(24), 6017–6021.CrossRef
70.
Zurück zum Zitat Zhang, C. Y., Parton, L. E., Ye, C. P., Krauss, S., Shen, R., Lin, C. T., et al. (2006). Genepin inhibits UCP2-mediated proton leak and acutely reverses obesity- and high-glucose induced β cell dysfunction in isolated pancreatic islets. Cell Metabolism, 3(6), 417–427.PubMedCrossRef Zhang, C. Y., Parton, L. E., Ye, C. P., Krauss, S., Shen, R., Lin, C. T., et al. (2006). Genepin inhibits UCP2-mediated proton leak and acutely reverses obesity- and high-glucose induced β cell dysfunction in isolated pancreatic islets. Cell Metabolism, 3(6), 417–427.PubMedCrossRef
71.
Zurück zum Zitat Cao, W., Liu, N., Tang, S., Bao, L., Shen, L., Yuan, H., et al. (2008). Acetyl-coenzyme A acyltransferase 2 attenuates the apoptotic effects of BNIP3 in two human cell lines. Biochimica et Biophysica Acta, 1780(6), 873–880.PubMedCrossRef Cao, W., Liu, N., Tang, S., Bao, L., Shen, L., Yuan, H., et al. (2008). Acetyl-coenzyme A acyltransferase 2 attenuates the apoptotic effects of BNIP3 in two human cell lines. Biochimica et Biophysica Acta, 1780(6), 873–880.PubMedCrossRef
72.
Zurück zum Zitat DeBerardinis, R. J., Mancuso, A., Daikhin, E., Nissim, I., Yudkoff, M., Wehrli, S., et al. (2007). Beyond aerobic glycolysis: transformed cells can engage in the glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Nat Acad Sci, 104(49), 19345–19350.PubMedCrossRef DeBerardinis, R. J., Mancuso, A., Daikhin, E., Nissim, I., Yudkoff, M., Wehrli, S., et al. (2007). Beyond aerobic glycolysis: transformed cells can engage in the glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Nat Acad Sci, 104(49), 19345–19350.PubMedCrossRef
Metadaten
Titel
Non-glucose metabolism in cancer cells—is it all in the fat?
verfasst von
Swethajit Biswas
John Lunec
Kim Bartlett
Publikationsdatum
01.12.2012
Verlag
Springer US
Erschienen in
Cancer and Metastasis Reviews / Ausgabe 3-4/2012
Print ISSN: 0167-7659
Elektronische ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-012-9384-6

Weitere Artikel der Ausgabe 3-4/2012

Cancer and Metastasis Reviews 3-4/2012 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.