Skip to main content
Erschienen in: Cancer and Metastasis Reviews 3-4/2013

01.12.2013 | NON-THEMATIC REVIEW

The pre-metastatic niche: finding common ground

verfasst von: Jaclyn Sceneay, Mark J. Smyth, Andreas Möller

Erschienen in: Cancer and Metastasis Reviews | Ausgabe 3-4/2013

Einloggen, um Zugang zu erhalten

Abstract

It is rapidly becoming evident that the formation of tumor-promoting pre-metastatic niches in secondary organs adds a previously unrecognized degree of complexity to the challenge of curing metastatic disease. Primary tumor cells orchestrate pre-metastatic niche formation through secretion of a variety of cytokines and growth factors that promote mobilization and recruitment of bone marrow-derived cells to future metastatic sites. Hypoxia within the primary tumor, and secretion of specific microvesicles termed exosomes, are emerging as important processes and vehicles for tumor-derived factors to modulate pre-metastatic sites. It has also come to light that reduced immune surveillance is a novel mechanism through which primary tumors create favorable niches in secondary organs. This review provides an overview of our current understanding of underlying mechanisms of pre-metastatic niche formation and highlights the common links as well as discrepancies between independent studies. Furthermore, the possible clinical implications, links to metastatic persistence and dormancy, and novel approaches for treatment of metastatic disease through reversal of pre-metastatic niche formation are identified and explored.
Literatur
1.
Zurück zum Zitat Gupta, G. P., & Massague, J. (2006). Cancer metastasis: building a framework. Cell, 127(4), 679–695.PubMed Gupta, G. P., & Massague, J. (2006). Cancer metastasis: building a framework. Cell, 127(4), 679–695.PubMed
2.
Zurück zum Zitat Klein, C. A. (2008). Cancer. The metastasis cascade. Science, 321(5897), 1785–1787.PubMed Klein, C. A. (2008). Cancer. The metastasis cascade. Science, 321(5897), 1785–1787.PubMed
3.
Zurück zum Zitat Joyce, J. A., & Pollard, J. W. (2009). Microenvironmental regulation of metastasis. Nature Reviews. Cancer, 9(4), 239–252.PubMed Joyce, J. A., & Pollard, J. W. (2009). Microenvironmental regulation of metastasis. Nature Reviews. Cancer, 9(4), 239–252.PubMed
4.
Zurück zum Zitat Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. Cell, 144(5), 646–674.PubMed Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. Cell, 144(5), 646–674.PubMed
5.
Zurück zum Zitat Paget, G. (1889). Remarks on a case of alternate partial anaesthesia. British Medical Journal, 1(1462), 1–3.PubMed Paget, G. (1889). Remarks on a case of alternate partial anaesthesia. British Medical Journal, 1(1462), 1–3.PubMed
6.
Zurück zum Zitat Muller, A., et al. (2001). Involvement of chemokine receptors in breast cancer metastasis. Nature, 410(6824), 50–56.PubMed Muller, A., et al. (2001). Involvement of chemokine receptors in breast cancer metastasis. Nature, 410(6824), 50–56.PubMed
7.
Zurück zum Zitat Weigelt, B., et al. (2005). No common denominator for breast cancer lymph node metastasis. British Journal of Cancer, 93(8), 924–932.PubMed Weigelt, B., et al. (2005). No common denominator for breast cancer lymph node metastasis. British Journal of Cancer, 93(8), 924–932.PubMed
8.
Zurück zum Zitat Kaplan, R. N., et al. (2005). VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature, 438(7069), 820–827.PubMed Kaplan, R. N., et al. (2005). VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature, 438(7069), 820–827.PubMed
9.
Zurück zum Zitat Psaila, B., & Lyden, D. (2009). The metastatic niche: adapting the foreign soil. Nature Reviews. Cancer, 9(4), 285–293.PubMed Psaila, B., & Lyden, D. (2009). The metastatic niche: adapting the foreign soil. Nature Reviews. Cancer, 9(4), 285–293.PubMed
10.
Zurück zum Zitat Duda, D. G., & Jain, R. K. (2010). Premetastatic lung “niche”: is vascular endothelial growth factor receptor 1 activation required? Cancer Research, 70(14), 5670–5673.PubMed Duda, D. G., & Jain, R. K. (2010). Premetastatic lung “niche”: is vascular endothelial growth factor receptor 1 activation required? Cancer Research, 70(14), 5670–5673.PubMed
11.
Zurück zum Zitat Dawson, M. R., et al. (2009). VEGFR1-activity-independent metastasis formation. Nature, 461(7262), E4. Discussion, E5.PubMed Dawson, M. R., et al. (2009). VEGFR1-activity-independent metastasis formation. Nature, 461(7262), E4. Discussion, E5.PubMed
12.
Zurück zum Zitat Lin, E. Y., et al. (2006). Macrophages regulate the angiogenic switch in a mouse model of breast cancer. Cancer Research, 66(23), 11238–11246.PubMed Lin, E. Y., et al. (2006). Macrophages regulate the angiogenic switch in a mouse model of breast cancer. Cancer Research, 66(23), 11238–11246.PubMed
13.
Zurück zum Zitat Nozawa, H., Chiu, C., & Hanahan, D. (2006). Infiltrating neutrophils mediate the initial angiogenic switch in a mouse model of multistage carcinogenesis. Proceedings of the National Academy of Sciences of the United States of America, 103(33), 12493–12498.PubMed Nozawa, H., Chiu, C., & Hanahan, D. (2006). Infiltrating neutrophils mediate the initial angiogenic switch in a mouse model of multistage carcinogenesis. Proceedings of the National Academy of Sciences of the United States of America, 103(33), 12493–12498.PubMed
14.
Zurück zum Zitat Coussens, L. M., et al. (1999). Inflammatory mast cells up-regulate angiogenesis during squamous epithelial carcinogenesis. Genes & Development, 13(11), 1382–1397. Coussens, L. M., et al. (1999). Inflammatory mast cells up-regulate angiogenesis during squamous epithelial carcinogenesis. Genes & Development, 13(11), 1382–1397.
15.
Zurück zum Zitat Hiratsuka, S., et al. (2006). Tumour-mediated upregulation of chemoattractants and recruitment of myeloid cells predetermines lung metastasis. Nature Cell Biology, 8(12), 1369–1375.PubMed Hiratsuka, S., et al. (2006). Tumour-mediated upregulation of chemoattractants and recruitment of myeloid cells predetermines lung metastasis. Nature Cell Biology, 8(12), 1369–1375.PubMed
16.
Zurück zum Zitat Kowanetz, M., et al. (2010). Granulocyte-colony stimulating factor promotes lung metastasis through mobilization of Ly6G + Ly6C + granulocytes. Proceedings of the National Academy of Sciences of the United States of America, 107(50), 21248–21255.PubMed Kowanetz, M., et al. (2010). Granulocyte-colony stimulating factor promotes lung metastasis through mobilization of Ly6G + Ly6C + granulocytes. Proceedings of the National Academy of Sciences of the United States of America, 107(50), 21248–21255.PubMed
17.
Zurück zum Zitat Harris, A. L. (2002). Hypoxia—a key regulatory factor in tumour growth. Nature Reviews. Cancer, 2(1), 38–47.PubMed Harris, A. L. (2002). Hypoxia—a key regulatory factor in tumour growth. Nature Reviews. Cancer, 2(1), 38–47.PubMed
18.
Zurück zum Zitat Semenza, G. L. (2012). Hypoxia-inducible factors: mediators of cancer progression and targets for cancer therapy. Trends in Pharmacological Sciences, 33(4), 207–214.PubMed Semenza, G. L. (2012). Hypoxia-inducible factors: mediators of cancer progression and targets for cancer therapy. Trends in Pharmacological Sciences, 33(4), 207–214.PubMed
19.
Zurück zum Zitat Bos, R., et al. (2003). Levels of hypoxia-inducible factor-1alpha independently predict prognosis in patients with lymph node negative breast carcinoma. Cancer, 97(6), 1573–1581.PubMed Bos, R., et al. (2003). Levels of hypoxia-inducible factor-1alpha independently predict prognosis in patients with lymph node negative breast carcinoma. Cancer, 97(6), 1573–1581.PubMed
20.
Zurück zum Zitat Dales, J. P., et al. (2005). Overexpression of hypoxia-inducible factor HIF-1alpha predicts early relapse in breast cancer: retrospective study in a series of 745 patients. International Journal of Cancer, 116(5), 734–739. Dales, J. P., et al. (2005). Overexpression of hypoxia-inducible factor HIF-1alpha predicts early relapse in breast cancer: retrospective study in a series of 745 patients. International Journal of Cancer, 116(5), 734–739.
21.
Zurück zum Zitat Erler, J. T., et al. (2009). Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the premetastatic niche. Cancer Cell, 15(1), 35–44.PubMed Erler, J. T., et al. (2009). Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the premetastatic niche. Cancer Cell, 15(1), 35–44.PubMed
22.
Zurück zum Zitat Wong, C. C., et al. (2011). Hypoxia-inducible factor 1 is a master regulator of breast cancer metastatic niche formation. Proceedings of the National Academy of Sciences of the United States of America, 108(39), 16369–16374.PubMed Wong, C. C., et al. (2011). Hypoxia-inducible factor 1 is a master regulator of breast cancer metastatic niche formation. Proceedings of the National Academy of Sciences of the United States of America, 108(39), 16369–16374.PubMed
23.
Zurück zum Zitat Bondareva, A., et al. (2009). The lysyl oxidase inhibitor, beta-aminopropionitrile, diminishes the metastatic colonization potential of circulating breast cancer cells. PLoS One, 4(5), e5620.PubMed Bondareva, A., et al. (2009). The lysyl oxidase inhibitor, beta-aminopropionitrile, diminishes the metastatic colonization potential of circulating breast cancer cells. PLoS One, 4(5), e5620.PubMed
24.
Zurück zum Zitat Sceneay, J., et al. (2012). Primary tumor hypoxia recruits CD11b+/Ly6Cmed/Ly6G+ immune suppressor cells and compromises NK cell cytotoxicity in the premetastatic niche. Cancer Research, 72, 3906–11.PubMed Sceneay, J., et al. (2012). Primary tumor hypoxia recruits CD11b+/Ly6Cmed/Ly6G+ immune suppressor cells and compromises NK cell cytotoxicity in the premetastatic niche. Cancer Research, 72, 3906–11.PubMed
25.
Zurück zum Zitat Chioda, M., et al. (2011). Myeloid cell diversification and complexity: an old concept with new turns in oncology. Cancer Metastasis Reviews, 30(1), 27–43.PubMed Chioda, M., et al. (2011). Myeloid cell diversification and complexity: an old concept with new turns in oncology. Cancer Metastasis Reviews, 30(1), 27–43.PubMed
26.
Zurück zum Zitat Yan, H. H., et al. (2010). Gr-1 + CD11b + myeloid cells tip the balance of immune protection to tumor promotion in the premetastatic lung. Cancer Research, 70(15), 6139–6149.PubMed Yan, H. H., et al. (2010). Gr-1 + CD11b + myeloid cells tip the balance of immune protection to tumor promotion in the premetastatic lung. Cancer Research, 70(15), 6139–6149.PubMed
27.
Zurück zum Zitat Kim, S., et al. (2009). Carcinoma-produced factors activate myeloid cells through TLR2 to stimulate metastasis. Nature, 457(7225), 102–106.PubMed Kim, S., et al. (2009). Carcinoma-produced factors activate myeloid cells through TLR2 to stimulate metastasis. Nature, 457(7225), 102–106.PubMed
28.
Zurück zum Zitat Granot, Z., et al. (2011). Tumor entrained neutrophils inhibit seeding in the premetastatic lung. Cancer Cell, 20(3), 300–314.PubMed Granot, Z., et al. (2011). Tumor entrained neutrophils inhibit seeding in the premetastatic lung. Cancer Cell, 20(3), 300–314.PubMed
29.
Zurück zum Zitat Filipazzi, P., et al. (2007). Identification of a new subset of myeloid suppressor cells in peripheral blood of melanoma patients with modulation by a granulocyte-macrophage colony-stimulation factor-based antitumor vaccine. Journal of Clinical Oncology, 25(18), 2546–2553.PubMed Filipazzi, P., et al. (2007). Identification of a new subset of myeloid suppressor cells in peripheral blood of melanoma patients with modulation by a granulocyte-macrophage colony-stimulation factor-based antitumor vaccine. Journal of Clinical Oncology, 25(18), 2546–2553.PubMed
30.
Zurück zum Zitat Gabrilovich, D. I., & Nagaraj, S. (2009). Myeloid-derived suppressor cells as regulators of the immune system. Nature Reviews Immunology, 9(3), 162–174.PubMed Gabrilovich, D. I., & Nagaraj, S. (2009). Myeloid-derived suppressor cells as regulators of the immune system. Nature Reviews Immunology, 9(3), 162–174.PubMed
31.
Zurück zum Zitat Poschke, I., et al. (2010). Immature immunosuppressive CD14+HLA-DR-/low cells in melanoma patients are Stat3hi and overexpress CD80, CD83, and DC-sign. Cancer Research, 70(11), 4335–4345.PubMed Poschke, I., et al. (2010). Immature immunosuppressive CD14+HLA-DR-/low cells in melanoma patients are Stat3hi and overexpress CD80, CD83, and DC-sign. Cancer Research, 70(11), 4335–4345.PubMed
32.
Zurück zum Zitat Rodriguez, P. C., & Ochoa, A. C. (2006). T cell dysfunction in cancer: role of myeloid cells and tumor cells regulating amino acid availability and oxidative stress. Seminars in Cancer Biology, 16(1), 66–72.PubMed Rodriguez, P. C., & Ochoa, A. C. (2006). T cell dysfunction in cancer: role of myeloid cells and tumor cells regulating amino acid availability and oxidative stress. Seminars in Cancer Biology, 16(1), 66–72.PubMed
33.
Zurück zum Zitat Serafini, P., Borrello, I., & Bronte, V. (2006). Myeloid suppressor cells in cancer: recruitment, phenotype, properties, and mechanisms of immune suppression. Seminars in Cancer Biology, 16(1), 53–65.PubMed Serafini, P., Borrello, I., & Bronte, V. (2006). Myeloid suppressor cells in cancer: recruitment, phenotype, properties, and mechanisms of immune suppression. Seminars in Cancer Biology, 16(1), 53–65.PubMed
34.
Zurück zum Zitat Youn, J. I., et al. (2008). Subsets of myeloid-derived suppressor cells in tumor-bearing mice. Journal of Immunology, 181(8), 5791–5802. Youn, J. I., et al. (2008). Subsets of myeloid-derived suppressor cells in tumor-bearing mice. Journal of Immunology, 181(8), 5791–5802.
35.
Zurück zum Zitat Almand, B., et al. (2001). Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer. Journal of Immunology, 166(1), 678–689. Almand, B., et al. (2001). Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer. Journal of Immunology, 166(1), 678–689.
36.
Zurück zum Zitat Gabrilovich, D. I., Ostrand-Rosenberg, S., & Bronte, V. (2012). Coordinated regulation of myeloid cells by tumours. Nature Reviews Immunology, 12(4), 253–268.PubMed Gabrilovich, D. I., Ostrand-Rosenberg, S., & Bronte, V. (2012). Coordinated regulation of myeloid cells by tumours. Nature Reviews Immunology, 12(4), 253–268.PubMed
37.
Zurück zum Zitat Huang, B., et al. (2007). CCL2/CCR2 pathway mediates recruitment of myeloid suppressor cells to cancers. Cancer Letters, 252(1), 86–92.PubMed Huang, B., et al. (2007). CCL2/CCR2 pathway mediates recruitment of myeloid suppressor cells to cancers. Cancer Letters, 252(1), 86–92.PubMed
38.
Zurück zum Zitat Yang, L., et al. (2008). Abrogation of TGF beta signaling in mammary carcinomas recruits Gr-1+CD11b+ myeloid cells that promote metastasis. Cancer Cell, 13(1), 23–35.PubMed Yang, L., et al. (2008). Abrogation of TGF beta signaling in mammary carcinomas recruits Gr-1+CD11b+ myeloid cells that promote metastasis. Cancer Cell, 13(1), 23–35.PubMed
39.
Zurück zum Zitat Shojaei, F., et al. (2007). Bv8 regulates myeloid-cell-dependent tumour angiogenesis. Nature, 450(7171), 825–831.PubMed Shojaei, F., et al. (2007). Bv8 regulates myeloid-cell-dependent tumour angiogenesis. Nature, 450(7171), 825–831.PubMed
40.
Zurück zum Zitat Sica, A., & Bronte, V. (2007). Altered macrophage differentiation and immune dysfunction in tumor development. The Journal of Clinical Investigation, 117(5), 1155–1166.PubMed Sica, A., & Bronte, V. (2007). Altered macrophage differentiation and immune dysfunction in tumor development. The Journal of Clinical Investigation, 117(5), 1155–1166.PubMed
41.
Zurück zum Zitat Gao, D., et al. (2012). Myeloid progenitor cells in the premetastatic lung promote metastases by inducing mesenchymal to epithelial transition. Cancer Research, 72(6), 1384–1394.PubMed Gao, D., et al. (2012). Myeloid progenitor cells in the premetastatic lung promote metastases by inducing mesenchymal to epithelial transition. Cancer Research, 72(6), 1384–1394.PubMed
42.
Zurück zum Zitat Corzo, C. A., et al. (2010). HIF-1α regulates function and differentiation of myeloid-derived suppressor cells in the tumor microenvironment. The Journal of Experimental Medicine, 207(11), 2439–2453.PubMed Corzo, C. A., et al. (2010). HIF-1α regulates function and differentiation of myeloid-derived suppressor cells in the tumor microenvironment. The Journal of Experimental Medicine, 207(11), 2439–2453.PubMed
43.
Zurück zum Zitat Deng, J., et al. (2012). S1PR1-STAT3 signaling is crucial for myeloid cell colonization at future metastatic sites. Cancer Cell, 21(5), 642–654.PubMed Deng, J., et al. (2012). S1PR1-STAT3 signaling is crucial for myeloid cell colonization at future metastatic sites. Cancer Cell, 21(5), 642–654.PubMed
44.
Zurück zum Zitat Movahedi, K., et al. (2008). Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T cell-suppressive activity. Blood, 111(8), 4233–4244.PubMed Movahedi, K., et al. (2008). Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T cell-suppressive activity. Blood, 111(8), 4233–4244.PubMed
45.
Zurück zum Zitat Dolcetti, L., et al. (2010). Hierarchy of immunosuppressive strength among myeloid-derived suppressor cell subsets is determined by GM-CSF. European Journal of Immunology, 40(1), 22–35.PubMed Dolcetti, L., et al. (2010). Hierarchy of immunosuppressive strength among myeloid-derived suppressor cell subsets is determined by GM-CSF. European Journal of Immunology, 40(1), 22–35.PubMed
46.
Zurück zum Zitat Mauti, L. A., et al. (2011). Myeloid-derived suppressor cells are implicated in regulating permissiveness for tumor metastasis during mouse gestation. The Journal of Clinical Investigation, 121(7), 2794–2807.PubMed Mauti, L. A., et al. (2011). Myeloid-derived suppressor cells are implicated in regulating permissiveness for tumor metastasis during mouse gestation. The Journal of Clinical Investigation, 121(7), 2794–2807.PubMed
47.
Zurück zum Zitat Li, H., et al. (2009). Cancer-expanded myeloid-derived suppressor cells induce anergy of NK cells through membrane-bound TGF-beta 1. Journal of Immunology, 182(1), 240–249. Li, H., et al. (2009). Cancer-expanded myeloid-derived suppressor cells induce anergy of NK cells through membrane-bound TGF-beta 1. Journal of Immunology, 182(1), 240–249.
48.
Zurück zum Zitat Hoechst, B., et al. (2009). Myeloid derived suppressor cells inhibit natural killer cells in patients with hepatocellular carcinoma via the NKp30 receptor. Hepatology, 50(3), 799–807.PubMed Hoechst, B., et al. (2009). Myeloid derived suppressor cells inhibit natural killer cells in patients with hepatocellular carcinoma via the NKp30 receptor. Hepatology, 50(3), 799–807.PubMed
49.
Zurück zum Zitat Zhu, J., Huang, X., & Yang, Y. (2012). Myeloid-derived suppressor cells regulate natural killer cell response to adenovirus-mediated gene transfer. Journal of Virology, 86, 13689–96.PubMed Zhu, J., Huang, X., & Yang, Y. (2012). Myeloid-derived suppressor cells regulate natural killer cell response to adenovirus-mediated gene transfer. Journal of Virology, 86, 13689–96.PubMed
50.
Zurück zum Zitat Liu, C., et al. (2007). Expansion of spleen myeloid suppressor cells represses NK cell cytotoxicity in tumor-bearing host. Blood, 109(10), 4336–4342.PubMed Liu, C., et al. (2007). Expansion of spleen myeloid suppressor cells represses NK cell cytotoxicity in tumor-bearing host. Blood, 109(10), 4336–4342.PubMed
51.
Zurück zum Zitat Nagaraj, S., et al. (2012). Antigen-specific CD4(+) T cells regulate function of myeloid-derived suppressor cells in cancer via retrograde MHC class II signaling. Cancer Research, 72(4), 928–938.PubMed Nagaraj, S., et al. (2012). Antigen-specific CD4(+) T cells regulate function of myeloid-derived suppressor cells in cancer via retrograde MHC class II signaling. Cancer Research, 72(4), 928–938.PubMed
52.
Zurück zum Zitat Doedens, A. L., et al. (2010). Macrophage expression of hypoxia-inducible factor-1 alpha suppresses T-cell function and promotes tumor progression. Cancer Research, 70(19), 7465–7475.PubMed Doedens, A. L., et al. (2010). Macrophage expression of hypoxia-inducible factor-1 alpha suppresses T-cell function and promotes tumor progression. Cancer Research, 70(19), 7465–7475.PubMed
53.
Zurück zum Zitat Corzo, C. A., et al. (2010). HIF-1alpha regulates function and differentiation of myeloid-derived suppressor cells in the tumor microenvironment. The Journal of Experimental Medicine, 207(11), 2439–2453.PubMed Corzo, C. A., et al. (2010). HIF-1alpha regulates function and differentiation of myeloid-derived suppressor cells in the tumor microenvironment. The Journal of Experimental Medicine, 207(11), 2439–2453.PubMed
54.
Zurück zum Zitat Gallina, G., et al. (2006). Tumors induce a subset of inflammatory monocytes with immunosuppressive activity on CD8+ T cells. The Journal of Clinical Investigation, 116(10), 2777–2790.PubMed Gallina, G., et al. (2006). Tumors induce a subset of inflammatory monocytes with immunosuppressive activity on CD8+ T cells. The Journal of Clinical Investigation, 116(10), 2777–2790.PubMed
55.
Zurück zum Zitat Watanabe, S., et al. (2008). Tumor-induced CD11b+Gr-1+ myeloid cells suppress T cell sensitization in tumor-draining lymph nodes. Journal of Immunology, 181(5), 3291–3300. Watanabe, S., et al. (2008). Tumor-induced CD11b+Gr-1+ myeloid cells suppress T cell sensitization in tumor-draining lymph nodes. Journal of Immunology, 181(5), 3291–3300.
56.
Zurück zum Zitat Nagaraj, S., et al. (2007). Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer. Nature Medicine, 13(7), 828–835.PubMed Nagaraj, S., et al. (2007). Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer. Nature Medicine, 13(7), 828–835.PubMed
57.
Zurück zum Zitat Serafini, P., et al. (2008). Myeloid-derived suppressor cells promote cross-tolerance in B-cell lymphoma by expanding regulatory T cells. Cancer Research, 68(13), 5439–5449.PubMed Serafini, P., et al. (2008). Myeloid-derived suppressor cells promote cross-tolerance in B-cell lymphoma by expanding regulatory T cells. Cancer Research, 68(13), 5439–5449.PubMed
58.
Zurück zum Zitat Huang, B., et al. (2006). Gr-1+CD115+ immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host. Cancer Research, 66(2), 1123–1131.PubMed Huang, B., et al. (2006). Gr-1+CD115+ immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host. Cancer Research, 66(2), 1123–1131.PubMed
59.
Zurück zum Zitat Pan, P. Y., et al. (2010). Immune stimulatory receptor CD40 is required for T-cell suppression and T regulatory cell activation mediated by myeloid-derived suppressor cells in cancer. Cancer Research, 70(1), 99–108.PubMed Pan, P. Y., et al. (2010). Immune stimulatory receptor CD40 is required for T-cell suppression and T regulatory cell activation mediated by myeloid-derived suppressor cells in cancer. Cancer Research, 70(1), 99–108.PubMed
60.
Zurück zum Zitat Paez, D., et al. (2012). Cancer dormancy: a model of early dissemination and late cancer recurrence. Clinical Cancer Research, 18(3), 645–653.PubMed Paez, D., et al. (2012). Cancer dormancy: a model of early dissemination and late cancer recurrence. Clinical Cancer Research, 18(3), 645–653.PubMed
61.
Zurück zum Zitat Pavlidis, N., & Pentheroudakis, G. (2012). Cancer of unknown primary site. Lancet, 379(9824), 1428–1435.PubMed Pavlidis, N., & Pentheroudakis, G. (2012). Cancer of unknown primary site. Lancet, 379(9824), 1428–1435.PubMed
62.
Zurück zum Zitat Uhr, J. W., & Pantel, K. (2011). Controversies in clinical cancer dormancy. Proceedings of the National Academy of Sciences of the United States of America, 108(30), 12396–12400.PubMed Uhr, J. W., & Pantel, K. (2011). Controversies in clinical cancer dormancy. Proceedings of the National Academy of Sciences of the United States of America, 108(30), 12396–12400.PubMed
63.
Zurück zum Zitat Almog, N. (2010). Molecular mechanisms underlying tumor dormancy. Cancer Letters, 294(2), 139–146.PubMed Almog, N. (2010). Molecular mechanisms underlying tumor dormancy. Cancer Letters, 294(2), 139–146.PubMed
64.
Zurück zum Zitat Ringel, M. D. (2011). Metastatic dormancy and progression in thyroid cancer: targeting cells in the metastatic frontier. Thyroid, 21(5), 487–492.PubMed Ringel, M. D. (2011). Metastatic dormancy and progression in thyroid cancer: targeting cells in the metastatic frontier. Thyroid, 21(5), 487–492.PubMed
65.
Zurück zum Zitat Chaput, N., & Thery, C. (2011). Exosomes: immune properties and potential clinical implementations. Seminars in Immunopathology, 33(5), 419–440.PubMed Chaput, N., & Thery, C. (2011). Exosomes: immune properties and potential clinical implementations. Seminars in Immunopathology, 33(5), 419–440.PubMed
66.
Zurück zum Zitat Ratajczak, J., et al. (2006). Membrane-derived microvesicles: important and underappreciated mediators of cell-to-cell communication. Leukemia, 20(9), 1487–1495.PubMed Ratajczak, J., et al. (2006). Membrane-derived microvesicles: important and underappreciated mediators of cell-to-cell communication. Leukemia, 20(9), 1487–1495.PubMed
67.
Zurück zum Zitat Peinado, H., Lavotshkin, S., & Lyden, D. (2011). The secreted factors responsible for pre-metastatic niche formation: old sayings and new thoughts. Seminars in Cancer Biology, 21(2), 139–146.PubMed Peinado, H., Lavotshkin, S., & Lyden, D. (2011). The secreted factors responsible for pre-metastatic niche formation: old sayings and new thoughts. Seminars in Cancer Biology, 21(2), 139–146.PubMed
68.
Zurück zum Zitat Peinado, H., et al. (2012). Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nature Medicine, 18, 883–91.PubMed Peinado, H., et al. (2012). Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nature Medicine, 18, 883–91.PubMed
69.
Zurück zum Zitat Jung, T., et al. (2009). CD44v6 dependence of premetastatic niche preparation by exosomes. Neoplasia, 11(10), 1093–1105.PubMed Jung, T., et al. (2009). CD44v6 dependence of premetastatic niche preparation by exosomes. Neoplasia, 11(10), 1093–1105.PubMed
70.
Zurück zum Zitat Grange, C., et al. (2011). Microvesicles released from human renal cancer stem cells stimulate angiogenesis and formation of lung premetastatic niche. Cancer Research, 71(15), 5346–5356.PubMed Grange, C., et al. (2011). Microvesicles released from human renal cancer stem cells stimulate angiogenesis and formation of lung premetastatic niche. Cancer Research, 71(15), 5346–5356.PubMed
71.
Zurück zum Zitat Gabrilovich, D. (2004). Mechanisms and functional significance of tumour-induced dendritic-cell defects. Nature Reviews Immunology, 4(12), 941–952.PubMed Gabrilovich, D. (2004). Mechanisms and functional significance of tumour-induced dendritic-cell defects. Nature Reviews Immunology, 4(12), 941–952.PubMed
72.
Zurück zum Zitat Do, T. H., et al. (2004). Impaired circulating myeloid DCs from myeloma patients. Cytotherapy, 6(3), 196–203.PubMed Do, T. H., et al. (2004). Impaired circulating myeloid DCs from myeloma patients. Cytotherapy, 6(3), 196–203.PubMed
73.
Zurück zum Zitat Liu, C., et al. (2006). Murine mammary carcinoma exosomes promote tumor growth by suppression of NK cell function. Journal of Immunology, 176(3), 1375–1385. Liu, C., et al. (2006). Murine mammary carcinoma exosomes promote tumor growth by suppression of NK cell function. Journal of Immunology, 176(3), 1375–1385.
74.
Zurück zum Zitat Huber, V., et al. (2005). Human colorectal cancer cells induce T-cell death through release of proapoptotic microvesicles: role in immune escape. Gastroenterology, 128(7), 1796–1804.PubMed Huber, V., et al. (2005). Human colorectal cancer cells induce T-cell death through release of proapoptotic microvesicles: role in immune escape. Gastroenterology, 128(7), 1796–1804.PubMed
75.
Zurück zum Zitat Valenti, R., et al. (2006). Human tumor-released microvesicles promote the differentiation of myeloid cells with transforming growth factor-β-mediated suppressive activity on T lymphocytes. Cancer Research, 66(18), 9290–9298.PubMed Valenti, R., et al. (2006). Human tumor-released microvesicles promote the differentiation of myeloid cells with transforming growth factor-β-mediated suppressive activity on T lymphocytes. Cancer Research, 66(18), 9290–9298.PubMed
76.
Zurück zum Zitat Xiang, X., et al. (2009). Induction of myeloid-derived suppressor cells by tumor exosomes. International Journal of Cancer, 124(11), 2621–2633. Xiang, X., et al. (2009). Induction of myeloid-derived suppressor cells by tumor exosomes. International Journal of Cancer, 124(11), 2621–2633.
77.
Zurück zum Zitat Liu, Y., et al. (2010). Contribution of MyD88 to the tumor exosome-mediated induction of myeloid derived suppressor cells. The American Journal of Pathology, 176(5), 2490–2499.PubMed Liu, Y., et al. (2010). Contribution of MyD88 to the tumor exosome-mediated induction of myeloid derived suppressor cells. The American Journal of Pathology, 176(5), 2490–2499.PubMed
78.
Zurück zum Zitat Yu, S., et al. (2007). Tumor exosomes inhibit differentiation of bone marrow dendritic cells. Journal of Immunology, 178(11), 6867–6875. Yu, S., et al. (2007). Tumor exosomes inhibit differentiation of bone marrow dendritic cells. Journal of Immunology, 178(11), 6867–6875.
79.
Zurück zum Zitat Park, J. E., et al. (2010). Hypoxic tumor cell modulates its microenvironment to enhance angiogenic and metastatic potential by secretion of proteins and exosomes. Molecular & Cellular Proteomics, 9(6), 1085–1099. Park, J. E., et al. (2010). Hypoxic tumor cell modulates its microenvironment to enhance angiogenic and metastatic potential by secretion of proteins and exosomes. Molecular & Cellular Proteomics, 9(6), 1085–1099.
80.
Zurück zum Zitat Wong, C. C., et al. (2012). Inhibitors of hypoxia-inducible factor 1 block breast cancer metastatic niche formation and lung metastasis. Journal of Molecular Medicine (Berlin), 90, 803–15. Wong, C. C., et al. (2012). Inhibitors of hypoxia-inducible factor 1 block breast cancer metastatic niche formation and lung metastasis. Journal of Molecular Medicine (Berlin), 90, 803–15.
81.
Zurück zum Zitat Hiratsuka, S., et al. (2008). The S100A8-serum amyloid A3-TLR4 paracrine cascade establishes a pre-metastatic phase. Nature Cell Biology, 10(11), 1349–1355.PubMed Hiratsuka, S., et al. (2008). The S100A8-serum amyloid A3-TLR4 paracrine cascade establishes a pre-metastatic phase. Nature Cell Biology, 10(11), 1349–1355.PubMed
82.
Zurück zum Zitat Skog, J., et al. (2008). Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nature Cell Biology, 10(12), 1470–1476.PubMed Skog, J., et al. (2008). Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nature Cell Biology, 10(12), 1470–1476.PubMed
83.
Zurück zum Zitat Noerholm, M., et al. (2012). RNA expression patterns in serum microvesicles from patients with glioblastoma multiforme and controls. BMC Cancer, 12, 22.PubMed Noerholm, M., et al. (2012). RNA expression patterns in serum microvesicles from patients with glioblastoma multiforme and controls. BMC Cancer, 12, 22.PubMed
84.
Zurück zum Zitat Khan, S., et al. (2012). Plasma-derived exosomal survivin, a plausible biomarker for early detection of prostate cancer. PLoS One, 7(10), e46737.PubMed Khan, S., et al. (2012). Plasma-derived exosomal survivin, a plausible biomarker for early detection of prostate cancer. PLoS One, 7(10), e46737.PubMed
85.
Zurück zum Zitat Chen, T., et al. (2011). Chemokine-containing exosomes are released from heat-stressed tumor cells via lipid raft-dependent pathway and act as efficient tumor vaccine. Journal of Immunology, 186(4), 2219–2228. Chen, T., et al. (2011). Chemokine-containing exosomes are released from heat-stressed tumor cells via lipid raft-dependent pathway and act as efficient tumor vaccine. Journal of Immunology, 186(4), 2219–2228.
86.
Zurück zum Zitat Levy, E. M., Roberti, M. P., & Mordoh, J. (2011). Natural killer cells in human cancer: from biological functions to clinical applications. Journal of Biomedicine and Biotechnology, 2011, 676198.PubMed Levy, E. M., Roberti, M. P., & Mordoh, J. (2011). Natural killer cells in human cancer: from biological functions to clinical applications. Journal of Biomedicine and Biotechnology, 2011, 676198.PubMed
87.
Zurück zum Zitat Jinushi, M., et al. (2008). MHC class I chain-related protein A antibodies and shedding are associated with the progression of multiple myeloma. Proceedings of the National Academy of Sciences of the United States of America, 105(4), 1285–1290.PubMed Jinushi, M., et al. (2008). MHC class I chain-related protein A antibodies and shedding are associated with the progression of multiple myeloma. Proceedings of the National Academy of Sciences of the United States of America, 105(4), 1285–1290.PubMed
88.
Zurück zum Zitat Sibbitt, W. L., Jr., et al. (1984). Defects in natural killer cell activity and interferon response in human lung carcinoma and malignant melanoma. Cancer Research, 44(2), 852–856.PubMed Sibbitt, W. L., Jr., et al. (1984). Defects in natural killer cell activity and interferon response in human lung carcinoma and malignant melanoma. Cancer Research, 44(2), 852–856.PubMed
89.
Zurück zum Zitat Konjevic, G., et al. (2009). Biomarkers of suppressed natural killer (NK) cell function in metastatic melanoma: decreased NKG2D and increased CD158a receptors on CD3-CD16+ NK cells. Biomarkers, 14(4), 258–270.PubMed Konjevic, G., et al. (2009). Biomarkers of suppressed natural killer (NK) cell function in metastatic melanoma: decreased NKG2D and increased CD158a receptors on CD3-CD16+ NK cells. Biomarkers, 14(4), 258–270.PubMed
90.
Zurück zum Zitat Konjevic, G., et al. (2007). Low expression of CD161 and NKG2D activating NK receptor is associated with impaired NK cell cytotoxicity in metastatic melanoma patients. Clinical & Experimental Metastasis, 24(1), 1–11. Konjevic, G., et al. (2007). Low expression of CD161 and NKG2D activating NK receptor is associated with impaired NK cell cytotoxicity in metastatic melanoma patients. Clinical & Experimental Metastasis, 24(1), 1–11.
91.
Zurück zum Zitat Gill, S., Olson, J. A., & Negrin, R. S. (2009). Natural killer cells in allogeneic transplantation: effect on engraftment, graft- versus-tumor, and graft-versus-host responses. Biology of Blood and Marrow Transplantation, 15(7), 765–776.PubMed Gill, S., Olson, J. A., & Negrin, R. S. (2009). Natural killer cells in allogeneic transplantation: effect on engraftment, graft- versus-tumor, and graft-versus-host responses. Biology of Blood and Marrow Transplantation, 15(7), 765–776.PubMed
92.
Zurück zum Zitat Burke, S., et al. (2010). New views on natural killer cell-based immunotherapy for melanoma treatment. Trends in Immunology, 31(9), 339–345.PubMed Burke, S., et al. (2010). New views on natural killer cell-based immunotherapy for melanoma treatment. Trends in Immunology, 31(9), 339–345.PubMed
93.
Zurück zum Zitat Koehn, T. A., et al. (2012). Increasing the clinical efficacy of NK and antibody-mediated cancer immunotherapy: potential predictors of successful clinical outcome based on observations in high-risk neuroblastoma. Frontiers in Pharmacology, 3, 91.PubMed Koehn, T. A., et al. (2012). Increasing the clinical efficacy of NK and antibody-mediated cancer immunotherapy: potential predictors of successful clinical outcome based on observations in high-risk neuroblastoma. Frontiers in Pharmacology, 3, 91.PubMed
94.
Zurück zum Zitat Sawanobori, Y., et al. (2008). Chemokine-mediated rapid turnover of myeloid-derived suppressor cells in tumor-bearing mice. Blood, 111(12), 5457–5466.PubMed Sawanobori, Y., et al. (2008). Chemokine-mediated rapid turnover of myeloid-derived suppressor cells in tumor-bearing mice. Blood, 111(12), 5457–5466.PubMed
95.
Zurück zum Zitat Shojaei, F., et al. (2009). G-CSF-initiated myeloid cell mobilization and angiogenesis mediate tumor refractoriness to anti-VEGF therapy in mouse models. Proceedings of the National Academy of Sciences, 106(16), 6742–6747. Shojaei, F., et al. (2009). G-CSF-initiated myeloid cell mobilization and angiogenesis mediate tumor refractoriness to anti-VEGF therapy in mouse models. Proceedings of the National Academy of Sciences, 106(16), 6742–6747.
96.
Zurück zum Zitat Mazzoni, A., et al. (2002). Myeloid suppressor lines inhibit T cell responses by an NO-dependent mechanism. The Journal of Immunology, 168(2), 689–695.PubMed Mazzoni, A., et al. (2002). Myeloid suppressor lines inhibit T cell responses by an NO-dependent mechanism. The Journal of Immunology, 168(2), 689–695.PubMed
97.
Zurück zum Zitat Yang, L., et al. (2004). Expansion of myeloid immune suppressor Gr+CD11b+ cells in tumor-bearing host directly promotes tumor angiogenesis. Cancer Cell, 6(4), 409–421.PubMed Yang, L., et al. (2004). Expansion of myeloid immune suppressor Gr+CD11b+ cells in tumor-bearing host directly promotes tumor angiogenesis. Cancer Cell, 6(4), 409–421.PubMed
98.
Zurück zum Zitat Melani, C., et al. (2007). Amino-biphosphonate-mediated MMP-9 inhibition breaks the tumor-bone marrow axis responsible for myeloid-derived suppressor cell expansion and macrophage infiltration in tumor stroma. Cancer Research, 67(23), 11438–11446.PubMed Melani, C., et al. (2007). Amino-biphosphonate-mediated MMP-9 inhibition breaks the tumor-bone marrow axis responsible for myeloid-derived suppressor cell expansion and macrophage infiltration in tumor stroma. Cancer Research, 67(23), 11438–11446.PubMed
99.
Zurück zum Zitat Sinha, P., et al. (2008). Proinflammatory S100 proteins regulate the accumulation of myeloid-derived suppressor cells. The Journal of Immunology, 181(7), 4666–4675.PubMed Sinha, P., et al. (2008). Proinflammatory S100 proteins regulate the accumulation of myeloid-derived suppressor cells. The Journal of Immunology, 181(7), 4666–4675.PubMed
100.
Zurück zum Zitat Cheng, P., et al. (2008). Inhibition of dendritic cell differentiation and accumulation of myeloid-derived suppressor cells in cancer is regulated by S100A9 protein. The Journal of Experimental Medicine, 205(10), 2235–2249.PubMed Cheng, P., et al. (2008). Inhibition of dendritic cell differentiation and accumulation of myeloid-derived suppressor cells in cancer is regulated by S100A9 protein. The Journal of Experimental Medicine, 205(10), 2235–2249.PubMed
101.
Zurück zum Zitat Terabe, M., et al. (2003). Transforming growth factor-β production and myeloid cells are an effector mechanism through which CD1d-restricted T cells block cytotoxic T lymphocyte-mediated tumor immunosurveillance. The Journal of Experimental Medicine, 198(11), 1741–1752.PubMed Terabe, M., et al. (2003). Transforming growth factor-β production and myeloid cells are an effector mechanism through which CD1d-restricted T cells block cytotoxic T lymphocyte-mediated tumor immunosurveillance. The Journal of Experimental Medicine, 198(11), 1741–1752.PubMed
102.
Zurück zum Zitat Xiang, X., et al. (2009). Induction of myeloid-derived suppressor cells by tumor exosomes. International Journal of Cancer, 124(11), 2621–2633. Xiang, X., et al. (2009). Induction of myeloid-derived suppressor cells by tumor exosomes. International Journal of Cancer, 124(11), 2621–2633.
103.
Zurück zum Zitat Gabrilovich, D., et al. (1998). Vascular endothelial growth factor inhibits the development of dendritic cells and dramatically affects the differentiation of multiple hematopoietic lineages in vivo. Blood, 92(11), 4150–4166.PubMed Gabrilovich, D., et al. (1998). Vascular endothelial growth factor inhibits the development of dendritic cells and dramatically affects the differentiation of multiple hematopoietic lineages in vivo. Blood, 92(11), 4150–4166.PubMed
104.
Zurück zum Zitat Kusmartsev, S., et al. (2008). Oxidative stress regulates expression of VEGFR1 in myeloid cells: link to tumor-induced immune suppression in renal cell carcinoma. Journal of Immunology, 181(1), 346–353. Kusmartsev, S., et al. (2008). Oxidative stress regulates expression of VEGFR1 in myeloid cells: link to tumor-induced immune suppression in renal cell carcinoma. Journal of Immunology, 181(1), 346–353.
105.
Zurück zum Zitat Shojaei, F., et al. (2007). Tumor refractoriness to anti-VEGF treatment is mediated by CD11b+Gr1+ myeloid cells. Nature Biotechnology, 25(8), 911–920.PubMed Shojaei, F., et al. (2007). Tumor refractoriness to anti-VEGF treatment is mediated by CD11b+Gr1+ myeloid cells. Nature Biotechnology, 25(8), 911–920.PubMed
106.
Zurück zum Zitat van Cruijsen, H., et al. (2007). Defective differentiation of myeloid and plasmacytoid dendritic cells in advanced cancer patients is not normalized by tyrosine kinase inhibition of the vascular endothelial growth factor receptor. Clinical & Developmental Immunology, 2007, 17315–17315. van Cruijsen, H., et al. (2007). Defective differentiation of myeloid and plasmacytoid dendritic cells in advanced cancer patients is not normalized by tyrosine kinase inhibition of the vascular endothelial growth factor receptor. Clinical & Developmental Immunology, 2007, 17315–17315.
107.
Zurück zum Zitat Hiratsuka, S., et al. (2011). Endothelial focal adhesion kinase mediates cancer cell homing to discrete regions of the lungs via E-selectin up-regulation. Proceedings of the National Academy of Sciences of the United States of America, 108(9), 3725–3730.PubMed Hiratsuka, S., et al. (2011). Endothelial focal adhesion kinase mediates cancer cell homing to discrete regions of the lungs via E-selectin up-regulation. Proceedings of the National Academy of Sciences of the United States of America, 108(9), 3725–3730.PubMed
108.
Zurück zum Zitat Schelter, F., et al. (2011). Tissue inhibitor of metalloproteinases-1-induced scattered liver metastasis is mediated by hypoxia-inducible factor-1alpha. Clinical & Experimental Metastasis, 28(2), 91–99. Schelter, F., et al. (2011). Tissue inhibitor of metalloproteinases-1-induced scattered liver metastasis is mediated by hypoxia-inducible factor-1alpha. Clinical & Experimental Metastasis, 28(2), 91–99.
109.
Zurück zum Zitat Gil-Bernabé, A. M., et al. (2012). Recruitment of monocytes/macrophages by tissue factor-mediated coagulation is essential for metastatic cell survival and premetastatic niche establishment in mice. Blood, 119, 3164–75.PubMed Gil-Bernabé, A. M., et al. (2012). Recruitment of monocytes/macrophages by tissue factor-mediated coagulation is essential for metastatic cell survival and premetastatic niche establishment in mice. Blood, 119, 3164–75.PubMed
Metadaten
Titel
The pre-metastatic niche: finding common ground
verfasst von
Jaclyn Sceneay
Mark J. Smyth
Andreas Möller
Publikationsdatum
01.12.2013
Verlag
Springer US
Erschienen in
Cancer and Metastasis Reviews / Ausgabe 3-4/2013
Print ISSN: 0167-7659
Elektronische ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-013-9420-1

Weitere Artikel der Ausgabe 3-4/2013

Cancer and Metastasis Reviews 3-4/2013 Zur Ausgabe

Editorial

Editorial

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.